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APPROXIMATIONS OF BELIEVEABILITY FUNCTIONS
UNDER INCOMPLETE IDENTIFICATION OF SETS
OF COMPATIBLE STATES

Ivan Kramosil

The believeability function has been introduced and investigated in the Dempster–Shafer
theory as a numerical characteristic of uncertainty ascribing to each set of possible answers
to a question, or set of possible states of an investigated system, under another interpre-
tation, the probability with which the obtained random empirical data (observations) are
such that the true answer, or the actual state of the system, can be proved to belong to the
set in question. In other words, this value is defined by the probability that the set of all
answers or states compatible with the at random obtained data is a subset of the set the
believeability of which is to be defined. In this paper we shall investigate the case when the
set of compatible states cannot be completely defined so that we have at hand just a class
of sets of answers or states containing the set of compatible states. Using this class of sets,
we shall define and compute an approximation of the desired value of the believeability
function, which can be useful in some decision-making problems when not the value of this
function itself, but rather the fact whether this value exceeds some threshold value or not
is important.

1. INTRODUCTION

Dempster–Shafer (D.-S., abbreviately) approach to uncertainty quantification and
processing or, as it is often called, D.-S. theory, has been developed since the last
more than twenty years (the basic Dempster’s paper [1] originates from 1967) and
represents, in our days, an interesting mathematical model which can be seen, from
the purely formal point of view, as a non-traditional application of probability theory,
but which offers interpretations going out of the frameworks of the usual interpreta-
tions of the probability theory. The aim of this paper is to modify the mathematical
apparatus of the D.-S. theory in order to be able to express formally some ideas
generalizing and weakening the assumptions of the original D.-S. way of reasoning.
So, it would be quite sufficient to restrict ourselves to the very simple abstract pres-
entation of the D.-S. theory as will be introduced in Chapter 2 below, and to kindly
invite the reader to consult very numerous and easily accessible references as far as
the motivation, philosophical and methodological background, interpretations and
applications of the D.-S. theory are concerned. Nevertheless, aiming to present the
intended generalization of the D.-S. theory not only as a matter of purely mathe-
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matical speculation but also as an effort motivated by certain rather deeply going
philosophical and methodological reasons, we take as useful to introduce here, very
briefly, a way of reasoning leading to the D.-S. theory and to an intuitive interpre-
tation of this theory.

Consider a system the nature of which (technical, biological, ecological,. . . ) is
irrelevant for our purposes and which is situated in just one internal state s0, called
the actual state of the system and belonging to a nonempty set S of potential
internal states of the system. The system works or developes in an environment
and this environment is situated in just one state ω0, called the actual state of
the environment, or the actual elementary state, belonging to a nonempty set Ω of
possible states of the environment (elementary states). Hence, the assumption of
closed world is accepted as far as the system in question as well as the environment
are concerned. The relation between the environment and the system is deterministic
in the sense that s0 is strictly determined by ω0, in symbols, there exists a function
(total) σ∗ defined on Ω and taking its values in S (σ∗ : Ω → S, abbreviately) such
that σ∗(ω) is the actual state of the system supposing that ω is the actual elementary
state, in particular, σ∗(ω0) = s0 by definition.

The aim of the user (observer, investigator) of the system in question is to iden-
tify the actual state s0 of the system or at least to answer, correctly, the question
whether the relation s0 ∈ T holds or does not hold for a nonempty proper subset
T of S, T being, as a rule, the set of states of the investigated system possessing
a property important or interesting because of some reasons connected with an in-
tended application of the system. However, neither s0 nor ω0 are directly observable,
so that the only possibility is to obtain some partial information about them indi-
rectly. Namely, the user of the system can obtain some empirical data concerning the
system and the environment (observations, measurements, results of experiments),
formally expressed by a value X from the space E of possible empirical values. This
space E may be also a vector space to cover the possibility of more observations,
measurements, etc. taken altogether. So, if E = Xn

i=1Ei, then, e. g. some Ei may
be two-element (say, zero-one) spaces to express the results of qualitative obser-
vations and experiments (yes – no, holds – does not hold), other Ei’s may be real
lines or appropriate intervals of real numbers to express the results of quantitative
measurements, and so on. In every case, also the values of X are supposed to be
unambiguously determined by the actual elementary state of the environment, so
that X will be taken as a total function X : Ω → E.

In the most general case, what the user knows is not the precise value of X =
X(ω0), but only the fact that X(ω) ∈ F holds for some nonempty proper subset
F of E. The basic question now reads: what can be told about the validity of
the inclusion s0 = σ∗(ω0) ∈ T for a given ∅ 6= T ⊂ S, T 6= S supposing that we
know that X(ω0) ∈ F ⊂ E? From the Platonist point of view and at the level of a
three-valued logic the answer is almost trivial:

(i) If {ω : ω ∈ Ω, σ∗(ω) ∈ T} ⊃ {ω : ω ∈ Ω : X(ω) ∈ F}, then σ∗(ω0) ∈ T
certainly holds.

