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NEURAL NETWORK REALIZATIONS
OF BAYES DECISION RULES
FOR EXPONENTIALLY DISTRIBUTED DATA1

Igor Vajda, Beloḿır Lonek, Viktor Nikolov and Arnošt Veselý

For general Bayes decision rules there are considered perceptron approximations based
on sufficient statistics inputs. A particular attention is paid to Bayes discrimination and
classification. In the case of exponentially distributed data with known model it is shown
that a perceptron with one hidden layer is sufficient and the learning is restricted to synaptic
weights of the output neuron. If only the dimension of the exponential model is known,
then the number of hidden layers will increase by one and also the synaptic weights of
neurons from both hidden layers have to be learned.

1. INTRODUCTION

We consider random observations x distributed on Rn and suppose that real val-
ued actions (decisions) are undertaken on the basis of these observations. Then the
Bayes decision rule δ∗(x) is a real-valued function defined on Rn. It is known (see
e. g. Sec. 6 in Müller et al [12]) that every reasonable mapping Rn → R, and con-
sequently every reasonable Bayes rule δ∗(x), can be approximated by a perceptron
with the input x, consisting of at most two hidden layers of neurons and one output
neuron. The well-known learning by error back-propagation asymptotically leads to
consistent estimates of unknown synaptic weights of all neurons under consideration.

Unfortunately, if the dimension of the input x is very large then the extent of
iterative learning steps needed to obtain weight estimates of desired precision is not
practically achievable (cf. the learning procedures for perceptrons in Sec. 6 of [12]).
Very large dimensions of inputs are typical when observations are taken on random
processes.

One possibility to keep the dimensionality under control is to replace the observa-
tions x = (x1, . . . , xn) by their “sufficiently representative” features φ = (φ1, . . . , φk).
It is known (cf. e. g. Devijver and Kittler [4], Berger [1], Bock [3], Vajda and Grim
[15]) that if the features φ(x) = (φ1(x), . . . , φk(x)) ∈ Rk defined for all x ∈ Rn

contain all relevant information about x then there exists a mapping δ : Rk → R
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one-one related to δ∗ in the sense

δ(φ(x)) = δ∗(x) for all x ∈ Rn. (1)

This means that δ∗ can be approximated by a perceptron of the above considered
type with the inputs φ(x) ∈ Rk. If k ¿ n then the new perceptron is essentially
simpler than the original one.

The last paragraph describes the main idea of present paper, outlined already
in Vajda [14]. We consider decision problems for observations x with information-
preserving features φ(x) of a dimension k < n. Perceptrons of the above considered
type are then used to approximate the Bayes version δ defined on the feature space
Rk.

We restrict ourselves to observations x exponentially distributed, with an un-
known parameter θ from a space Θ ⊂ Rm of known dimension m < n. Then the
maximum likelihood estimator (MLE) θ̂(x) of θ takes on values in Rm and contains
all relevant information about observations x (it is the so called sufficient statistics,
cf. e. g. Brown [2]). Thus if the MLE is known (which takes place if the exponential
family is known) then one can take k = m and φ(x) = θ̂(x). Practically all families
used for stochastic modelling of independent observations are exponential (Bernoulli,
Pascal, Poisson, Maxwell, Rayleigh, Pareto, Student, chi-square, F , etc.). Multino-
mial, multivariate normal, and many other models of dependent observations used
in biology, medicine, image and speech processing, telecomunications, stock mar-
ket analysis etc., are exponential, including observations on all common models of
random processes (see Küchler and Sørensen [9]).

Main attention of this paper is focused on the most simple type of decision prob-
lem which is discrimination (classification), characterized by binary (M -ary) param-
eter and decision spaces. We prove that the Bayes discrimination function δ∗(x)
coincides with the response of a neural network with input x, consisting of one
hidden layer of m + 3 units with responses explicitely specified by the exponential
model, and one output neuron. All m+3 weights of the output neuron are unknown
unless the distributions of discriminated observations are given a priori. If the expo-
nential model itself is a priori unknown, then we show that the Bayes discrimination
function can be approximated by a perceptron with input x, two hidden layers of
neurons and one output neuron. The weights of all neurons can be learned by the
error back-propagation. It is shown that this learning procedure is in some cases
computationally feasible. Extensions to the Bayes classification are discussed too.

