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THE PARTIAL NON INTERACTING PROBLEM:
STRUCTURAL AND GEOMETRIC SOLUTIONS

Juan Carlos Mart́ınez Garćıa, Michel Malabre and Rabah Rabah

The aim of this paper is to propose a new contribution in the domain of the famous
Decoupling Problem for Linear Time-Invariant systems: we introduce here and solve the
so-called kth-order Partial Non Interacting Problem (PNIP(k)), which amounts to diag-
onalizing the first k Markov parameters of the compensated plant. This contribution is
based on classical results on exact decoupling and the partial treatment is inspired from a
similar control problem, namely the partial model matching problem.

1. INTRODUCTION

The Decoupling Problem (also sometimes called Non Interacting Problem) is cer-
tainly one of the most famous problems in Control Theory which amounts to reduc-
ing the control of a “complex” multivariable process to that of several single-input,
single-output ones. Some intensive treatment of this problem can be found in [17].
However, the structural requirements for that problem to be solvable may be quite
demanding (see for instance [4], [3], and recently [13]). This is the reason why a
partial version of this problem is introduced here, which amounts to obtaining non
interaction only through the first k Markov parameters of the compensated plant.
We present here the geometic and structural solutions for this problem.

2. NOTATION AND BASIC CONCEPTS

Throughout the paper we shall essentially follow the notational conventions of [17].
Script capital (X ,Y, . . . ) denote finite-dimensional vector spaces over the field of
real numbers IR, and dim(X ), dim(Y), . . . , denote their dimensions. The notation
X ' Y means dim(X ) = dim(Y). If V ⊂ X , then X/V denotes the quotient space
X modulo V.

Italic capitals (A, B, . . . ) denote interchangeably linear maps and their matrix
representations in particular bases. The ith row of a matrix C is denoted by ci. We
shall use Ci to denote the matrix C without the ith row ci. The image of a map
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B is written as Im B and its kernel as Ker B. The identity map on a n-dimensional
space is denoted by In.

The set of positive integer numbers is denoted by IN .
Given the maps A:X → X , B:U → X , C:X → Y (dim(X ) = n, dim(U) = m,

dim(Y) = p), associated with the linear time-invariant system:

{
ẋ(t) = Ax(t) + Bu(t) t ≥ 0,
y(t) = Cx(t) t ≥ 0,

(1)

that we shall denote by (A, B, C), it will be assumed here that the reader is fa-
miliarized with the concepts of (A,B)-invariant, (C,A)-invariant and controllability
subspaces [17] (see also [1]). We shall mainly use the following.

Let B = Im B and C = Ker C. A subspace W ⊂ X is said to be (A,B)-invariant
if there exists a map F :X → U satisfying (A+BF )W ⊂W.

A subspace W ⊂ X is said to be (C, A)-invariant if there exists a map K:Y → X
satisfying (A+KC)W ⊂W.

Given any subspace K ⊂ X , the supremal (A,B)-invariant subspace included in
K is given as the limit, say V∗(K), of the Invariant Subspace Algorithm (ISA):

{ V0 := X
Vµ := K ∩A−1

(Vµ−1 + B)
, µ ≥ 1.

(2)

When K = kerC the limit of ISA is noted as V∗.
When K = ker ci the µth step of ISA is noted as Vµ

i and its limit is noted as V∗i .
When K = ker Ci the µth step of ISA is noted as Wµ

i and its limit is noted as W∗
i .

Given any subspace K ⊂ X , the infimal (K, A)-invariant subspace containing B
is given as the limit of the Conditioned Invariant Subspace Algorithm (CISA):

{ S0 := 0
Sµ := B + A

(K ∩ Sµ−1
)
, µ ≥ 1.

(3)

When K = kerC the limit of CISA is noted as S∗.
When K = ker ci the µth step of CISA is noted as Sµ

i and its limit is noted as S∗i .
When K = kerCi the µth step of CISA is noted as Sµ

i and its limit is noted as S∗i .
Given any subspace K ⊂ X , the maximal (A,B)-controllability subspace con-

tained in K is given as the limit of the Controllability Subspace Algorithm (CSA):

{ R0 := 0
Rµ := V∗(K) ∩ (

ARµ−1 + B)
, µ ≥ 1.