(ii) If {ω : ω ∈ Ω, σ∗(ω) ∈ S − T} ⊃ {ω : ω ∈ Ω, X(ω) ∈ F}, then σ∗(ω0) ∈ T
certainly does not hold, so that σ(ω0) ∈ S − T certainly holds.
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(iii) If neither (i) nor (ii) is the case, i. e., if there are ω1, ω2 ∈ Ω such that
X(ω1) ∈ F, X(ω2) ∈ F, σ∗(ω1) ∈ T , but σ∗(ω2) /∈ T , then no sure answer to the
question whether σ∗(ω0) ∈ T can be given on the ground of knowing that X(ω0) ∈ F
holds, in other words, each such answer or decision will be charged by an uncertainty
and possible risk resulting when applying such a decision in practice. Here we are just
at the point where we must choose, in order to quantify and process this uncertainty
and/or risk, between the way offered by the classical probability theory and by the
statistical decision making theory based on these grounds, and between the D.-S.
theory. Here we explain only the last case, referring to [3] or to some classical
textbooks of statistical decision making theory like [10] or [4] as far as the former
approach is concerned.

Very roughly speaking, D.-S. theory is based on ascribing probability values,
summing to one, to the three disjoint cases (i) – (iii) listed below instead of the
statistical decision theory approach, when the case (iii) is distributed among (i)
and (ii), so that the decision is always “yes” or “no”, but it is connected with a
probability of error, or with a numerically quantifiable risk, when applied; the way
how to distribute (iii) among (i) and (ii) is proposed with the aim to minimize this
probability of error (risk). To be able to define the three probabilities mentioned
above correctly and consistently, some formal structures over the sets Ω, S and E
should be defined.

First, we must be able to ascribe numerical probability values to at least some
subsets of Ω, S, and E. For the sake of technical convenience we shall suppose
that the systems of these subsets are σ-fields, hence, we shall suppose that three
nonempty σ-fields Ã ⊂ P(Ω), S ⊂ P(S), and E ⊂ P(E) are given, here P(A)
denotes the power-set over A, i. e., the system of all subsets of a set A. Throughout
all this paper we shall suppose, to simplify our formal model, that the set S of all
potential internal states of the system in question is finite and that S = P(S). The
mappings σ∗ : Ω → S, X : Ω → E are supposed to be measurable in the sense that
the inclusions {{ω : ω ∈ Ω, σ∗(ω) ∈ T} : T ⊂ S} ⊂ Ã and {{ω : ω ∈ Ω, X(ω) ∈ F} :
F ∈ E} ⊂ Ã hold. Finally, a probability measure P : Ã → 〈0, 1〉 is defined on the sets
from Ã, so that σ (X, resp.) is a random variable defined on the probability space
〈Ω, Ã, P 〉 and taking its values in the measurable space 〈S,P(S)〉 (〈E, E〉, resp.).

An internal state s ∈ S is called compatible with an empirical value x ∈ E, if
{ω ∈ Ω : X(ω) = x}∩{ω ∈ Ω, σ∗(ω) = s} 6= ∅. More generally, s is compatible with
a set F ⊂ E of empirical states, if s is compatible with at least one empirical value
x ∈ F , i. e., if {ω ∈ Ω : X(ω) ∈ F} ∩ {ω ∈ Ω, σ∗(ω) = s} 6= ∅. Let E∗ ⊂ P(P(E))
be a nonempty σ-field of subsets of E and let F : Ω → E be a measurable mapping,
i. e., {{ω ∈ Ω : F(ω) ∈ G} : G ∈ E∗} ⊂ Ã holds. So, the result of an experiment,
measurement, observation, etc., is expressed not by an exact empirical value X(ω),
but rather by a set (an interval, e. g.) of such values supposed to cover the exact
value of the observed or measured quantity. The former case when these values are
directly accessible is then defined when taking simply F(ω) = {X(ω)}, where { }
denotes the singleton.

Let U(ω) = U(F(ω)) ⊂ S denote the set of internal states compatible with the



428 I. KRAMOSIL

set of empirical values F(ω) ⊂ E with respect to X in symbols,

U(ω) = U(F(ω)) = (1)
= {s ∈ S : {η ∈ Ω : σ∗(η) = s} ∩ {η ∈ Ω : X(η) ∈ F(ω)} 6= ∅} .