2. BAYES RULES

Let the probability distribution P of an observation x = (x1, . . . , xn) be from a
family P = {Pθ : θ ∈ Θ} of probability distributions on Rn with densities {pθ : θ ∈
Θ} with respect to a σ-finite measure µ (Lebesgue measure if the distributions are
continuous, counting measure if the distributions has an at most countable support
in of Rn). The parameter space Θ is supposed to be a subset of Rm.

Let A be a set of possible actions, L(θ, a) a nonnegative loss function defined on
Θ×A, and π(θ) a probability density on Θ with respect to a σ-finite measure ν on
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Rm. For every decision rule δ∗ : Rn → A

B(δ∗) =
∫

Rn

∫

Rm

L(θ, δ∗(x)) pθ(x) dµ(x)π(θ) dν(θ)

is the Bayes risk with respect to the prior distribution π. If for all x ∈ Rn
∫

Rm

L(θ, δ∗(x)) pθ(x)π(θ) dν(θ) = inf
a∈A

∫

Rm

L(θ, a) pθ(x)π(θ) dν(θ) (2)

then δ∗ is the Bayes rule that minimizes the Bayes risk.

The following result is not new (cf. e. g. Berger [1]). It is presented here, together
with a simple proof, for later references.

Assertion 1. If there exists a statistic φ : Rn → Rk sufficient for the family P
then the Bayes rule δ∗ : Rn → A satisfies (1) for a Bayes version δ : Rk → A.

P r o o f . Let δ∗ be a Bayes decision rule and φ : Rn → Rk a mapping sufficient for
the family P. By the factorization theorem of mathematical statistics, this means
nothing but the existence of functions {gθ : θ ∈ Θ} defined on Rk and h defined on
Rn such that

pθ(x) = gθ(φ(x))h(x) for all x ∈ Rn.
It follows from here and from (2) that δ(x) depends on x only through the value
φ(x), i. e. there exists δ : Rk → A satisfying (1). 2

In this paper we are interested in the problem under what assumptions about
decision problems the Bayes rules δ∗(x) can be realized as responses of perceptrons,
and under what assumptions the unknown synaptic weights of these perceptrons can
be learned in a “reasonable time”.

By a neural network with input x and one hidden layer we mean a triplet 〈M, s,w〉
where M defined the number of hidden units, s = (s1, . . . , sM ) is an RM -valued
function of the input defining responses of the hidden units 1, . . . ,M , and w =
(w1, . . . , wM ) ∈ RM are synaptic weights of the output neuron of the perceptron.
This means that the response of this neuron is ϕ(s ·w) provided ϕ is the activating
functions and · denotes the scalar product. E. g. for the sigmoidal activating function
ϕβ(h) = (1 + eβh)−1 one has

ϕβ(s ·w) =
(
1 + eβ s·w)−1

and lim
β→∞

ϕβ(s ·w) = 1(−∞,0)(s ·w) for s ·w 6= 0.

(3)
Obviously, the response of the whole network to the input x is

ϕβ(s(x) ·w). (4)

If s1(x), . . . , sM (x) are of the form ϕβ1(x · v1), . . . , ϕβM
(x · vM ) for some activating

functions ϕβ1 , . . . , ϕβM
and weight vectors v1, . . . ,vM , i. e. if the hidden units are

neurons, then we call 〈M, s,w〉 a perceptron with one hidden layer. For simplicity we
do not consider thresholds – they can be substituted by additional constant inputs.
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A neural network (perceptron) with two hidden layers is a quintuple 〈J,M,σ, s,w〉
where 〈M, s,w〉 is an output network with one hidden layer at the input of which is
the response σ = (σ1, . . . , σJ) of J units of the previous layer to the input x itself.
Thus the response of whole network to an input x is

ϕ(s(σ(x)) ·w)

(in the case of perceptron all units are neurons). The definition of a network or
perceptron with an arbitrary number of hidden layers follows from here.

