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NOTES ON µ AND `1 ROBUSTNESS TESTS

Gábor Z. Kovács and Katalin M. Hangos

An upper bound for the complex structured singular value related to a linear time-
invariant system over all frequencies is given. It is in the form of the spectral radius of the
H∞-norm matrix of SISO input-output channels of the system when uncertainty blocks are
SISO. In the case of MIMO uncertainty blocks the upper bound is the ∞-norm of a special
non-negative matrix derived from H∞-norms of SISO channels of the system. The upper
bound is fit into the inequality relation between the results of µ and `1 robustness tests.

1. INTRODUCTION

The objective of robust control is to achieve stability and good performance require-
ments in the presence of uncertainty. Robustness analysis tools and robust control
design methods have been developed recently dealing with structured uncertainty
for the cases when the signals are measured in the

— L2 or `2-norm (energy of the signal): µ -analysis [2, 3, 8, 9],

— L∞ or `∞-norm (maximum amplitude): `1-analysis [1, 2, 5, 6, 7].

This paper derives a global upper bound for the complex structured singular value
related to a linear time-invariant system over all frequencies. We consider both
cases when the uncertainty blocks are SISO and MIMO. In SISO case the upper
bound can be computed directly as the spectral radius of the H∞-norm matrix of
input-output channels of the system. However, in MIMO case one has to perform a
certain optimization procedure on H∞-norms of SISO channels and build a special
non-negative matrix. Its ∞-norm gives the upper bound of the µ-test result. The
result of the mentioned optimization procedure can be expressed in an explicit form.
Thus one will have an insight on how the greatest amplifications of the SISO system
components, related to L2 or `2 signal norms, affect the result of robustness analysis
based on the structured singular value. Remember, that the `1 -analysis results are
directly computed from amplifications, i. e. from `1- norms of the channels related to
the uncertainty structure. This allows us to guess how they influence the robustness
test results. This paper shows the counterpart of these relations in the case of the
µ-analysis. Further we show how our result fits into the inequality relation between
the µ and `1-tests.
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Section 2 gives a brief overview of the mentioned robustness analysis methods.
Then some notation used in the paper is introduced. In the first part of Section 3
we derive an upper bound for the result of the structured singular value analysis in
the case when the uncertainty blocks are SISO. While the SISO relations are very
simple and follow directly from the properties of the complex structured singular
value, the MIMO ones need a certain optimization procedure as one can see in the
rest of Section 3. Finally Section 4 summarizes the relation between the µ and `1
robustness test results.

Fig. 1. The robust stability and performance problem formulation.

2. ROBUSTNESS ANALYSIS METHODS

2.1. Robust stability and performance

The general problem formulation of robust stability and performance is shown in
Figure 1. The signal w denotes the control inputs or disturbances and z denotes
the regulated outputs. The map taking w to z is referred as Tzw and ∆ models the
uncertain part of the system. It is assumed that ∆ is structured, i. e. it belongs to
the following class:

∆(n) := {∆ = diag(∆1, . . . , ∆n) : ‖∆i‖ < 1} (1)

where ∆i are pi × pi systems. Let p =
n∑

i=1

pi. While ∆ models the uncertain part

of the system, the linear time-invariant G is the known part including the nominal
plant, the controller, any input and output weighting functions and any weighting
functions on the perturbations. The system G can be partitioned as follows

z = G11w + G12u∆

y∆ = G21w + G22u∆ (2)
u∆ = ∆y∆.

With this partitioning Tzw is in the form

Tzw = G11 + G12∆(I −G22∆)−1
G21. (3)

Definition 1. Robust Stability. The system achieves robust stability iff the sys-
tem is internally stable for all admissible perturbations (for all ∆ ∈ ∆(n)).
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Definition 2. Robust Performance. The system achieves robust performance iff

1. the system achieves robust stability, and

2. sup∆∈∆(n) ‖Tzw‖ ≤ 1.

Fig. 2. Stability vs performance robustness.

The robust performance problem can be transformed into a robust stability prob-
lem, which has been shown for both 2-norm and ∞-norm cases [5, 8]. Consider the
two systems in Figure 2, where System I corresponds to a performance robustness
problem, while System II is formed from System I by connecting z and w through a
fictious perturbation, ∆p, satisfying ‖∆p‖ < 1.

Theorem 1. Consider System I having ∆(n) as the class of admissible pertur-
bations and System II having ∆(n + 1) as the class of admissible perturbations.
System I achieves robust performance iff System II is robustly stable.