(4)

When K = kerC the limit of CSA is noted as R∗, which is equal to V∗ ∩ S∗.
When K = ker ci the µth step of CSA is noted as Rµ

i and its limit is noted as R∗i ,
which is equal to V∗i ∩ S∗i
When K = kerCi the µth step of CSA is noted as T µ

i and its limit is noted as T ∗i ,
which is equal to W∗

i ∩ S
∗
i .
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Infinite Zero Structure

Given any system (A, B, C) described by (1) or equivalently by its strictly proper
p×m transfer function matrix T (s) := C(sIn − A)−1B, its structure at infinity is
described by the multiplicity orders of its zeros at infinity . From an algebraic point
of view, this structure can be derived from the so-called Smith–McMillan Form at
infinity of T (s), say ∧∞, which is a canonical form under right and left biproper
transformations (see for instance [15]). Indeed, there exist biproper matrices, B1(s)
and B2(s), such that:

B1(s) T (s)B2(s) = ∧∞ =




4∞ 0

0 0


 ,

where 4∞ = diag{s−n1 , s−n2 , . . . , s−nr}, r := rank (T (s)).
The non increasing list of integers {n1, n2, . . . , nr} is the list of the orders of

the zeros at infinity of the system. This list is frequently called global structure at
infinity of (A, B, C). From a geometric point of view, various equivalent definitions
have been given for this structure. The original one, due to [2], is:

ni = card{pµ ≥ i}, ∀ i ∈ {1, 2, . . . , r}, (5)

where card stands for cardinal (number of elements in the set) and with:

pµ := dim
(
V∗ + Sµ

V∗ + Sµ−1

)
, ∀µ ≥ 1. (6)

Other geometric characterizations have been given in [10]. A particularly interesting
one is given by:

pµ := dim
(
B ∩ Vµ−1

B ∩ V∗
)

, ∀µ ≥ 1. (7)

For the system (A, B, ci), which denotes the ith row of the transfer function
matrix T (s), the order of its zero at infinity is noted as n′i and is given by:

n′i = dim
(
S∗i + V∗i
V∗i

)
. (8)

This list {n′1, n′2, . . . , n′p} is called the row structure at infinity of (A, B, C).
The elements of this list are also given by:

n′i = min{j : ciA
j−1B 6= 0, j = 1, 2, . . .}, ∀ i ∈ {1, 2, . . . , p}. (9)

3. PROBLEM STATEMENT

The kth-order Partial Non Interacting Problem (PNIP(k))

Definition 1. (PNIP(k)) Given a system (A, B, C) and a positive integer k, the
kth-order Partial Non Interacting Problem has a solution if and only if there exists
a static state feedback control law:

u(t) = Fx(t) + Gv(t) (10)
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with G non singular, such that the first k Markov parameters of the closed-loop
system have all their non-diagonal elements equal to zero, i. e.:

C (A + BF )j
BG = {diagonal matrix} , ∀ j ∈ {0, 1, . . . , k − 1}. (11)

Note that some diagonal elements of the corresponding matrices may be zero.
Moreover, we do not require any full rank property for the considered system.

4. MATRIX AND STRUCTURAL SOLUTION OF PNIP(k)

First of all, let us present here an easy-to-verify property of a system (A, B, C). This
property will be used to establish the necessary and sufficient solvability condition
of PNIP(k) in matrix terms.

Property 1. [6] Given a system (A, B, C) and from the definition (9) of n′i we
have that:

ci (A + BF )j = ciA
j , ∀ j ∈ {0, 1, . . . n′i − 1}

and:

ci (A + BF )j = ciA
n′i−1 (A + BF )j−n′i+1

, ∀ j ∈ {n′i, n′i + 1, . . .}.
In what follows we shall consider that the outputs of (A,B,C) have been re-

ordered in such a way that:

n′1 ≤ n′2 ≤ . . . ≤ n′p.

For the problem of interest (non interaction) this is obviously an unrestrictive as-
sumption.