The output neuron weights of an arbitrary network are free parameters the values
of which are assumed to be specified by a learning procedure. Other similar parame-
ters may be “hidden” in the units of the hidden layers. If the hidden unit is a neuron
with input synaptic weights w ∈ Ri then it contains i parameters which are to be
specified by the learning. If there are no free parameters in the hidden layers then
one can use the learning rules for simple perceptrons described e. g. in Sec. 5.2 of
Müller et al [12]. Otherwise one has to use the learning by error back-propagation
(cf. Sec. 6.2 ibid).

We shall combine Assertion 1 with another well known fact established by Funa-
hashi [5] and Hornik [8].

Assertion 2. For every closed and bounded subset S ⊂ Rn, and every continuous
function δ : S → R and positive ε, there exists a perceptron 〈M, s,w〉 with input
x ∈ Rn and the linear response

ρ(x) = s(x) ·w (5)

such that
sup
x∈S

|δ(x)− ρ(x)| ≤ ε. (6)

Remark 1. The hidden units of the perceptron considered in Assertion 2 are
neurons with input synaptic weights vi ∈ Rn for i = 1, . . . , k and appropriate
parameters βi in the sigmoidal activation functions.

Remark 2. As shown by Lapedes and Farber [10] (cf. also Sec. 6.4 of [12]), every
“reasonable” function δ : Rk → R can be approximated by a perceptron with at
most two hidden layers of neurons (one layer if k = 1 and two layers otherwise). The
“reasonable” means that δ can be approximated e. g. by piecewise linear functions,
or by basis-spline functions widely used in numerical analysis. An advantage of
the method of [10, 12] is that it is constructive, while the method of the authors
of Assertion 2 guarantees the existence but says a little about the construction of
desired perceptron. Sec. 25 in [12] describes a computer program PERFUNC for
approximation of functions by the method of [10, 12].

Remark 3. In practical applications one usually encounters observations x =
(x1, . . . , xn) with large sample sizes n. As follows from the iterative learning rules
described in Sections 5, 6 of [12], one cannot expect reasonably precise specification of
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free perceptron parameters in a “reasonable time” if the number of these parameters
grows with n. We speak about the learning in a “reasonable time” if the number of
free perceptron parameters remains fixed for n increasing.

By combining Assertion 1 with Assertion 2 or Remark 2 we obtain approxi-
mations of Bayes decision rules δ∗ : Rn → A by means of perceptrons 〈M, s,w〉 or
〈J,M, r, s,w〉 with inputs y ∈ Rk from the target spaces of sufficient statistics φ(x).
If Assertion 2 or Remark 2 with k = 1 are applicable then a perceptron 〈M, s,w〉
with one hidden layer of neurons is sufficient. Otherwise one has to use two hid-
den layers. The unknown synaptic weights of these perceptrons can be learned in a
“reasonable time” if the dimension of φ is not increasing with n.

Remark 4. The perceptrons 〈M, s,w〉 and 〈J,M,σ, s,w〉 with inputs y ∈ Rk

approximate the function δ(y) figuring in (1). Approximations of the Bayes rule
δ∗(x) are obtained by feeding these perceptrons with inputs φ(x). This in fact leads
to new perceptrons with inputs x ∈ Rn and two or three hidden layers respectively,
where the first hidden layer consists of k units with responses φ1(x), . . . , φk(x).
Since hidden layer contains no free parameters, learning of the new and original
perceptrons coincide.

Example 1. Let the dimension of φ be k = 1 and let us consider a function δ(y) of
variable y ∈ R. Then the perceptron 〈M, s,w〉 with one hidden layer of neurons and
input y for approximation of the function δ(y) has the form presented in Figure 1.
The activation functions fj(h) in the hidden layer are arbitrary, e. g. they may be
identical mappings fj(h) = h or they may belong to the family of sigmoidal functions
considered in (3) for parameters βj from the extended real line R = [−∞,∞].

Fig. 1. Perceptron 〈M, s, w〉 with one hidden layer of neurons.

