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CONTROLLABILITY OF SEMILINEAR FUNCTIONAL
INTEGRODIFFERENTIAL SYSTEMS
IN BANACH SPACES

Krishnan Balachandran and Rathinasamy Sakthivel

Sufficient conditions for controllability of semilinear functional integrodifferential sys-
tems in a Banach space are established. The results are obtained by using the Schaefer
fixed-point theorem.

1. INTRODUCTION

Controllability of nonlinear systems represented by ordinary differential equations in
infinite-dimensional spaces has been extensively studied by several authors. Naito
[12, 13] has studied the controllability of semilinear systems whereas Yamamoto and
Park [19] discussed the same problem for parabolic equation with uniformly bounded
nonlinear term. Chukwu and Lenhart [3] have studied the controllability of nonlin-
ear systems in abstract spaces. Do [4] and Zhou [20] investigated the approximate
controllability for a class of semilinear abstract equations. Kwun et al [7] established
the approximate controllability for delay Volterra systems with bounded linear op-
erators. Controllability for nonlinear Volterra integrodifferential systems has been
studied by Naito [14]. Recently Balachandran et al [1, 2] studied the controllability
and local null controllability of Sobolev-type integrodifferential systems and func-
tional differential systems in Banach spaces by using Schauder’s fixed-point theorem.
The purpose of this paper is to study the controllability of semilinear functional inte-
grodifferential systems in Banach spaces by using the Schaefer fixed-point theorem.
The semilinear functional integrodifferential equation considered here serves as an
abstract formulation of partial functional integrodifferential equations which arise
in heat flow in material with memory [5, 6, 8, 9, 18].

2. PRELIMINARIES

Consider the semilinear functional integrodifferential system of the form

(Ex(t))′ + Ax(t) = (Bu) (t) +
∫ t

0

f(s, xs) ds, t ∈ J = [0, b], (1)

x(t) = φ(t), t ∈ [−r, 0],
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where E and A are linear operators with domains contained in a Banach space X
and ranges contained in a Banach space Y , the state x(.) takes values in X and
the control function u(.) is given in L2(J, U), a Banach space of admissible control
functions with U as a Banach space, B is a bounded linear operator from U into Y
and the nonlinear operator f : J×C → Y is a given function. Here C = C([−r, 0], X)
is the Banach space of all continuous functions φ : [−r, 0] → X endowed with the
norm ‖φ‖ = sup{|φ(θ)| : −r ≤ θ ≤ 0}. Also for x ∈ C([−r, b], X) we have xt ∈ C for
t ∈ [0, b], xt(θ) = x(t + θ) for θ ∈ [−r, 0]. The norm of X is denoted by ‖ · ‖ and Y
by | · |.

The operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y satisfy the
hypotheses [Ci] for i = 1, . . . , 4:

[C1] A and E are closed linear operators

[C2] D(E) ⊂ D(A) and E is bijective

[C3] E−1 : Y → D(E) is continuous

[C4] For each t ∈ [0, b] and for some λ ∈ ρ(−AE−1), the resolvent set of −AE−1,
the resolvent R(λ,−AE−1) is a compact operator.

The hypotheses [C1], [C2] and the closed graph theorem imply the boundedness
of the linear operator AE−1 : Y → Y.

Lemma. [15] Let S(t) be a uniformly continuous semigroup and let A be its
infinitesimal generator. If the resolvent set R(λ : A) of A is compact for every
λ ∈ ρ(A), then S(t) is a compact semigroup.

From the above fact, −AE−1 generates a compact semigroup T (t), t ≥ 0, on Y .

Definition. The system (1) is said to be controllable on the interval J if for every
continuous initial function φ ∈ C and x1 ∈ X, there exists a control u ∈ L2(J, U)
such that the solution x(t) of (1) satisfies x(b) = x1.

We further assume the following hypotheses:

[C5] −AE−1 is the infinitesimal generator of a strongly continuous semigroup of
bounded linear operators T (t) in Y satisfying

|T (t)| ≤ M1e
ωt, t ≥ 0 for some M1 ≥ 1 and ω ≥ 0.

[C6] The linear operator W : L2(J, U) → X defined by

Wu =
∫ b

0

E−1T (b− s)Bu(s) ds

has an inverse operator W̃−1 : X → L2(J, U)/ker W and there exist positive
constants M2,M3 such that |B| ≤ M2 and |W̃−1| ≤ M3 (See the remark for
the construction of W̃−1).



Controllability of Semilinear Functional Integrodifferential Systems in Banach Spaces 467

[C7] For each t ∈ J, the function f(t, ·) : C → Y is continuous and for each x ∈ C,
the function f(·, x) : J → Y is strongly measurable.