2.2. µ–analysis

Measuring the signals in the 2-norm and assuming structured linear time-invariant
stable uncertainty the µ-tests can be used to analyze robust stability and perfor-
mance. The structured singular value is a matrix function denoted by µ∆(·) which
depends on the underlying structure ∆ (a prescribed set of block diagonal matrices)
[8].

Definition 3. For M ∈ Cn×n, µ∆(M) is defined by

µ∆(M) := [min{σ̄(∆) : ∆ ∈ ∆, det(I −M∆) = 0}]−1 (4)

unless no ∆ ∈ ∆ makes I −M∆ singular, in which case µ∆(M) := 0 (the symbol
σ̄(·) denotes the maximum singular value).

The following lower and upper bounds can be given for the structured singular value
µ∆(M) [3, 8]

max
U∈U

ρ (UM) ≤ µ∆ (M) ≤ inf
D∈D

σ̄
(
DMD−1

)
(5)
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where
U =

{
U = diag(U1, . . . , Un) ∈ ∆ : UHU = I

}
(6)

and
D = {D = diag(d1I, . . . , dnI) : di ∈ R+} . (7)

The lower bound is equality in all cases, but ρ (UM) can have multiple local maxima
which are not global. Unfortunately, the upper bound is not always equal to µ∆ (M).
The following robust stability µ-test is used in frequency domain [8, 9]:

Theorem 2. Suppose that G11 is stable, then the uncertain system is stable for
all ∆ ∈ ∆(n) iff

sup
ω

µ∆ (G22(jω)) ≤ 1 (8)

where G22 is the system mapping internal input signals u∆ to internal output signals
y∆.

2.3. `1–analysis

Measuring the signals in the∞-norm and assuming structured uncertainty which can
be non-linear and time-varying the `1-test can be used to analyze robust stability and
performance. The system G22 is partitioned corresponding to the ∆ block structure

G22 =




[G22]11 . . . [G22]1n
...

...
[G22]n1 . . . [G22]nn


 (9)

where [G22]ij is pi×pj system. Let the set J be an index set for all possible collections

of rows from the row blocks. For each j = (j1, . . . , jn) ∈ J define the matrix
(
ĥ22

)
j

as follows

(
ĥ22

)
j

=




∥∥∥([G22]11)j1

∥∥∥
1

. . .
∥∥∥([G22]1n)

j1

∥∥∥
1

...
...∥∥∥([G22]n1)jn

∥∥∥
1

. . .
∥∥∥([G22]nn)jn

∥∥∥
1


 (10)

where ([G22]ik)
jp

is the jpth row of the system [G22]ik and
∥∥∥([G22]ik)

jp

∥∥∥
1

is its

`1-norm. Then the following robust stability `1-test on G22 can be used [2]:

Theorem 3. Given an interconnection of a linear time-invariant stable system G22

and n norm bounded perturbation blocks, the system is robustly stable iff

ρ

((
ĥ22

)
j

)
≤ 1 (11)

holds for all j ∈ J .
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3. UPPER BOUND FOR THE µ–TEST RESULT

In this section upper bound for the µ-analysis results is derived for two cases when
uncertainty blocks are SISO or MIMO linear time-invariant systems. This upper
bound can be computed directly as the spectral radius of the non-negative matrix
composed of H∞-norms of entries of the matrix G22(jω) in the case when the uncer-
tainty blocks are SISO. When these blocks are MIMO we have to perform some more
computations on the entries of the matrix containing the H∞-norms of the entries
of G22(jω) and build another non-negative matrix. Then the upper bound of the
µ-test will be the ∞-norm (maximum of row-sums) of this new matrix. Further we
will compare the µ and `1-test results. The upper bound derived for the µ -analysis
result gives us a good opportunity to obtain these relations in a simple way.

First of all we introduce the matrix Ĝ22 which plays key role in the whole paper.
Let [G22(jω)]ij be the ijth entry of the matrix G22(jω), which has H∞-norm in the
form of ∥∥∥[G22]ij

∥∥∥
∞

= sup
ω

∣∣∣[G22(jω)]ij
∣∣∣ . (12)

With these the matrix Ĝ22 is defined as

Ĝ22 =




‖[G22]11‖∞ . . .
∥∥∥[G22]1p

∥∥∥
∞

...
...∥∥∥[G22]p1

∥∥∥
∞

. . .
∥∥∥[G22]pp

∥∥∥
∞


 . (13)

First we focus on SISO relations which can be derived easily. Then we turn to MIMO
relations which are direct generalizations of the SISO ones.