Example 2. Let the components xi of x be independently distributed by the
Bernoulli Pθ with Pθ(1) = 1− Pθ(0) = θ for θ ∈ (0, 1) = Θ. It is known that

φ(x) =
n∑

i=1

xi

is a binomially distributed sufficient statistics for the family {Pnθ : θ ∈ (0, 1)}. If we
consider on (0, 1) the beta prior density

π(θ) =
θa−1 (1− θ)b−1

B(a, b)
for a, b > 0,
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and if we put A = (0, 1) and consider the squared-error loss function L(θ, a) =
(θ − a)2, then the Bayes rule is (see Berger [1] or p. 351 in Mood et al [11])

δ∗(x) =
∑n

1 xi + a

n+ a+ b
= δ(φ(x)) for δ(y) =

y + a

n+ a+ b
.

Thus the neuron with input (y, 1), synaptic weights

(v1, v2) =
(

1
n+ a+ b

,
a

n+ a+ b

)

and linear response
s(y, 1) = (v1, v2) · (y, 1)

exactly imitates the Bayes version δ (this neuron is a special case of perceptron of
Figure 1 with M = 1, f1(h) = h and w1 = 1). The Bayes rule δ∗(x) is realized by
the perceptron 〈2, 1, (σ1, σ2), s, 1〉 with two hidden layers, hidden responses

σ1(x) = φ(x) =
n∑

i=1

xi, σ2(x) = 1, and s(σ1, σ2) = (v1, v2) · (σ1, σ2),

and the output neuron response ρ(s) = 1 · s = s. This is the extension of the
original perceptron 〈1, s, 1〉 considered in Remark 4. Its scheme is presented in
Figure 2. Note that both perceptrons under consideration are capable of adaptation
to arbitrary parameters a, b of the prior distribution for all possible sample sizes n.

Fig. 2. Perceptron realizing the Bayes rule δ∗.

Remark 5. Learning of the perceptrons 〈M, s,w〉 and 〈J,M,σ, s,w〉 consists in
the presentation of pairs (y1, δ(y1)), . . . , (yN , δ(yN )) for yi = φ(xi) corresponding
to the observed data vectors x1, . . . ,xN . The values δ(y) are arguments of minima
of integrals

I(a) =
∫

Rm

L(θ, a) gθ(y)π(θ) dν(θ)

on the action space A (cf. (2) and proof of Assertion 1). If these arguments can be
evaluated explicitly as functions of y on the whole domain Rk, as it is in Example 2,
then the practical advantage of the perceptron realization of δ or δ∗ is limited. E. g.
in Example 2 this advantage is limited to the adaptivity of the resulting percep-
tron to the prior distribution parameters a, b which may be apriori unknown. But
these nonlinear regression parameters can be evaluated from the empirical evidence
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(y1, δ(y1)), . . . , (yN , δ(yN )) directly, without the perceptron. Moreover, the direct
statistical method is at least as efficient as the perceptron method. Thus the only
argument which remains in this case in favour of the perceptron is that it represents
a relatively simple automaton capable of adaptation in a nontrivial statistical en-
vironment. If however the explicit form of δ(y) is unknown and the evaluation of
argmin I(a) is a difficult task, then there is a stronger argument in favour of the
perceptrons under consideration. Namely, by being “learned”, these perceptrons ex-
trapolate the knowledge concentrated in the ensemble (y1, δ(y1)), . . . , (yN , δ(yN ))
on the whole domain of y by providing approximations ρ(y) and ρ(φ(x)) to δ(y)
and δ∗(x) at all remaining points y ∈ Rk − {y1, . . . ,yN}. In similar situations
perceptron applications proved to be useful in the past (cf. e. g. [12, 13]).

3. BAYES DISCRIMINATION

In this section we consider a special variant of the statistical decision model of
previous section, with the prior distribution concentrated on just two points θ1, θ2 ∈
Θ. By π1, π2 we denote prior probabilities of these points and we shall assume that
π1 and π2 are positive with π1 + π2 = 1. The set of actions A consists of integers 1
and 2 and the loss L(θi, j) is assumed to be zero if i = j and positive if i 6= j. This
is the model of discrimination between observations x generated by the law pθ1

and
those generated by pθ2

(for more details we refer to Hand [7]).
Denote by

λ1 = L(θ1, 2) and λ2 = L(θ2, 1)

the losses of misdiscrimination. Then it follows from (2) that the Bayes discrimina-
tion δ∗ : Rn → {1, 2} is defined by the condition

δ∗(x) = arg maxφ(i) for φ(i) = λi πi pθi
(x), i ∈ {1, 2}.