[C8] There exists an integrable function m : [0, b] → [0,∞) such that

|f(t, φ)| ≤ m(t)Ω(‖φ‖), 0 ≤ t ≤ b, φ ∈ C,

where Ω : [0,∞) → (0,∞) is a continuous nondecreasing function.

[C9] ∫ b

0

m̂(s) ds <

∫ ∞

c

ds

1 + s + Ω(s)
,

where

c = ‖E−1‖M1|Eφ(0)|, m̂(t) = max
{

ω, ‖E−1‖M1N, ‖E−1‖M1

∫ t

0

m(s) ds

}

and

N = M2M3[‖x1‖+ ‖E−1‖M1e
ωb‖φ‖

+‖E−1‖M1

∫ b

0

eω(b−s)

∫ s

0

m(τ)Ω(‖xτ‖) dτ ds].

We need the following fixed point theorem due to Schaefer [17].

Theorem 1. Let E be a normed space. Let F : E → E be a completely continuous
operator, i. e., it is continuous and the image of any bounded set is contained in a
compact set, and let

ζ(F ) = {x ∈ E; x = λFx for some 0 < λ < 1}

Then either ζ(F ) is unbounded or F has a fixed point.

Then the system (1) has a mild solution of the following form

x(t) = E−1T (t)Eφ(0) +
∫ t

0

E−1T (t− s)
[
(Bu) (s)

+
∫ s

0

f(τ, xτ ) dτ
]
ds, t ∈ J,

x(t) = φ(t), t ∈ [−r, 0]

and Ex(t) ∈ C([0, b];Y ) ∩ C ′((0, b); Y ).
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3. MAIN RESULT

Theorem 2. If the hypotheses [C1] – [C9] are satisfied, then the system (1) is
controllable on J .

P r o o f . Using the hypothesis [C6] for an arbitrary function x(.), define the control

u(t) = W̃−1

[
x1 − E−1T (b)Eφ(0)−

∫ b

0

E−1T (b− s)
∫ s

0

f(τ, xτ ) dτ ds

]
(t).

For φ ∈ C, define φ̂ ∈ Cb, Cb = C([−r, b], X) by

φ̂(t) =





φ(t), −r ≤ t ≤ 0,

E−1T (t)Eφ(0), 0 ≤ t ≤ b.

If x(t) = y(t) + φ̂(t), t ∈ [−r, b], it is easy to see that y satisfies

y0 = 0,

y(t) =
∫ t

0

E−1T (t− η)BW̃−1[x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds](η) dη

+
∫ t

0

E−1T (t− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds, 0 ≤ t ≤ b (2)

if and only if x satisfies

x(t) = E−1T (t)Eφ(0) +
∫ t

0

E−1T (t− η)BW̃−1[x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, xτ ) dτ ds](η)dη

+
∫ t

0

E−1T (t− s)
∫ s

0

f(τ, xτ ) dτ ds

and x(t) = φ(t), t ∈ [−r, 0].
Define C0

b = {y ∈ Cb : y0 = 0} and we now show that when using the control,
the operator F : C0

b → C0
b , defined by

(Fy) (t) =





0, −r ≤ t ≤ 0,

∫ t

0

E−1T (t− η)BW̃−1[x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds](η) dη

+
∫ t

0

E−1T (t− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds, 0 ≤ t ≤ b
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has a fixed point. This fixed point is then a solution of equation (2).
Clearly x(b) = x1 which means that the control u steers the system (1) from

the initial function φ to x1 in time b, provided we can obtain a fixed point of the
nonlinear operator F .

In order to study the controllability problem of (1), we introduce a parameter
λ ∈ (0, 1) and consider the following system

(Ex(t))′ + Ax(t) = λ(Bu) (t) + λ

∫ t

0

f(s, xs) ds, t ∈ J = [0, b], (3)

x(t) = λφ(t), t ∈ [−r, 0].

First we obtain a priori bounds for the mild solution of the equation (3).
Then from

x(t) = λE−1T (t)Eφ(0) + λ

∫ t

0

E−1T (t− η)BW̃−1
[
x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, xτ ) dτ ds
]
(η) dη

+ λ

∫ t

0

E−1T (t− s)
∫ s

0

f(τ, xτ ) dτ ds,

we have,

‖x(t)‖ ≤ ‖E−1‖M1e
ωt|Eφ(0)|+

∫ t

0

‖E−1‖|T (t− η)|M2M3[‖x1‖

+ ‖E−1‖M1e
ωb|Eφ(0)|+

∫ b

0

‖E−1‖M1e
ω(b−s)

∫ s

0

m(τ)Ω(‖xτ‖) dτds] dη

+ ‖E−1‖M1e
ωt

∫ t

0

e−ωs

∫ s

0

m(τ)Ω(‖xτ‖) dτ ds, t ∈ [0, b].