Let us now present our:

Theorem 1. Given a system (A, B, C) and a positive integer k, the following
statements are equivalent:

i) PNIP(k) is solvable.

ii) The matrix Dkis epic, where:

Dk :=




c1A
n′1−B

c2A
n′2−B
...

clA
n′l−B


 (12)

with n′i ≤ k, for all i ∈ {1, 2, . . . , l}.
iii) The set of all the elements of the global structure at infinity of (A,B, C) which

are less than or equal to k is equal to the set of all the elements of the row
structure at infinity of (A, B, C) which are less than or equal to k.
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P r o o f . ii) =⇒ i): Assuming that Dk is epic, it is claimed that the static state
feedback control law:

u(t) = F ∗x(t) + G∗v(t)

with:
F ∗ := −G∗A∗, (13)

and:
G∗ :=

[
D+

k Kk

]
, (14)

where:

A∗ :=




c1A
n′1−

c2A
n′2−

...
clA

n′l−

0(m−l)χm




, (15)

DkD+
k = Il, (16)

Kk is a basis of Ker Dk, (17)

solves PNIP(k).
From the very definition of n′i’s we have that:

ci (A + BF ∗)j
BG = 0, ∀ j ≤ n′i − 1. (18)

By Property 1:

ci (A + BF ∗)n′i−1 = ciA
n′i−1, ∀ i ∈ {1, 2, . . . , l}.

Thus:

ci (A + BF ∗)n′i−1
BG∗ = ciA

n′i−1BG∗ = ciA
n′i−1B

[
D+

k Kk

]
.

But ciA
n′i−1B, for all i in {1, 2, . . . , l}, is the ith row of Dk and so it follows that:

ci (A + BF ∗)n′i−1
BG∗ = [γi1 γi2 . . . γim] (19)

with:
γij :=

{
1, for j = i
0, for j 6= i

, ∀ j ∈ {1, 2, . . . , m}.

Both equations (18) and (19) let us conclude that u(t) = F ∗x(t) + G∗v(t) solves
PNIP(k), as was claimed.

i) =⇒ iii): Suppose that PNIP(k) is solvable, i. e. there exists a static state
feedback control law u(t) = Fx(t)+Gv(t), with G non singular, such that the first
k Markov parameters of the closed-loop system, i. e. (A + BF , BG, C), have all
their non-diagonal elements equal to zero.
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Let us now write the transfer function matrix of (A + BF , BG, C) as follows:

TFG(s) := C (sIn − (A + BF ))−1
BG

= T (s)C(s)

with:
T (s) := C (sIn −A)−1

B

and:
C(s) :=

(
Im − F (sIn −A)−1

B
)−1

G.

Since G is a non singular matrix, C−1(s) = G−1
(
Im − F (sIn −A)−1

B
)

exists
and is biproper. Hence, the global structure at infinity is the same for T (s) and
TFG(s). This is also the same for the row structure at infinity of T (s) and TFG(s).
Indeed, the order of the zero at infinity of the ith-row of TFG(s), i. e. TFGi

(s) :=
ci (sIn − (A + BF ))−1

BG, is equal to n′i, the order of the zero at infinity of the
row-system (A, B, ci). Let us now define:

4n′(s) := diag{s−n′1 , s−n′2 , . . . , s−n′l , s
−n′l+1 , . . . , s−n′p}. (20)

Then we can factorize TFG(s) as follows:

TFG(s) = 4n′(s)TFG(s),

where TFG(s) is such that its first l rows are independent (recall that the outputs of
the original system have been re-ordered in such a way that n′1 ≤ n′2 ≤ . . . ≤ n′p),
since C (A + BF )j

BG = {diagonal matrix} , ∀j ∈ {0, 1, . . . , k − 1}. Thus, the
algorithm which derives the global structure at infinity of a rational matrix from
Laurent expansions (see [16] and [9]), let us affirm that {n′1, n′2, . . . , n′l} is a subset
of the global structure at infinity of TFG(s), and since the global structure at infinity
of TFG(s) and T (s) is the same, this establishes iii).

iii) =⇒ ii): Suppose that the set of all the elements of the global structure at
infinity of (A, B, C) which are less than or equal to k is equal to the set of all the
elements of the row structure at infinity of (A,B,C) which are less than or equal to
k, and let us factorize the transfer function matrix of system (A,B, C) as follows:

T (s) = 4n′(s)







c1A
n′1−1B

c2A
n′2−1B
...

clA
n′l−1B

cl+1A
n′l+1−1

B
...

cpA
n′p−1B




+ [ · ] s−1 + [ · ] s−2 + . . .