It follows from here that the well known rule

δ∗(x) =

{
1

2
if λ1 π1 pθ1

(x)

{ ≥ λ2 π2 pθ2
(x)

< λ2 π2 pθ2
(x)

(7)

represents the Bayes discrimination.
Let us suppose that the observations are exponentially distributed. This means

that the parameter space Θ is an open convex subset of Rm, and that there exists
a mapping T : Rn → Rm such that

pθ(x) = exp(θ · T (x)− ψ(θ)) for all θ ∈ Θ, x ∈ Rn, (8)

where ·
ψ(θ) = ln

∫
exp(θ · T (x)) dµ(x).

Let us assume that the family (8) is not overparametrized, i. e. that (θ1−θ2)·T (x)
is not µ-almost everywhere constant. This means that distributions (8) are for
different parameters θ different (the family is identifiable by the parameter θ).
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Note that (8) is a standard form of exponential distributions. The more familiar
form

pθ(x) = a(θ) b(x) exp(c(θ) · T (x))

can be transformed into the standard form by the substitution c(θ) → θ and by a
modification of µ (cf. [2]).

Now we can formulate the main result of this section.

Assertion 3. If the data are exponentially distributed then the Bayes discrimina-
tion (7) coincides with the response

ρ(x) = 1 + 1(−∞,0)(s(x) ·w) (cf. (3))

of the perceptron 〈m+ 2, s,w〉 defined by

s(x) = (T (x), 1, 1) ∈ Rm+2 (cf. (9))
and

w = (θ1 − θ2, ψ(θ2)− ψ(θ1), ln(λ1π1)− ln(λ2π2)) ∈ Rm+2.

P r o o f . By (7), δ∗(x) = 1 if and only if

ln
pθ1

(x)

pθ2
(x)

+ ln
λ1π1

λ2π2
≥ 0. (9)

But according to (8)

ln
pθ1

(x)

pθ2
(x)

= (θ1 − θ2) · T (x) + ψ(θ2)− ψ(θ1).

Thus (9) holds if and only if s(x) and w considered in Assertion 3 satisfy the relation
s(x) ·w ≥ 0, i. e. if and only if ρ(x) = 1. 2

The perceptron of Assertion 3 is the extension considered in Remark 4 of the
simple perceptron of Figure 3. Inputs y1, . . . , ym of this perceptron are components
T1(x), . . . , Tm(x) of the statistic T (x) which is sufficient for the exponential family
(8).

Fig. 3. Output neuron of 〈m + 2, s, w〉 in Assertion 3.
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The statistic T describes the response of hidden layer of the perceptron considered
in Assertion 3. If this statistics is known then the hidden layer contains no free
parameters requiring to be learned. Such parameters may contain only the output
neuron. If the parameters θ1 and θ2 of distributions governing the discriminated
observations are known, and also the losses λ1, λ2 and prior probabilities π1, π2 are
known, then nothing remains to be learned at all. Otherwise some or all synaptic
weights w1, . . . , wm+2 of the output neuron are to be specified by learning. But this
learning is much easier than that the learning considered in previous section. This
is due to the fact the perceptron here is simple, i. e. contains no hidden units.

If the statistic T is unknown and only the dimension m of the exponential model
is given, then one can approximate the components Ti(x) of T (x) by responses ρi(x)
of perceptrons considered in Assertion 2 or Remark 2. This leads to the approxima-
tion of the scalar product s(x) ·w (and, consequently, of the Bayes discrimination
δ∗(x)) by the perceptron of Figure 4. In this figure the boxes with ρ1(x), . . . , ρm(x)
are perceptrons of the type considered in Assertion 2 or Remark 2. Therefore the
perceptron of Figure 3 has two or three hidden layers. Learning in such perceptrons
is rather slow but possible (see [12]).

Fig. 4. Perceptron approximation to s(x) ·w.

Remark 6. In most applications the losses and prior probabilities are considered
symmetric, i. e. λ1 = λ2 and π1 = π2. In such situations the dimension of above
considered perceptrons can be reduced by one, i. e. it suffices to consider 〈m+1, s,w〉
with s(x) = (T (x), 1) ∈ Rm+1 and w = (θ1 − θ2, ψ(θ2)− ψ(θ1)) ∈ Rm+1.