We consider the function µ given by

µ(t) = sup{‖x(s)‖ : −r ≤ s ≤ t}, 0 ≤ t ≤ b.

Let t? ∈ [−r, t] be such that µ(t) = ‖x(t?)‖. If t? ∈ [0, b], by the previous inequality,
we have

e−ωtµ(t) ≤ ‖E−1‖M1|Eφ(0)|+ ‖E−1‖M1N

∫ t?

0

e−ωs ds

+ ‖E−1‖M1

∫ t?

0

e−ωs

∫ s

0

m(τ)Ω(‖xτ‖) dτ ds

≤ ‖E−1‖M1|Eφ(0)|

+ ‖E−1‖M1N

∫ t

0

e−ωs ds + ‖E−1‖M1

∫ t

0

e−ωs

∫ s

0

m(τ)Ω(µ(τ)) dτ ds.
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If t? ∈ [−r, 0], then µ(t) = ‖φ‖ and the previous inequality holds since M1 ≥ 1.

Denoting by v(t), the right-hand side of the above inequality, we have
c = v(0) = ‖E−1‖M1|Eφ(0)|, µ(t) ≤ eωtv(t), 0 ≤ t ≤ b and

v′(t) = ‖E−1‖M1Ne−ωt + ‖E−1‖M1e
−ωt

∫ t

0

m(s)Ω(µ(s)) ds

≤ ‖E−1‖M1Ne−ωt + ‖E−1‖M1e
−ωt

∫ t

0

m(s)Ω(eωsv(s)) ds.

We remark that

(eωtv(t))′ = ωeωtv(t) + eωtv′(t)

≤ ωeωtv(t) + ‖E−1‖M1N + ‖E−1‖M1

∫ t

0

m(s)Ω(eωsv(s)) ds

≤ ωeωtv(t) + ‖E−1‖M1N + ‖E−1‖M1Ω(eωtv(t))
∫ t

0

m(s) ds

≤ m̂(t)[eωtv(t) + 1 + Ω(eωtv(t))].

This implies

∫ eωtv(t)

v(0)

ds

1 + s + Ω(s)
≤

∫ b

0

m̂(s) ds <

∫ ∞

c

ds

1 + s + Ω(s)
, 0 ≤ t ≤ b.

This inequality implies that there is a constant K such that v(t) ≤ K and hence
µ(t) ≤ K, t ∈ [0, b]. Since ‖xt‖ ≤ µ(t), t ∈ [0, b], we have

‖x‖1 = sup{‖x(t)‖ : −r ≤ t ≤ b} ≤ K,

where K depends only on b and on the functions m and Ω.

Next we must prove that the operator F is a completely continuous operator.
Let Bk = {y ∈ C0

b : ‖y‖1 ≤ k} for some k ≥ 1.

We first show that the set {Fy : y ∈ Bk} is equicontinuous. Let y ∈ Bk and
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t1, t2 ∈ [0, b]. Then if 0 < t1 < t2 ≤ b,

‖(Fy) (t1)− (Fy) (t2)‖

≤
∥∥∥

∫ t1

0

E−1[T (t1 − η)− T (t2 − η)]BW̃−1[x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds](η) dη
∥∥∥

+
∥∥∥

∫ t2

t1

E−1T (t2 − η)BW̃−1[x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds](η) dη
∥∥∥

+
∥∥∥

∫ t1

0

E−1[T (t1 − s)− T (t2 − s)]
∫ s

0

f(τ, yτ + φ̂τ ) dτds
∥∥∥

+
∥∥∥

∫ t2

t1

E−1T (t2 − s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds
∥∥∥

≤
∫ t1

0

‖E−1‖|T (t1 − η)− T (t2 − η)|M2M3[‖x1‖+ ‖E−1‖M1e
ωb|Eφ(0)|

+ ‖E−1‖M1

∫ b

0

eω(b−s)

∫ s

0

m(τ)Ω(k′) dτds] dη

+
∫ t2

t1

‖E−1‖|T (t2 − η)|M2M3[‖x1‖+ ‖E−1‖M1e
ωb|Eφ(0)|

+ ‖E−1‖M1

∫ b

0

eω(b−s)

∫ s

0

m(τ)Ω(k′) dτds] dη

+
∫ t1

0

‖E−1‖|T (t1 − s)− T (t2 − s)|
∫ s

0

m(τ)Ω(k′) dτ ds

+
∫ t2

t1

‖E−1‖|T (t2 − s)|
∫ s

0

m(τ)Ω(k′) dτ ds,

where k′ = k + ‖φ̂‖. The right hand side is independent of y ∈ Bk and tends to zero
as t2 − t1 → 0, since the compactness of T (t), for t > 0, implies the continuity in
the uniform operator topology.