3.1. Uncertainty with SISO blocks

Dahleh and Diaz–Bobillo [2] summarizes important and general results on the re-
lation between µ and `1-analysis results when the uncertainties are SISO. Their
Theorem 7.6.1 [2, p. 172] claims that

sup
ω

µ∆ (G22(jω)) ≤ ρ
(
ĥ22

)
. (14)

This proposition is extended here by another inequality which makes the relation
physically more transparent and simplifies its proof. The extension is the spectral
radius of the matrix Ĝ22.

Proposition 1. Given an interconnection of a linear time-invariant stable system
G22 and n norm bounded SISO perturbation blocks. Then the following relation
exists between the µ and `1-analysis results

sup
ω

µ∆ (G22(jω)) ≤ ρ
(
Ĝ22

)
≤ ρ

(
ĥ22

)
(15)
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where Ĝ22 is introduced in (13) being the frequency domain analog of the matrix
ĥ22 defined in (10).

P r o o f . From the theory of the complex structured singular value (5) it follows
that

µ∆ (G22(jω)) = max
U∈U

ρ (UG22(jω)) (16)

where
U =

{
U = diag(U1, . . . , Un) ∈ ∆ : UHU = I

}
. (17)

In our case Ui is a scalar on the unit circle. Since
∣∣∣[UG22(jω)]ij

∣∣∣ ≤
∥∥∥[G22]ij

∥∥∥
∞

(18)

and it is known from the theory of non-negative matrices that if |A| ≤ B entrywise
then ρ (A) ≤ ρ (B) [4], one immediately gets that for each frequency

ρ (UG22(jω)) ≤ ρ
(
Ĝ22

)
. (19)

It means that the following inequality holds

sup
ω

µ∆ (G22(jω)) = sup
ω

max
U∈U

ρ (UG22(jω)) ≤ ρ
(
Ĝ22

)
. (20)

In SISO case the relation between the H∞ and `1-norm is
∥∥∥[G22]ij

∥∥∥
∞
≤

∥∥∥[G22]ij
∥∥∥

1
, (21)

Again from the theory of the non-negative matrices we obtain

ρ
(
Ĝ22

)
≤ ρ

(
ĥ22

)
. (22)

So we have verified that

sup
ω

µ∆ (G22(jω)) ≤ ρ
(
Ĝ22

)
≤ ρ

(
ĥ22

)
. 2

From this proof it is apparent that the spectral radius of the matrix Ĝ22 gives a global
upper bound for the structured singular value µ∆(G22(jω)) over all frequencies and
it is a less strong sufficient condition for the robust stability than the one given by
the `1-test.

3.2. Uncertainty with MIMO blocks

Now we generalize the results of the previous section to the case when the uncertainty
blocks are linear time-invariant MIMO systems. An upper bound for µ-test can be
computed as ∞-norm of a non-negative matrix derived from matrix Ĝ22 by an
optimization procedure.

The following lemma states that an upper bound for µ-analysis result can be found
by maximizing the spectral radius of a non-negative matrix which is a product of Ĝ22

and an appropriate non-negative matrix V depending on the perturbation structure.
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Lemma 1. Given an interconnection of a linear time-invariant stable system G22

and n norm bounded MIMO perturbation blocks. Then the following upper bound
holds for the result of the µ-analysis

sup
ω

µ∆ (G22(jω)) ≤ max
V

ρ
(
V Ĝ22

)
(23)

where V is non-negative and has the same structure as the perturbation ∆, i. e.

V ≥ 0, V = diag(V1, . . . , Vn)

where Vi is a pi×pi matrix and the jth row vj of the matrix V satisfies the following
condition

∥∥vj
∥∥2

2
=

p∑

k=1

V 2
jk = 1.