4. EXAMPLE: CLASSIFICATION OF NORMAL DATA

Let us consider the exponential family (8) with n = 1, m = 2 and with the Lebesgue
measure µ on R. Such a family is specified by two statistics T1(x) and T2(x). Then
for θ = (α, β)

ψ(α, β) = ln
∫

exp(αT1(x) + β T2(x)) dx.

Our attention will be restricted to the symmetric case λ1 = λ2 and π1 = π2.
Consider the particular functions T1(x) = x and T2(x) = −x2. Then Θ = R ×

(0,∞) and

ψ(α, β) =
1
2

[
α2

2β
+ ln

π

β

]
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for all (α, β) ∈ R × (0,∞). It is easy to verify that then (8) is the normal family
with mean and variance

µ =
α

2β
and σ2 =

1
2β
.

Indeed,

pα,β(x) = eαT1(x)+β T2(x)−ψ(α,β) =
eαx−βx

2−α2/4β

√
π
β

=
e−(x−µ)2/2σ2

√
2πσ2

.

In the present model, taking into account Remark 6, the perceptron of Figure 4
reduces to that of Figure 5 where the boxes with ρ1(x) and ρ2(x) represent percep-
trons with the hidden layer of neurons considered in Remark 2. Thus the perceptron
of Figure 5 contains two hidden layers of neurons. This perceptron approximates
the Bayes discrimination δ∗(x) which is for

Fig. 5. Perceptron approximation of Bayes discrimination δ∗(x).

The response is 1 + 1(−∞,0)(ρ(x)).

θ1 = (α1, β1) and θ2 = (α2, β2)

defined in accordance with Assertion 3 by

δ∗(x) = 1 + 1(−∞,0)(T1(x)w1 + T2(x)w2 + w3), (10)

for
w1 = (α1 − α2), w2 = (β1 − β2), w3 = ψ(α2, β2)− ψ(α1, β1). (11)

Let x be the above considered normal data for

θ1 = (0, (2σ1)−1) and θ2 = (0, (2σ2)−1) where 0 < σ1 < σ2

i. e. for (µ1, σ
2
1) = (0, σ2

1) and (µ2, σ
2
2) = (0, σ2

2). It follows from (10) and (11) that
the Bayes discrimination is

δ∗(x) = 1 + 1(−σ0,σ0)(x), (12)

where σ0 > 0 is solution of the equation pθ1(x) = pθ2(x), i. e.

σ0 =
(
σ2

1σ
2
2 ln(σ2/σ1)2

σ2
2 − σ2

1

)1/2

.
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This discrimination function is approximated with the help of perceptron approx-
imations ρ1(x) and ρ2(x) to statistics T1(x) = x and T2(x) = −x2 considered in
Figure 5. According to Remark 2, we used two-layer perceptrons with 3 neurons in
each layer and with the sigmoidal activation functions with β = 0.7 in these neurons
and linear activation in the output neuron. Learning has been performed by using
data (x1, δ

∗(x1)), . . . , (xN , δ∗(xN )) where x1, . . . , xN are independent realizations
of random variable with the mixed density

p(x)
4
=

1
2

(
pθ1

(x) + pθ2
(x)

)
=

1
2
√

2π

(
e−x

2/2σ2
1

σ1
+
e−x

2/2σ2
2

σ2

)
(13)

and N = 2000. Data were simulated by using a pseudorandom generator. Distri-
bution of a standard normal output from this generator is presented in Figure 6.
Learning of weights of all 7 neurons in the network of Figure 5 was carried out by
the standard error back-propagation algorithm described e. g. in Müller et al [12]
with the constant learning rate ε = 0.007.

Fig. 6. Histogram of 105 standard normal data with step 102, and the standard normal

density.

