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MA REPRESENTATION OF `2 2D SYSTEMS

Paula Rocha

In this paper we study the representation of 2D systems with `2 signals. Starting
from a (deterministic) 2DAR model, we investigate under which conditions there exists
an alternative description of the MA type. Such a description is further used in order to
obtain 2D state space model for the given system.

1. INTRODUCTION

In the behavioral approach a system is characterized by the way that it interacts
with the environment through its, so-called, external variables. These variables are
all considered to be at a same level, since there is no a priori division into inputs and
outputs. The system laws can then be expressed by means of relationships between
the external variables; this yields a set of admissible external signals known as the
system behavior. A system for which all the admissible signals are square summable
sequences over Z2 is called an `2 2D system.

An interesting class of 2D systems is associated with the class Bq of linear, shift-
invariant, closed 2D behaviors in q variables. Representation results of such be-
haviors have been derived in [5] and [6]. Particularly, Bq coincides with the family
of 2DAR behaviors (that can be described as the kernel of a polynomial operator
R(σ1, σ2, σ−1

1 , σ−1
2 ) in the 2D shifts and their inverses).

In this paper we consider `2 systems obtained by imposing a square summability
condition to the trajectories of the behaviors in Bq. These systems will be called
`2 AR systems. We are concerned with the existence of suitable descriptions for such
systems. Namely, we investigate whether or not it is possible to represent an `2 AR
behavior B as the image of a polynomial operator M(σ1, σ1, σ

−1
1 , σ−1

2 ) acting on an
`2 space, instead of representing it as a kernel. (Such an image representation is also
called an MA description). In this case B can be generated as the output behavior
of a 2D quarter-plane causal FIR filter driven by free `2 inputs. Such a description
is of particular interest for the construction of state space realizations.

We will show by means of an example that `2 MA representations cannot always
be obtained. However, it turns out that a broad class of `2 AR systems allows for
such representations.



512 P. ROCHA

2. PRELIMINARIES

We start by introducing some basic definitions and results that will be useful in the
sequel.

We consider discrete 2D systems Σ = (T, W,B) in q variables, with trajectories
defined over the domain T = Z2 and taking their values on W = Rq. The set
B ⊆ {w : Z2 → Rq} =: (Rq)Z

2
specifies which are the admissible system signals, and

constitutes the system behavior. We remark that in this characterization of Σ the
system variables are stacked together in a q-dimensional vector w instead of being
split into inputs and outputs. Thus we do not impose an input-output structure in
the signal components.

The behavior B is said to be shift-invariant if it is invariant under the 2D shift-
operators and their inverses. These are, as usual, given by σ1 w(i, j) = w(i +
1, j), σ2 w(i, j) = w(i, j + 1), with the obvious definitions for σ−1

1 and σ−1
2 . Here

we consider the class Bq of linear, shift-invariant behaviors in q variables which are
closed subsets of (Rq)Z

2
in the topology of pointwise convergence. For this class of

systems the following representation result holds.

Proposition 1. [4]: The behavior B belongs to Bq if and only if there exists a poly-
nomial matrix R(s1, s2, s

−1
1 , s−1

2 ) such that B = {w : Z2 → Rq |R(σ1, σ2, σ
−1
1 , σ−1

2 )
w = 0} =: kerR(σ1, σ2, σ

−1
1 , σ−1

2 ).

We refer to the equation R(σ1, σ2, σ
−1
1 , σ−1

2 ) w = 0 as a (deterministic) autore-
gressive (AR) equation, and to the elements of Bq as AR behaviors.

If the polynomial matrix R(σ1, σ2, σ
−1
1 , σ−1

2 ) is (factor) left-prime the correspond-
ing behavior B := kerR(σ1, σ2, σ

−1
1 , σ−1

2 ) can alternatively be represented as the
image of a polynomial operator M(σ−1

1 , σ−1
2 ) acting on (Rp)Z (cf. [6]). Thus

B = {w : Z2 → Rq | ∃ v : Z2 → Rp s. t. w = M(σ−1
1 , σ−1

2 ) v}, meaning that the
trajectories in B can be obtained as the outputs of the 2D quarter-plane causal FIR
filter M driven by the input v.

Based on such a representation the following state space model for B is easily
derived.