P r o o f . From the theory of the complex structured singular value (5) it follows
that

µ∆ (G22(jω)) = max
U∈U

ρ (UG22(jω)) (24)

where
U =

{
U = diag(U1, . . . , Un) ∈ ∆ : UHU = I

}
. (25)

Denote
ω̄ = arg sup

ω
µ∆ (G22(jω)) (26)

and
Ū = arg max

U∈U
ρ (UG22(jω̄)) . (27)

For the product of two matrices |AB| ≤ |A| |B| holds entrywise. From the theory
of non-negative matrices [4] it follows that if |A| ≤ B entrywise then ρ (A) ≤ ρ (B).
Using these relations we obtain

µ∆ (G22(jω̄)) = ρ
(
ŪG22(jω̄)

) ≤ ρ
(∣∣ŪG22(jω̄)

∣∣) ≤ ρ
(∣∣Ū

∣∣ |G22(jω̄)|) . (28)

Since |G22(jω)| ≤ Ĝ22, we get the inequality

ρ
(∣∣Ū ∣∣ |G22(jω̄)|) ≤ ρ

(∣∣Ū ∣∣ Ĝ22

)
(29)

where Ū is a unitary matrix, so the equality ŪH Ū = Ū ŪH = I holds. This property
means that the ith and jth rows of the matrix Ū , i. e. ūi and ūj , satisfy the condition

ūi
(
ūj

)H
=

p∑

k=1

ŪikŪH
jk = δij (30)

where δij is the Kronecker symbol and ŪH
jk is the complex conjugate of the matrix

entry Ūjk. The above derivation leads to definition of the following optimization
problem

V̄ = arg max
V

ρ
(
V Ĝ22

)
(31)
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where V ≥ 0 and V = diag(V1, . . . , Vn). In addition the jth row vj of the matrices
V has to fulfil the condition

∥∥vj
∥∥2

2
= vj

(
vj

)T
=

p∑

k=1

V 2
jk = 1. (32)

Considering the fact that the matrix
∣∣Ū ∣∣ is only a suboptimal solution of this opti-

mization problem we find that

sup
ω

µ∆ (G22(jω)) ≤ ρ
(
V̄ Ĝ22

)
= max

V
ρ

(
V Ĝ22

)
2

So the optimization problem to be solved is finding the non-negative matrix V with
the same structure as the uncertainty which maximizes the spectral radius of the
product V Ĝ22. First we solve the problem without the restriction on the structure
of the matrix V .

Lemma 2. Let P be a m × m non-negative matrix. Define the optimization
problem as

Q̄ = arg max
Q

ρ (QP ) (33)

on the set of non-negative matrices Q satisfying the following restriction on their ith
row denoted by qi

∥∥qi
∥∥2

2
=

m∑

k=1

Q2
ik = 1. (34)

Let si be the ith row-sum of the matrix P

si =
m∑

k=1

Pik. (35)

Then each row of optimal solution Q̄ is the same and they can be computed as

q̄i =
1√∑m
k=1 s2

k

[
s1, . . . , sm

]
, i = 1, . . . , m. (36)

P r o o f . The spectral radius of an m×m matrix M is overbounded by its∞-norm,
i. e.

ρ (M) ≤ max
1≤i≤m

m∑

k=1

|Mik| = ‖M‖∞ . (37)

Let M be a non-negative matrix with each of its row being the same. Let’s perform
a similarity transformation on M using the transformation matrix

T =




1 0 0 · · · 0
−1 1 0 · · · 0
−1 0 1 · · · 0

...
...

...
. . .

...
−1 0 0 · · · 1




(38)
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which has inverse in the form of

T−1 =




1 0 0 · · · 0
1 1 0 · · · 0
1 0 1 · · · 0
...

...
...

. . .
...

1 0 0 · · · 1




. (39)

Similarity transformations does not change the eigenvalues of a matrix. If we apply
T to M the resulting matrix TMT−1 has only one row different from 0. Therefore
only one of its eigenvalues is different from 0 and it is equal to the row-sum of the
matrix M . This row-sum (the∞-norm of the non-negative M) is the spectral radius.
It means that we have to choose such a matrix Q which has equal rows, so QP will
also have equal rows, and makes the row-sum maximal. In accordance with these
ideas let us define the following cost function of the row-vector q

J(q) = qP [1, . . . , 1]T = q1s1 + q2s2 . . . + qmsm (40)

with the following constraints

q2
1 + q2

2 + . . . q2
m = 1, qi ≥ 0, i = 1, . . . , m (41)

and maximize J(q). The above optimization problem can be solved using the La-
grange multiplier method. Define the extended cost function in the form of

L(q, λ) = q1s1 + q2s2 . . . + qmsm + λ(q2
1 + q2

2 + . . . q2
m − 1). (42)

The optimality conditions are

∂L

∂qi
= si + 2λqi = 0 (43)

and
∂L

∂λ
= q2

1 + q2
2 + . . . q2

m − 1 = 0. (44)