, (21)

where [ · ] stands for a constant matrix and with 4n′(s) as defined in (20). As above,
the algorithm which derives the global structure at infinity of a rational matrix from
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Laurent expansions let us conclude about the independence of at least the first l
rows of the leading coefficient matrix of the right hand side of (21). This implies
that Dk is epic, which concludes the proof. 2

Let us remark that the results established in Theorem 1 are also valid when the
outputs of the system are not re-ordered in a particular way. Re-ordering has just
been used to prove the theorem in an easy-to-present way. In the sequel we do not
assume any special re-ordering of the outputs of the system.

The exact row decoupling problem amounts to solving PNIP(k) for any possible
value of k ∈ IN . Thanks to the previous structural condition, this gives:

Corollary 1. The exact row decoupling problem is solvable if and only if {ni} =
{n′i}.

Note that this requires that the system be of full row rank p, since {n′i} is always
formed with p integers.

Let us now write a structural solvability condition of PNIP(k) which will play a
key role in the obtention of the geometric solvability condition of this problem.

Due to the correspondence (5) between both list {nj} and list {pi}, which char-
acterizes geometrically the global structure at infinity of system (A, B, C), it is quite
obvious that:

τµ := p1 − pµ, ∀µ ∈ {1, 2, . . . , n1} (22)

is the number of the zeros at infinity of (A,B,C) which order is strictly less than µ,
for all i ∈ {1, 2, . . . , n1}. In particular, for the row-system (A,B, ci) let:

τ ′iµ := 1− p′iµ , ∀µ ≥ 1 (23)

with:
p′iµ = dim

(B ∩ Vµ−1
i

B ∩ V∗i

)
(by (7)). (24)

Then τ ′iµ is equal to 1 for all µ ≥ n′i + 1 and is equal to zero if µ is strictly less than
n′i + 1. Consequently, given an integer µ ∈ {1, 2, . . . , k + 1}:

τ ′µ :=
p∑

i=1

τ ′iµ =
p∑

i=1

dim

(
B

B ∩ Vµ−1
i

)
(25)

is equal to the total number of all the elements of the row structure at infinity of
(A, B, C) which order is strictly less than µ.

We can now present:

Corollary 2. Let the positive integer k and system (A, B, C) be given. Then
PNIP(k) is solvable if and only if:

τµ = τ ′µ, ∀µ ∈ {1, 2, . . . , k + 1}. (26)
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P r o o f . To prove this corollary, it suffices to establish the equivalence between
(26) and iii) in Theorem 1.

It is evident that the equality between the less than or equal to k elements of
both global and row structures at infinity of system (A, B, C) implies (26).

Conversely, using combinatorial arguments, we can easily prove that the list of
non-decreasing positive integers {τµ}, ∀µ ∈ {1, 2, . . . , k + 1} ({τ ′µ}, ∀µ ∈ {1, 2, . . .
. . . , k + 1}), characterizes an unique list of also non-decreasing τk+1 (τ ′k+1) positive
integers: the subset of the less than or equal to k elements of the global structure
at infinity (row structure at infinity). Thus, (26) implies iii) in Theorem 1. 2

5. GEOMETRIC SOLUTION OF PNIP(k)

In this section we shall present an alternative solvability condition of PNIP(k),
established in geometric terms. To do it, we shall need two preliminary lemmas
that we present here without proof in order to avoid unnecessary extension of this
paper. In fact, these lemmas are some quite generalization of results given in [4]
concerning the Block Decoupling Problem.