The experiments were done out for σ1 = 1 and 14 different values of σ2, with the
theoretical Bayes error PBayes

E varying between 0.5 and 0. For each pair (σ1, σ2) we
carried out 20 experiments with randomly selected initial weights. At the end of each
experiment the learned network classified 98 000 data randomly selected according
to density (12) and the error frequency P perc

E was calculated. In all experiments this
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error was reasonably close to the smallest theoretically achievable Bayes error

PBayes
E =

1
2

[1− (F (σ0)− F (−σ0)) + F (σ0/σ2)− F (σ0/σ2)]

=
1
2
− F (σ0) + F (σ0/σ2),

where F (x) denotes the standard normal distribution function. The best 14 of the
20 experiments are presented in Tab. 1. We see that the quality of classifiers obtained
without using the knowledge of statistical models is excellent.

Table 1. Performances of the best of 20 realized experiments.

σ1 σ2 σ0 PBayes
E P perc

E P perc
E − PBayes

E

1 1.5 1.21 0.4012 0.4024 0.0012
1 2.0 1.36 0.3355 0.3358 0.0003
1 2.5 1.47 0.2898 0.2913 0.0004
1 3.0 1.57 0.2567 0.2560 0.0003
1 3.5 1.65 0.2303 0.2293 0.0010
1 4.0 1.72 0.2091 0.2086 0.0005
1 4.5 1.78 0.1912 0.1907 0.0005
1 5.0 1.83 0.1765 0.1756 0.0009
1 5.5 1.88 0.1637 0.1626 0.0011
1 6.0 1.92 0.1529 0.1516 0.0013
1 6.5 1.96 0.1437 0.1425 0.0012
1 7.0 1.99 0.1354 0.1342 0.0012
1 7.5 2.02 0.1282 0.1270 0.0012
1 8.0 2.05 0.1216 0.1202 0.0014

We were also interested in whether, or to what extent, the responses ρ1(x) and
ρ2(x) of the two-layered subnetworks approximate the desired functions T1(x) = x
and T2(x) = x2. Of course, this approximation is irrelevant (and cannot be achieved
by any empirical means) outside the effective domain of the distribution (13), where
no or few data are realized. Also, since the network is learned as a whole, the
approximation must be modulo linear transforms, i. e. arbitrary ai Ti(x)+bi may be
realized. We verified that this evidently took place in great majority of experiments.
Figures 7 – 10 present typical examples, two experiments for σ2 = 2.5 and two for
σ2 = 4. Together with the overall network response ρ(x) and the responses ρ1(x)
and ρ2(x) are presented best linear and quadratic approximations, achieving

min
ai,bi∈R

∫ 1

−1

(aix+ bi − ρ1(x))2 p(x)dx

and min
ai,bi,ci∈R

∫ 1

−1

(ai + bix+ cix
2 − ρ2(x))2 p(x)dx

for p(x) defined by (13). The subdomain (−1, 1) is slightly overemphasized in these
calculations but, nevertheless, we see that one of the functions ρ1(x), ρ2(x) in the
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effective domain is always closer to the quadratic and the other to the linear function.
Thus the network really “learned” the sufficient statistics.

Fig. 7. The overall network response ρ(x) (dotted line), the responses ρ1(x), ρ2(x) of

two-layer perceptrons and their L2-norm projections on linear and quadratic functions.

The case σ1 = 1 and σ2 = 2.5.

Fig. 8. As in Figure 7, but a different experiment.
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Fig. 9. The overall network response ρ(x) (dotted line), the responses ρ1(x), ρ2(x) of

two-layer perceptrons and their L2-norm projections on linear and quadratic functions.

The case σ1 = 1 and σ2 = 4.

Fig. 10. As in Figure 9, but a different experiment.
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5. EXAMPLE: CLASSIFICATION OF GEOMETRIC BROWNIAN MOTIONS

Let W = (Wt : t ≥ 0) be a Wiener process. Then a process X = (Xt : t ≥ 0)
satisfying the stochastic differential equation

dXt = θXt dt+Xt dWt, t > 0,

with X0 = 1 is called a geometric Brownian motion. In spite of that X does not
have independent increments, the likelihood of the trajectory (Xt : 0 ≤ t ≤ T ) is a
function of the final state XT only,

L[0,T ](θ) = exp
{
θ logXT +

θ2

2
T

}
, θ ∈ R.

The process is thus exponentially distributed and the final state XT is a sufficient
statistics.

We shall consider two types of trajectories corresponding to θ = θ0 and θ = −θ0,
and we shall put

Λ = θ0 T.