Their solutions are

qi = − si

2λ
,

s2
1

4λ2
+

s2
2

4λ2
+ · · ·+ s2

m

4λ2
= 1 (45)

and thus λ = ± 1
2

√
s2
1 + s2

2 + . . . s2
m. Considering the restrictions qi ≥ 0, the optimal

q̄ has following entries
q̄j =

sj√∑m
k=1 s2

k

.
2

The structure of the matrix V = diag(V1, . . . , Vn) follows from the structure of
the matrix U = diag(U1, . . . , Un) where Ui and Vi are pi × pi matrices and the sum
of their size is p =

∑n
i=1 pi. From this restriction it follows that V should not have
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equal rows in order to achieve better estimate of the result of µ-analysis. Let’s
partition the matrix Ĝ22 in accordance with the structure of V

Ĝ22 =




Ĝ1
22
...

Ĝn
22


 . (46)

It means that Ĝi
22 is a pi × p matrix. Define the jth row-sum of the ith partition

Ĝi
22 as follows

si
j =

p∑

k=1

[
Ĝi

22

]
jk

=
p∑

k=1

∥∥∥[G22]j+Pi−1
m=1 pm,k

∥∥∥
∞

, i = 1, . . . , n, j = 1, . . . , pi. (47)

Let’s denote sum of the second powers of ith block row sums by

Si =
pi∑

j=1

(
si

j

)2
=

pi∑

j=1

(
p∑

k=1

[
Ĝi

22

]
jk

)2

=
pi∑

j=1

(
p∑

k=1

∥∥∥[G22]j+Pi−1
m=1 pm,k

∥∥∥
∞

)2

(48)

where i = 1, . . . , n. We will also need the partial row sums of the ith partition
according to the uncertainty structure

ŝi,k
j =

pk∑

l=1

[
Ĝi

22

]
j,l+

Pk−1
m=1 pm

=
pk∑

l=1

∥∥∥[G22]j+Pi−1
m=1 pm,l+

Pk−1
m=1 pm

∥∥∥
∞

(49)

where i, k = 1, . . . , n, j = 1, . . . , pi.
Now we are ready for stating the proposition on the upper bound for the result

of µ-analysis in the case when the uncertainties are MIMO linear time-invariant
systems.

Proposition 2. Using the notations introduced above define the matrix G̃22 as
follows [

G̃22

]
ik

=
1√
Si

pi∑

j=1

si
j ŝ

i,k
j , i, k = 1, . . . , n. (50)

Then for the supremum of the structured singular value of the matrix G22(jω) over
all frequencies, i. e. for the result of µ-analysis, the next inequality holds

sup
ω

µ∆ (G22(jω)) ≤ max
V

ρ
(
V Ĝ22

)
≤

∥∥∥G̃22

∥∥∥
∞

(51)

where V has the same properties as in Lemma 1.

P r o o f . Let the matrix V̄ has block V̄i its jth row v̄i,j contains the scaled ith
block row-sums as its entries

v̄i,j =
1√
Si

[
si
1, . . . , s

i
pi

]
, i = 1, . . . , n, j = 1, . . . , pi. (52)
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Matrices have the property that their spectral radius is not greater than their ∞-
norm. It means that ρ

(
V̄ Ĝ22

)
≤

∥∥∥V̄ Ĝ22

∥∥∥
∞

. It follows from the previous lemma

that the choice of the matrix V̄ implies the optimality, i. e. ∞-norm of V̄ Ĝ22 is the
maximal. G̃22 and V̄ Ĝ22 have the same row-sums and so their ∞-norms are the
same. 2

It is important to note that

ρ
(
G̃22

)
= ρ

(
V̄ Ĝ22

)
≤ max

V
ρ

(
V Ĝ22

)
. (53)

Equality holds for example in the case of SISO perturbation blocks when G̃22 =
V̄ Ĝ22 = Ĝ22. Now we demostrate it on a simple example.

Example. Let the H∞-norm matrix be

Ĝ22 =




1 0 0
2 3 0
15 5 6


 .

Then the optimal V̄ for a SISO and a 2× 2 uncertainty block (p1 = 1, p2 = 2) is

V̄ =




1 0 0
0 5√

52+262
26√

52+262

0 5√
52+262

26√
52+262




The spectral radius of G̃22 is then 11.3686. For the matrix V of the same structure
defined as

V =




1 0 0
0 5√

52+262
26√

52+262

0 0.26
√

1− 0.262


 .

the spectral radius is greater, and equals to 11.3856.