σ1x1 = A11x1 + B1v

σ2x2 = A21x1 + A22x2 + B2v

w = C1x1 + C2x2 + D v.

(1)

This resembles the well-known separable Roesser model, with the difference that
here the “output” consists of the whole system variable w and the “input” is an
auxiliary variable v (called the driving-variable).

3. REPRESENTATION OF `2 AR SYSTEMS

In this section we investigate existence of `2 MA representations for `2 AR systems.
This guarantees the possibility of realizing at `2 AR systems by means a state-space
model of the form (1) with `2 state and `2 driving-variable.
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Definition 2. Σ2 = (Z2,Rq,B2) is said to be an `2 AR system if B2 = B∩ `q
2, with

B an AR behavior and `q
2 := {w : Z2 → Rq ‖Σ(i,j)∈Z2‖w(i, j)‖2 < ∞}.

Thus, the behavior of an `2 AR system Σ2 can be specified as the kernel of a
polynomial operator R(σ1, σ2, σ

−1
1 , σ−1

2 ) acting on `q
2. This operator is called an

`2 AR representation of Σ2, and we denote Σ2(R) (and B2 = B2(R)).

A first representation is given in the next proposition.

Proposition 3. If B2 be an `2 AR behavior, then there exists a (factor) left-prime
polynomial matrix R(s1, s2, s

−1
1 , s−1

2 ) such that B2 = B(R).

P r o o f . Let E(s1, s2, s
−1
1 , s−1

2 ) be an arbitrary representation of B2, i. e. B2 =
B2(E). Then E can always be factorized as E = F R, where F has full column
rank and R is a (factor) left-prime polynomial matrix of size g × q. So, B2 = {w ∈
`q
2 |F (Rw) = 0}. This means that w ∈ B2 if and only if Rw ∈ (kerF ∩ `g

2). Using
the fact that F has full column rank, it is possible to show that kerF ∩ `g

2 = {0}.
Hence w ∈ B2 if and only if Rw = 0, i. e. B2 = B2(R). 2

Given an `2 AR system Σ2(R) the `2 MA representation problem can be for-
mulated as follows. Find a polynomial matrix M(s−1

1 , s−1
2 ) such that the system

behavior B(R) coincides with the image of the operator M(σ−1
1 , σ−1

2 ) acting on a
space `p

2, for a suitable integer p (i. e. B(R) = {w | ∃ a ∈ `p
2 s. t. w = M a}). This

image will be denoted by im2M in order to make a distinction with the image of M
viewed as on operator on (Rq)Z

2
(which is simply denoted by imM).

The example below shows that the foregoing problem is not always solvable.

Example 4. Let Σ2 = (Z2,R2,B2) be an `2 system in two variables such that
B2 := B2(R) and R(s1, s2, s

−1
1 , s−1

2 ) := [s2−1 −(s1−1)]. So, B2 = B∩`22, with B :=
{w : Z2 → R2 |w = col(w1, w2)} and (σ2−1)w1 = (σ1−1) w2}. Since the polynomial
matrix R is left-prime, B has an image representation, namely B = im M(σ−1

1 , σ−1
2 ),

with M(s−1
1 , s−1

2 ) := col(s−1
2 (1−s−1

1 ), s−1
1 (1−s−1

2 )). Thus B2 = im M∩`22. However
it can be shown that B2 6= im2M , and that moreover there does not exists another
operator M such that B2 = im2M .

A sufficient condition for the existence of an `2 MA representation is as follows.

Proposition 5. Let B2 be an `2 AR behavior, and let R(s1, s2, s
−1
1 , s−1

2 ) be a g×q
(factor) left-prime 2D polynomial matrix such that B2 = B2(R). Then B2 allows for
an `2 MA if the following condition is satisfied.

rankR(λ1, λ2, λ
−1
1 , λ−1

2 )=g ∀ (λ1, λ2) ∈ P:={(λ1, λ2) ∈ C× C
∣∣ |λ1| = |λ2| = 1}.