The value (supposing that {ω ∈ Ω : U(ω) ⊂ T} ∈ Ã holds for each T ⊂ S)

Bel(T ) = P ({ω : ω ∈ Ω, U(ω) ⊂ T}) (2)

is then defined for each T ⊂ S and is called the believeability of the subset T ⊂
S. Under our interpretation the actual empirical value X(ω), compatible with the
actual internal state s0(ω) of the investigated system, is in F(ω), so that s0(ω) ∈
U(ω) holds and U(ω) ⊂ T immediately implies that s0(ω) ∈ T . Consequently,
the value Bel(T ) defines the probability with which the case (i) above occurs, i. e.
the case when we can be sure that s0(ω) ∈ T holds. Analogously, the probability
of the case (ii) is defined by Bel(S − T ) and the probability of the case (iii) by
1 − Bel(T ) − Bel(S − T ). The value 1 − Bel(S − T ) is denoted by Pl(T ) and is
called the plausibility of T ; it defines the probability with which the possibility that
s0(ω) ∈ T holds cannot be ultimately avoided. The values Bel(T ) and Pl(T ) are the
basic numerical characteristics (quantifications, degrees) of uncertainty ascribed to
subsets of S and processed in the D.-S. theory.

The most usual way of introducing the D.-S. theory differs from our presentation
in two aspects. First, only the case when empirical values are directly observable
is considered, so that U(ω) is defined by U({X(ω}). Second, not only results of
observations, measurements, etc., are taken into consideration, but also other state-
ments concerning the environment and the system and not necessarily supported
by empirical data, so that the data taken altogether may be confusing or logically
inconsistent. Consequently, the relation s0(ω) ∈ U(ω) does not necessarily hold, and
the set U(ω) can be even empty (the data are inconsistent), cf. [3, 8] for a more de-
tailed discussion. This problem is solved, within the framework of the D.-S. theory,
by avoiding the case of inconsistent data from consideration and by renormalizing
the probabilities of the three cases (i) – (iii) with respect to the case when the data
are logically consistent, i. e., when the set U(ω) of compatible states is nonempty.
Hence, (1.2) is replaced by the conditional probability

Bel(T ) = P ({ω : ω ∈ Ω, U(ω) ∈ T} / {ω : ω ∈ Ω, U(ω) 6= ∅}) . (3)

Very often, the D.-S. theory is presented in such a way that the sets U(ω) of states
compatible with random data are taken as the primary point of further considera-
tions, so that all the way leading to this sets and briefly outlined above is neglected.
As the set S is taken as finite, all what is then needed is a probability distribu-
tion over the (finite) power-set P(S), i. e., a mapping m : P(S) → 〈0, 1〉 such that
m(∅) < 1 and

∑
A⊂S m(A) = 1; it is the so called basic probability assignment.

Given T ⊂ S, Bel(T ) is then simply defined by (1−m(∅))−1
∑
∅6=A⊂T m(A).

An important feature of the model of D.-S. reasoning explained above, and this
holds true for all the models presented till now, consists in the fact that the set
U(X(ω)) or U(F(ω)) of the states compatible with at random sampled empirical
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value X(ω), or set F(ω) of such values, is always supposed to be at our disposal as
a crisp set containing just all the states in question. Only under this condition we
are able to decide, theoretically and practically, given T ⊂ S, whether the inclusion
U(X(ω)) ⊂ T holds or not, when defining and computing the value Bel(T ). However,
if the set S is large enough (or infinite, but this case will be mostly avoided from our
considerations below, because of technical difficulties), and if U(ω) (= U(X(ω)) =
U(F(ω)) must be constructed by a sequential verifying of the compatibility of every
particular state from S with the given or obtained empirical data, the assumption
that we are able to process actually the set U(ω) as a whole, unique, single and
terminated object may be rather strong and hard to satisfy. It is why we propose, in
the next chapter, a generalized formal model for the D.-S.-theory, which replaces this
assumption by a weaker one: that we are able to decide for some but, in general, not
for all systems of A of subsests of S, whether A contains U(ω) or not, leaving this
question perhaps undecided for some other systems A ⊂ P(S). In the intensional
setting, we are able to recognize some properties of the set U(ω), but not to identify
it completely in order to be able to separate this set from no matter which other
set(s). Obviously, if the power-sets P(T ) ⊂ P(S) are among the decidable systems
for all T ⊂ S, the model explained above immediately proves to be a special case of
the generalized one.