Note: It is known from the theory of the complex structured singular value [8]
that

µ∆ (M) = max
U∈U

ρ (UM) = max
U∈U

ρ (MU) . (54)

It means that we can get another upper bound (maybe smaller) for the µ-test result
by application of the presented optimization procedure to the columns of the matrix
Ĝ22.

4. RELATION BETWEEN µ AND `1–TEST RESULTS

The relation between the µ and `1-analysis results can be investigated based on the
previous proposition.
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Proposition 3. Given an interconnection of a linear time-invariant stable system
G22 and n norm bounded MIMO perturbation blocks. Then the following relation
exists between the µ and `1-analysis results

sup
ω

µ∆ (G22(jω)) ≤
∥∥∥G̃22

∥∥∥
∞

= max
1≤i≤n

√
Si ≤ √

pmax ‖G22‖1 (55)

and for each j = (j1, . . . , jn) ∈ J (See Eq. 10)

ρ

((
ĥ22

)
j

)
≤ ‖G22‖1 (56)

where pmax is the maximum of uncertainty block sizes, i. e. pmax = max
1≤i≤n

pi.

P r o o f . The second inequality has been written only for comparison with the
first one. From the definition of the matrix

(
ĥ22

)
j

and the `1-norm of the system

G22 it follows that

ρ

((
ĥ22

)
j

)
≤ ‖G22‖1 = max

1≤i≤p

p∑

k=1

‖[G22]ik‖1 . (57)

Note that ‖G22‖1 ≤ 1 is the small gain condition for the robust stability in L∞/`∞-
sense. The following equation is obtained from the definition of the ∞-norm of a
matrix and from the defining equations (47) and (48)

∥∥∥G̃22

∥∥∥
∞

= max
1≤i≤n

n∑

k=1


 1√

Si

pi∑

j=1

si
j ŝ

i,k
j


 = max

1≤i≤n

1√
Si

pi∑

j=1

(
si

j

n∑

k=1

ŝi,k
j

)
. (58)

It can be rewritten using the identity si
j =

∑n
k=1 ŝi,k

j to

∥∥∥G̃22

∥∥∥
∞

= max
1≤i≤n

1√
Si

pi∑

j=1

(
si

j

)2
= max

1≤i≤n

√
Si. (59)

Then the following inequality holds

√
Si =

√√√√
pi∑

j=1

(
si

j

)2 ≤ √
pi max

1≤j≤pi

si
j =

√
pi max

1≤j≤pi

p∑

l=1

∥∥∥[G22]j+Pi−1
m=1 pm,l

∥∥∥
∞

(60)

for each
√

Si, where 1 ≤ i ≤ n. Let us denote the maximum of uncertainty block
sizes by pmax, i. e. pmax = max

1≤i≤n
pi. Then we obtain the inequality

√
Si ≤ √

pmax max
1≤j≤pi

p∑

l=1

∥∥∥[G22]j+Pi−1
m=1 pm,l

∥∥∥
∞
≤ √

pmax max
1≤k≤p

p∑

l=1

‖[G22]kl‖∞ .

(61)
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Using the relation between the H∞ and `1-norm of a SISO system we get

√
Si ≤ √

pmax max
1≤k≤p

p∑

l=1

‖[G22]kl‖∞ ≤ √
pmax max

1≤k≤p

p∑

l=1

‖[G22]kl‖1 . (62)

The above inequality holds for an arbitrary index i. So we have verified that
∥∥∥G̃22

∥∥∥
∞
≤ √

pmax ‖G22‖1 (63)

and thus
sup

ω
µ∆ (G22(jω)) ≤ ‖G̃22‖∞ ≤ √

pmax ‖G22‖1 . 2

5. CONCLUSION

A global upper bound for the complex structured singular value related to a linear
time-invariant MIMO system over all frequencies has been derived in the paper. We
have shown that one can form a special non-negative matrix from the H∞-norms
of input-output channels of the system which has the property that its spectral
radius for SISO perturbation blocks and its ∞-norm for MIMO ones is equal to
or greater than the complex structured singular value at any frequency. Thus it
provides a sufficient condition for the robust stability or performance of the uncertain
system in L2/`2-sense. On the basis of this result one can estimate how the greatest
amplifications of the SISO parts of the system affect the result of robustness analysis.
Also we have shown how our result fits into the inequality relation between the µ
and `1-analysis.
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