Lemma 1. Consider a system (A,B, C) and a positive integer k be given, if for a
a given positive integer µ < k the following conditions hold:

B =
p∑

i=1

B ∩ T µ
i

(27)

Vµ =
p⋂

i=1

Vµ
i

(28)

T µ
i =

p⋂

j∈{1, 2, ..., p}, j 6=i

Vµ
j , ∀ i ∈ {1, 2, . . . , p}, (29)

then (27) and (28) imply:

Vµ+1 =
p⋂

i=1

Vµ+1
i

(30)

and (27) and (29) imply:

T µ+1
i =

p⋂

j∈{1, 2, ..., p}, j 6=i

Vµ+1
j , ∀ i ∈ {1, 2, . . . , p}. (31)

Lemma 2. Consider a system (A,B, C) and a positive integer k be given, if for a
a given positive integer µ ≤ k the following conditions hold:

Vµ =
p⋂

i=1

Vµ
i

(32)

T µ
i =

p⋂

j∈{1, 2, ..., p}, j 6=i

Vµ
j , ∀ i ∈ {1, 2, . . . , p}, (33)
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then:
p∑

i=1

dim (B ∩ T µ
i ) = dim

(
p∑

i=1

B ∩ T µ
i

)
+ (m− 1) · dim (B ∩ Vµ) , µ ≤ k.

(34)

We can now present:

Theorem 2. Let the positive integer k and system (A, B, C) be given. Then
PNIP(k) is solvable if and only if:

B =
p∑

i=1

B ∩ T µ
i , ∀µ ∈ {1, 2, . . . , k}. (35)

P r o o f . To prove this theorem, we shall follow in essence the procedure used in
[4] to solve the block decoupling problem via regular static state feedback.

Let us first consider that (35) holds.
From (29) the total number of the set of elements of the row structure at infinity

of (A, B, C) which order is strictly less than µ ∈ {1, 2, . . . , k + 1} is given by:

τ ′µ =
p∑

i=1

dim (B)−
p∑

i=1

dim
(
B ∩ Vµ−1

i

)
. (36)

If (35) holds:

B = B ∩ T µ−1
i + B ∩ Vµ−1

i , ∀ i ∈ {1, 2, . . . , p}, µ ∈ {1, 2, . . . , k + 1} (37)

since T µ−1
i ⊂ Vµ−1

j , for all i, j ∈ {1, 2, . . . , p}, j 6= i, and µ ∈ {1, 2, . . . , k + 1}.
By substitution of (37) in (36), we obtain that for all µ ∈ {1, 2, . . . , k + 1}:

τ ′µ =
p∑

i=1

dim
(
B ∩ T µ−1

i

)
−

p∑

i=1

dim
(
B ∩ T µ−1

i ∩ Vµ−1
i

)
. (38)

Now, from Lemma 1, we have:

T µ−1
i =

⋂

i∈{1,2, ...,p}, j 6=i

Vµ−1
j , ∀µ ∈ {1, 2, . . . , k + 1}. (39)

Then the substitution of (39) in (38) results in:

τ ′µ =
p∑

i=1

dim
(
B ∩ T µ−1

i

)
−

p∑

i=1

dim

(
B

p⋂

i=1

Vµ−1
i

)
. (40)

But
p⋂

i=1

Vµ−1
i = Vµ−1, for all µ ∈ {1, 2, . . . , k + 1}, since (28). Then (40) can now

be written as follows:

τ ′µ =
p∑

i=1

dim
(
B ∩ T µ−1

i

)
−m · dim

(B ∩ Vµ−1
)
, (41)



654 J.C. MARTÍNEZ GARCÍA, M. MALABRE AND R. RABAH

for all µ ∈ {1, 2, . . . , k + 1}.
Using Lemma 2 for all µ ∈ {1, 2, . . . , k + 1}, and (35), (41) becomes:

τ ′µ = dim

(
p∑

i=1

B ∩ T µ−1
i

)
− dim

(B ∩ Vµ−1
)

= dim (B) − dim
(B ∩ Vµ−1

)

= dim
( B
B ∩ Vµ−1

)
=: τµ, ∀µ ∈ {1, 2, . . . , k + 1},

and sufficiency has been proved.
For necessity we shall prove by induction that, under the assumption iii) in The-

orem 1 (or equivalently: assuming that (26) holds), the following relationships hold
for all µ ∈ {1, 2, . . . , k}:

Vµ =
p⋂

i=1

Vµ
i , (42)

T µ
i =

⋂

j∈{1,2, ...,p}, j 6=i

Vµ
j , (43)

B = B ∩ T µ
i + B ∩ Vµ

i , ∀ i ∈ {1, 2, . . . , p}, (44)

B =
p∑

i=1

B ∩ T µ
i . (45)

These relationships obviously hold for µ = 0. Let us then assume that (42)-(45)
hold for some µ ∈ {1, 2, . . . , k}. By Lemma 1, (42) and (43) hold for µ+1. In order
to establish (44) for µ + 1, let us write that for all i ∈ {1, 2, . . . , p}:

dim
(
B ∩ T µ+1

i + B ∩ Vµ+1
i

)
= dim


B

⋂

j∈{1,2, ...,p}, j 6=i

Vµ+1
j




+ dim
(
B ∩ Vµ+1

i

)

− dim
(
B ∩ T µ+1

i ∩ Vµ+1
i

)
,

(46)

since (42) and (43) hold for µ + 1.

While developing dim


B

⋂

j∈{1,2, ...,p}, j 6=i

Vµ+1
j


 we can write that for all i which
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belongs to {1, 2, . . . , p}:

dim
(
B ∩ T µ+1

i + B ∩ Vµ+1
i

)
=

p∑

i=1

dim
(
B ∩ Vµ+1

j

)
−

p−2∑

i=1

dim
(
Lµ+1

j

)

− dim
(B ∩ Vµ+1

)
,

(47)
where Lµ+1

j , for all j ∈ {1, 2, . . . , p− 2}, are included in B.
Now, by Corollary 2, the solvability of PNIP(k) amounts to:

τ ′µ = τµ, ∀µ{1, 2, . . . , k + 1},
which is to say:

p∑

i=1

dim

(
B

B ∩ Vµ+1
i

)
= dim

( B
B ∩ Vµ+1

)
, ∀µ ∈ {1, 2, . . . , k − 1}.

Thus: p∑

i=1

dim
(
B ∩ Vµ+1

i

)
= (m− 1) · dim

(B ∩ Vµ+1
)
. (48)

By substitution of (48) in (47) we obtain:

dim
(
B ∩ T µ+1

i + B ∩ Vµ+1
i

)
= (m− 1) · dim (B) −

p−2∑

i=1

dim
(
Lµ+1

j

)

= dim (B) +
p−2∑

i=1

dim (B) −
p−2∑

i=1

dim
(
Lµ+1

j

)

= dim (B) +
p−2∑

i=1

dim

(
B

Lµ+1
j

)

and so:
dim

(
B ∩ T µ+1

i + B ∩ Vµ+1
i

)
= dim (B) , ∀ i ∈ {1, 2, . . . , p},

which establishes (44) for µ + 1.
Now, starting from:

B = B ∩ T µ+1
i + B ∩ Vµ+1

i , ∀ i ∈ {1, 2, . . . , p}
and:

Vµ+1 =
p⋂

i=1

Vµ+1
i

(49)

we obviously have:

B =
p⋂

i=1

(
B ∩ T µ+1

i + B ∩ Vµ+1
i

)

=
p∑

i=1

B ∩ T µ+1
i + B

p⋂

i=1

Vµ+1
i ,

(50)
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since B ∩ T µ+1
i ⊂ B ∩ Vµ+1

j , for all i, j∈ {1, 2, . . . , p}, j 6= i. And so, when using
(49), (50) leads to:

B =
p∑

i=1

B ∩ T µ+1
i + B ∩ Vµ+1

=
p∑

i=1

B ∩ T µ+1
i

since B ∩ Vµ+1 ⊂ B ∩ T µ+1
i , for all i∈ {1, 2, . . . , p}.

This shows that (45) also holds for µ + 1, which completes the proof. 2

6. CONCLUDING REMARKS

The problem presented here is a weakened version of the famous Decoupling Prob-
lem, which corresponds to “infinite order” Partial Non Interaction: indeed, our
solution brings back to the classical well-known results for that particular case (see
Corollary 1). When Exact (regular) Decoupling is not solvable, our procedure gives
more information on this pathology (typically we are able to know from which step
the inherent couplings of the system cannot be cancelled).