Thus the set {Fy; y ∈ Bk} is equicontinuous.
Notice that we considered here only the case 0 < t1 < t2, since the other cases

t1 < t2 < 0 or t1 < 0 < t2 are very simple.
It is easy to see that the family FBk is uniformly bounded. Next we show that

FBk is compact. Since we have shown that FBk is an equicontinuous collection, it
suffices, by the Arzela–Ascoli theorem, to show that F maps Bk into a precompact
set in X.

Let 0 < t ≤ b be fixed and ε a real number satisfying 0 < ε < t. For y ∈ Bk, we
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define

(Fεy) (t) =
∫ t−ε

0

E−1T (t− η)BW̃−1[x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds](η) dη

+
∫ t−ε

0

E−1T (t− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds

= T (ε)
∫ t−ε

0

E−1T (t− η − ε)BW̃−1[x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds](η) dη

+ T (ε)
∫ t−ε

0

E−1T (t− s− ε)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds.

Since T (t) is a compact operator, the set Yε(t) = {(Fεy) (t) : y ∈ Bk} is precompact
in X for every ε, 0 < ε < t. Moreover for every y ∈ Bk we have

‖(Fy) (t)− (Fεy) (t)‖

≤
∫ t

t−ε

‖E−1T (t− η)BW̃−1[x1 − E−1T (b)Eφ(0)

−
∫ b

0

E−1T (b− s)
∫ s

0

f(τ, yτ + φ̂τ ) dτ ds](η)‖dη

+
∫ t

t−ε

‖E−1T (t− s)
∫ s

0

f(τ, yτ + φ̂τ )‖dτ ds

≤
∫ t

t−ε

‖E−1‖|T (t− η)|M2M3[‖x1‖+ |E−1|M1e
ωb|Eφ(0)|

+ ‖E−1‖M1

∫ b

0

eω(b−s)

∫ s

0

m(τ)Ω(k′) dτ ds] dη

+
∫ t

t−ε

‖E−1‖|T (t− s)|
∫ s

0

m(τ)Ω(k′) dτ ds.

Therefore there are precompact sets arbitrarily close to the set {(Fy) (t) : y ∈ Bk}.
Hence the set {(Fy) (t) : y ∈ Bk} is precompact in X.

It remains to be shown that F : C0
b → C0

b is continuous. Let {yn}∞0 ⊆ C0
b with

yn → y in C0
b . Then there is an integer r such that ‖yn(t)‖ ≤ r for all n and t ∈ J ,

so yn ∈ Br and y ∈ Br. By [C7], f(t, yn(t) + φ̂t) → f(t, y(t) + φ̂t) for each t ∈ J

and since |f(t, yn(t) + φ̂t) − f(t, y(t) + φ̂t)| ≤ 2gr′(t), r′ = r + ‖φ̂‖, we have, by
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dominated convergence theorem,

‖Fyn − Fy‖

= sup
t∈J

∥∥∥
∫ t

0

E−1T (t− η)BW̃−1
[ ∫ b

0

T (b− s)
∫ s

0

[f(τ, yn(τ) + φ̂τ )− f(τ, y(τ) + φ̂τ )] dτ ds
]
(η) dη

+
∫ t

0

E−1T (t− s)
∫ s

0

[f(τ, yn(τ) + φ̂τ )− f(τ, y(τ) + φ̂τ )] dτ ds
∥∥∥

≤
∫ b

0

‖E−1‖|T (t− η)|M2M3[M1

∫ b

0

eω(b−s)

∫ s

0

|f(τ, yn(τ) + φ̂τ )− f(τ, y(τ) + φ̂τ )|dτ ds] dη

+
∫ b

0

‖E−1‖|T (t− s)|
∫ s

0

|f(τ, yn(τ) + φ̂τ )− f(τ, y(τ) + φ̂τ )| dτ ds → 0

as n →∞.

Thus F is continuous. This completes the proof that F is completely continuous.