Using the results of Section 3 we see that the Bayes classifier is of the form

δ∗(Xt : 0 ≤ t ≤ T ) = 1(0,∞)(w1XT + w2)

for appropriate weights w1 and w2. We experimented with the values Λ = 0.1, Λ =
0.5 and Λ = 1. The initial perceptron weights were (w10, w20) = (0, 0), we used the
same source of random data as in Section 4, and we applied the classical perceptron
learning rule (cf. Müller et al [12]) with the variable learning rate ε(n) = (0.05)n.
We checked after various numbers n of learning steps on 1 000 new samples the
frequency of error P perc

E (n).
We see from Figure 11 and Figure 12 that approximately 100 learning steps are

sufficient to stabilize P perc
E for any 0, 1 ≤ Λ < 1. Similarly as in the previous section,

it is easy to verify that P perc
E is stabilized in the neighborhood of PBayes

E .

6. BAYES CLASSIFICATION

The general decision problem of Section 2 reduces to the classification problem by
taking the prior distribution concentrated on a finite subset {θ1, . . . , θr} ⊂ Θ and
by putting A = {1, . . . , r} (cf. Hand [7]). The nonzero losses are

λij = L(θi, θj) for i 6= j.

We restrict ourselves to the most important case where all these losses coincide.
If π1, . . . , πr are prior probabilities of θ1, . . . , θr then it follows from (2) that the

Bayes classification δ∗ : Rn → {1, . . . ,m} is defined by the condition

δ∗(x) = arg maxφ(i) for φ(i) = πi pθi
(x), i ∈ {1, . . . , r}.
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Fig. 11. P perc
E (n) versus number of learning steps n for Λ = 0.1 (upper line) and Λ = 0.5

(lower line).

Fig. 12. P perc
E (n) versus number of learning steps for Λ = 1.

Let us consider for i 6= j the Bayes discriminations δ∗ij(x) defined by (7) in the
discrimination problems with the prior probabilities πi/(πi + πj) and πj/(πi + πj)
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and distributions Pθi
and Pθj

. Put

δ∗(x) = i if δ∗ij(x) = i for all j ∈ {1, . . . , r}.

It follows from (7) that this defines a mapping δ∗ : Rn → {1, . . . , r} which is a Bayes
classification in the classification problem under consideration. Thus we have proved

Assertion 4. The Bayes classification δ∗(x) under consideration can be evaluated
by means of the Bayes discriminations δ∗ij(x) considered above.

Assertion 4 implies that the perceptron realizations of Bayes classifications, or
perceptron approximations to these classifications, can be obtained from the per-
ceptron realizations or approximations considered in Section 3. Therefore we do not
go into details.

7. CONCLUSIONS

In statistical models with known sufficient statistics of dimension not increasing
with the sample size, we have found the possibility to approximate Bayes decision
functions by a perceptron with at most three hidden layers, of complexity not in-
creasing with the sample size. The need of learning is restricted to synaptic weights
of neurons from two hidden layers plus one output neuron.

In the particular discrimination problem with exponential distributions it is shown
that the number of hidden layers can be reduced to one and the need of learning is
restricted just to synaptic weights of the output neuron.

If we know only the dimension of exponential distributions, then the Bayes classi-
fication can be approximated by a perceptron with at most three hidden layers. The
conclusions of the first paragraph about complexity and the necessity of learning
remain valid for this perceptron.

The results concerning discrimination can be extended to Bayes classification.
A frequent objection against neural network solutions of statistical problems is

that the statistical solutions are usually more efficient (see Ripley [13]). The effi-
ciency argument is true, but the loss of efficiency is at least to some extent com-
pensated by the algorithmic simplicity. Moreover, the applicability of neural nets
beyond the scope of models satisfying the mathematical assumptions of statistical
algorithms is demonstrated by a considerable neural network literature. The fact
that the most efficient methods based on likelihood ratio (like e. g. the Bayes dis-
crimination and classification considered in this paper) can be misleading if their
assumptions are not strictly fulfilled has been proved by theoretical results and sim-
ulations in robust statistics (see e. g. Hampel et al [6]).

(Received January 8, 1997.)
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