A similar problem has been introduced in the early 80’s [5], related to Partial
Model Matching, and its geometric and structural solutions considered in [11], with
also an interesting application in the field of systems with delays [12]: the present
results will be a starting point for the study of the existence of non-anticipatory
solutions for the partial decoupling problem of linear systems with delays ; indeed,
as in [12], we can consider, for these systems, the non interacting problem with fixed
(finite) horizon k.

Finally, as is done in [11] for the Partial Model Matching, the structural solvability
condition of PNIP(k) can also be obtained using algebraic arguments. For that, we
need to consider a more general version of the problem, related to dynamic solutions
and denoted as DPNIP(k) (kth-order Dynamic Partial Non Interacting Problem).
This corresponds to control laws of the type:

u(s) = F (s)x(s) + Gv(s),

with G invertible. The action of such control law on (1) is equivalent to that of the
biproper precompensator (see [8]):

C(s) =
(
Im − F (s) (sIn −A)−1

B
)−1

G.

DPNIP(k) can be formulated as follows:
Let the positive integer k and system (A,B, C) be given. Then DPNIP(k) is

solvable if and only if there exists a biproper solution, say C(s), to the matrix
equation

T (s)C(s) − s−(k+1)P (s) = Td(s), (51)

where P (s) is any proper rational transfer function matrix and Td(s) is a proper
diagonal transfer function matrix.
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Equation (51) let us write:

[
T (s) −s−(k+1)Ip

]




C(s)

P (s)




= Td(s),

which translates it into a problem of Exact Decoupling,
[

T (s) −s−(k+1)Ip

]

stands for the plant and
[

CT (s) PT (s)
]T for the precompensator which per-

forms the exact decoupling. It is well known (see for instance [4] and [3]) that exact
decoupling is solvable if and only if both the global and row structures at infinity
of the plant are the same. In the present case this is true if and only if the set of
all the elements of the global structure of T (s) which are less than or equal to k is
equal to the set of all the elements of the row structure at infinity of T (s) which are
less than or equal to k. Indeed, the set of all the elements of the global structure
of

[
T (s) −s−(k+1)Ip

]
which are strictly greater than k coincides with the set

of all the elements of the row structure of T (s) which are strictly greater than k,
since all these elements are equal to k + 1, because of the presence of −s−(k+1)Ip

in
[

T (s) −s−(k+1)Ip

]
. As concerns the biproperness of C(s), it can be shown

that for the particular case where k ≥ sup n′i (which is the most interesting case in
practice), the solution

[
CT (s) PT (s)

]T can always be chosen such that C(s) is
biproper (see for instance [7]).

Moreover, since the transfer function matrix
[

T (s) −s−(k+1)Ip

]
does not

have any finite transmission zero, it happens that finite unstable transmission zeros
of T (s) do not play a role in the dynamic solution of partial non interaction when
the internal stability of the closed-loop system is required. Remember that this is
not the case for exact decoupling with stabilily, as is well known (see for instance
[13]). In fact, partial non interaction is a particular case of partial model matching
and it has been shown in [14] that partial model matching solvability, when internal
stability of the closed-loop system is required, only depends on structure-at-infinity
information (of course, under the assumption of stabilizability of the system). Finite
unstable transmission zeros do not play a role here for the search of internally stable
solutions to DPNIP(k), namely through dynamic compensations. The existence of
static state feedback solutions to PNIP(k) with stability appears to be much more
difficult to characterize. A simple 2 inputs-2 outputs counter-example is given in [7]
for which partial dynamic solutions exist with stability for all k ≥ 1, but no static
ones.

7. ACKNOWLEDGEMENT

This work has been supported by ESPRIT Basic Research Project No. 8924 (SESDIP).

(Received November 12, 1993.)
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Control Automático, A. P. 14-740, México 14, D. F., C. P. 07000 Mexico. This work has
been performed while the author was on leave to Laboratoire d‘Automatique de Nantes.
France.

Dr. Michel Malabre, Ecole Centrale de Nantes – Université de Nantes, L.A.N., URA
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