Finally the set ζ(F ) = {y ∈ C0
b : y = λFy, λ ∈ (0, 1)} is bounded, since for every

solution y in ζ(F ), the function x = y + φ̂ is a mild solution of (3) for which we have
proved that ‖x‖1 ≤ K and hence

‖y‖1 ≤ K + ‖φ̂‖.
Consequently, by Schaefer’s theorem, the operator F has a fixed point in C0

b . This
means that any fixed point of F is a mild solution of (1) on J satisfying (Fx) (t) =
x(t). Thus the system (1) is controllable on J . 2

Example. Consider the following partial integrodifferential equation of the form

∂

∂t
(z(t, y)− zyy(t, y))− zyy(t, y) (4)

= Bu(t) +
∫ t

0

p(s, z(y, s− r)) ds, 0 < y < π, t ∈ J = [0, b]

with
z(0, t) = z(π, t) = 0, t > 0, z(t, y) = φ(t, y), −r ≤ t ≤ 0

where φ is continuous and u ∈ L2(J, U).
Assume that the following conditions hold with X = Y = U = L2(0, π).

[A1] The operator B : U → Y , is a bounded linear operator.

[A2] The linear operator W : L2(J, U) → X, defined by

Wu =
∫ b

0

E−1T (b− s)Bu(s) ds
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has bounded inverse operator W̃−1 which takes values in L2(J, U)/ker W.

[A3] Further the function p : J×C → Y is continuous in z and strongly measurable
in t.

[A4] Let f(t, wt) (y) = p(t, w(t− y)), 0 < y < π.

Define the operators A : D(A) ⊂ X → Y, E : D(E) ⊂ X → Y by Aw = −wyy,
Ew = w − wyy respectively, where each domain D(A), D(E) is given by
{w ∈ X, w,wy are absolutely continuous, wyy ∈ X, w(0) = w(π) = 0}.
With this choice of E, A, B and f, (1) is an abstract formulation of (4) (see [8]).
Then A and E can be written respectively as

Aw =
∞∑

n=1

n2(w, wn)wn, w ∈ D(A),

Ew =
∞∑

n=1

(1 + n2)(w, wn)wn, w ∈ D(E),

where wn(y) =
√

2 sin ny, n = 1, 2, 3, . . ., is the orthogonal set of eigenvectors of A.
Furthermore for w ∈ X we have

E−1w =
∞∑

n=1

1
1 + n2

(w,wn)wn,

−AE−1w =
∞∑

n=1

−n2

1 + n2
(w,wn)wn,

T (t)w =
∞∑

n=1

e
−n2

1+n2 t(w, wn)wn,

It is easy to see that −AE−1 generates a strongly continuous semigroup T (t) on Y
and T (t) is compact such that |T (t)| ≤ e−t for each t > 0.

[A5] The function p satisfies the following conditions: There exists an integrable
function q : J → [0,∞) such that

|p(t, w(t− y))| ≤ q(t)Ω1(‖w‖),
where Ω1 : [0,∞) → (0,∞) is continuous and nondecreasing.
Also we have ∫ b

0

n̂(s) ds <

∫ ∞

c

ds

1 + s + Ω1(s)
,

where c= |E−1|e−t|Eφ(0)|, and n̂(t)=max{−1, |E−1|e−tN, |E−1|e−t

∫ t

0

q(s) ds}.
Here N depends on E, A, B, and p . Further all the conditions stated in the
above theorem are satisfied. Hence the system (4) is controllable on J .
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Remark. (See also [16].) Construction of W̃−1.
Let Y = L2[J, U ]/ker W.

Since kerW is closed, Y is a Banach space under the norm

‖[u]‖Y = inf
u∈[u]

‖u‖L2[J,U ] = inf
Wû=0

‖u + û‖L2[J,U ]

where [u] are the equivalence classes of u.

Define W̃ : Y → X by
W̃ [u] = Wu, u ∈ [u].

Now W̃ is one-to-one and

‖W̃ [u]‖X ≤ ‖W‖‖[u]‖Y .

We claim that V = Range W is a Banach space with the norm

‖v‖V = ‖W̃−1v‖Y .

This norm is equivalent to the graph norm on D(W̃−1) = Range W , W̃ is bounded
and since D(W̃ ) = Y is closed, W̃−1 is closed and so the above norm makes Range
W = V a Banach space.

Moreover,

‖Wu‖V = ‖W̃−1Wu‖Y = ‖W̃−1W̃ [u]‖
= ‖[u]‖ = inf

u∈[u]
‖u‖ ≤ ‖u‖,

so
W ∈ £(L2[J, U ], V ).

Since L2[J, U ] is reflexive and kerW is weakly closed, so that the infimum is
actually attained. For any v ∈ V , we can therefore choose a control u ∈ L2[J, U ]
such that u = W̃−1v.
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