(C)
P r o o f . Since R is factor left-prime, RT is an irreducible basis (cf. [3]). Let MT

be an irreducible dual basis of RT . Then, by (C), M must have full column rank
over P (cf. [3], Lemma 2.5). This implies that there exists a 2D polynomial matrix
L such that LM = N , with N square, det N 6≡ 0, and det N(λ1, λ2, λ

−1
1 , λ−1

2 ) 6=
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0 ∀ (λ1, λ2) ∈ P. Given w ∈ B2 define a as the `2 solution of the equation N a = Lw.
Such a solution always exists since Lw is `2 and N is a full row rank polynomial
matrix without zeros in P. We now claim that a is such that w = M a. Clearly,
L(w − M a) = 0; moreover, since MT is a dual basis of RT , RM = 0 and hence
R(w −M a) = 0. Combining the two equations in w −M a yields S(w −M a) = 0,
with S := col(R,L). Finally, it can be shown that S has full column rank, so that
kerS ∩ `q

2 = {0}. This implies that w = M a, and therefore B2 ⊆ im2M . The
reciprocal inclusion is obvious. 2

Corollary 6. Every `2 2D system Σ2 = (Z2,R2,B) satisfying the conditions of
Proposition 5 can be realized by means of a state model of the form (1) with `2
driving-variables v and `2 state trajectories x := col(x1, x2).

P r o o f . By Proposition 5 B = {w | ∃ v ∈ `2 s. t. w = M(σ−1
1 , σ−1

2 ) v}. Factoriz-
ing M(s−1

1 , s−1
2 ) as M(s−1

1 , s−1
2 ) = M2(s−1

2 )M1(s−1
1 ) shows that B can be viewed as

the output behavior of two 1D FIR filters acting in series and driven by an `2 input
v. The desired 2D realization can be obtained based on 1D realization with `2 state
for M1 and M2. For more detail we refer to [6]. 2

An `2 AR behavior B2 = B(R) ∩ `q
2 is said to have a maximal degree of freedom

if the number of `2 free variables in B2 equals the number of free variables in B(R).
(This does not happen, for instance, for the behavior B2 of Example 4.)

It turns out that for `2 behaviors with a maximal degree of freedom the sufficient
condition of Proposition 5 is also necessary.

Theorem 7. Let B2 be an `2 AR behavior given by B2 = B2(R), with R a g × q
left-prime 2D polynomial matrix. Further, assume that B2 has a maximal degree of
freedom. Then B2 allows for an `2 MA representation if and only if the condition
(C) of Proposition 5 is satisfied.

P r o o f . Suppose that B2 has an `2 MA representation w = M a. Then M must
be a dual basis of R, and its column rank drops wherever the row rank of R does.
So, if (C) is not satisfied there exists (λ∗1, λ

∗
2) ∈ P such that every (q − g)× (q − g)

minor of M vanishes at (λ∗1, λ
∗
2). Assume now, w. l. g., that the first q−g components

w̃ of w are free in `2, and denote by P the q − g first rows of M . Then for every
w̃ ∈ `

(q−g)
2 there must exist a ∈ `

(q−g)
2 such that P a = w̃. In particular P−1 should

have an `2 impulse response, which is absurd since det P (λ∗1, λ
∗
2) = 0. 2

Example 8. Let B = B2(R) with R(s1, s2, s
−1, s−1

2 ) := [(1 − s1) (s2 − 1) 2s2s1 −
s1 − s2]. Clearly B(R) has one free variable. Moreover, it is shown in [1] that the
2D transfer function t(z1, z2) = (z1− 1) (z2− 1) / (2z2z1− z1− z2) has an `2 impulse
response. This implies that the second variable in B2 is free in `2, and so B2 has a
maximal degree of freedom. Now, if B2 has an `2 MA representation, this must be
of the following form: (

w1

w2

)
=

(
(σ1 − 1) (σ2 − 1)
2σ1σ2 − σ1 − σ2

)
a.
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However, if w2 is the 2D impulse there is no `2 variable a satisfying (2σ1σ2 − σ1 −
σ2) a = w2 (since the impulse response of (2z1z2 − z1 − z2)−1 is not in `2). This
shows that B2 does not allow an `2 MA representation. 2

4. CONCLUSIONS

In this paper we present preliminary results on the solvability of the `2 MA rep-
resentation problem for the class of `2 AR systems. This problem is of particular
interest due to its connection with the construction of state space realizations for
that class of systems. The necessity of the condition (C) in Proposition 5 for `2
behaviors without a maximal degree of freedom is still under investigation.

(Received February 25, 1993.)
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