2. DEMPSTER–SHAFER MODEL OF UNCERTAINTY PROCESSING WITH
INCOMPLETE IDENTIFICATION

Like as in the model investigated above, our reasoning begins with a nonempty
(and usually finite) set S of possible internal states of an investigated system and
with a nonempty set E (perhaps a many-dimensional vector space) of empirical
values, sampled at random and used in order to take some decision or to answer
some question concerning the directly unobservable and inaccessible actual internal
state of the system in question. Instead of supposing that both the actual state
of the system and the empirical data are determined by elementary states of the
environment in which the system as well as its observer are situated, we shall suppose
that we have immediately at our disposal an incomplete compatibility relation over
the spaces S and E.

Definition 2.1. Incomplete compatibility relation over nonempty spaces S and E
is a mapping ρ defined on the Cartesian product S ×E and taking its values in the
set {1, ∗, 0} or in any set containing just three different elements of no matter which
nature.

The interpretation behind reads as follows. Given s ∈ S and x ∈ E, the equality
ρ(s, x) = 1 means that the state s is compatible with the observation x in the sense
that if the observed empirical value is x, it is possible that the system is in the
internal state s according to the laws and dependences governing the behaviour of
the system and of the procedures generating the observed values and binding them
together, moreover, the subject (i. e., the observer, investigator, user) knows this
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fact. If ρ(s, x) = 0, then s is incompatible with x, i. e., the possibility that the
system is in the state s can be logically excluded using the mentioned laws and
dependences, and the subject knows this fact. Finally, ρ(s, x) = ∗ means that the
subject does not know whether s is compatible with x or not, perhaps because of
lack of knowledge about the system and observations, because of lack of time to
deduce the necessary conclusions, etc.

Setting ρ(T, F ) = infs∈T supx∈F ρ(s, x) for each T ⊂ S and F ⊂ E, where sup
and inf are taken with respect to the linear ordering 0 ≺ ∗ ≺ 1 of the set {1, ∗, 0},
the incomplete compatibility relation ρ can be extended to the Cartesian product
P(S)× P(E). The extension is conservative in the sense that ρ({s}, {x}) = ρ(s, x)
for each s ∈ S and x ∈ E, so that we can also define ρ(T, x) by ρ(T, {x}) and ρ(s, F )
by ρ({s}, F ). The intuition behind is obvious: ρ(T, F ) = 1 iff each state s ∈ T is
compatible with at least one value x ∈ F , hence, no s ∈ T can be eliminated from
consideration if the only fact the subject knows is that the observed empirical value
is in F . Dually, if ρ(T, F ) = 0, then there exists a state s0 ∈ T incompatible with
every value x ∈ F , so that s0 must be avoided from further considerations as far as
the actual state of the system is concerned, if the subject knows that the observed
empirical value is in F .

Each incomplete compatibility relation ρ over S×E defines two subsets of states
compatible with an empirical value x ∈ E, namely U0(x) = {s ∈ S : ρ(s, x) = 1},
and U(x) = {s ∈ S : ρ(s, x) 6= 0}. It is just the case of U(x) which reflects more
tightly the basic idea of D.-S. theory: a state s is compatible with an empirical value
x, if s cannot be avoided from consideration as a possible candidate to the actual
state of the system, no matter whether the reasons are given by the objective nature
of the system and its environment, or by reasons of subjective nature limiting the
observer’s decision making abilities.

The limited subject’s abilities as far as the identification of subsets of the set S in
general and of the sets of states compatible with given empirical data in particular
are concerned are formally defined by an incomplete identification relation over the
set S.

Definition 2.2. Incomplete identification relation over a nonempty set S is a map-
ping σ defined on the Cartesian product P(S) × P(P(S)), taking its values in the
set {1, ∗, 0} and such that, for each A ⊂ S and each A ⊂ P(S), σ(A,A) = 1 implies
that A ∈ A and σ(A,A) = 0 implies that A ∈ P(S)−A. If σ(A,A) ∈ {1, 0} for each
A ⊂ S and each A ⊂ P(S), the adjective “incomplete” is omitted and the relation
σ is called trivial. A set A ⊂ S (a system A ⊂ P(S), resp.) is called decidable with
respect to σ, if σ(A,B) ∈ {0, 1} for all B ⊂ P(S) (if σ(B,A) ∈ {1, 0} for all B ⊂ S,
resp.). A set A ⊂ S (a system A ⊂ P(S), resp.) is called vague with respect to σ,
if σ(A,B) = ∗ for all B ⊂ P(S) (if σ(B,A) = ∗ for all B ⊂ S, resp.). The relation
σ is called simple with respect to σ, if every A ⊂ P(S) is either decidable or vague.
The relation σ is called inclusively closed if the system P(T ) is decidable for each
T ⊂ S.

Let 〈Ω, Ã, P 〉 be an abstract probability space, let E be a nonempty σ-field of
subsets of E, let X be a random variable, i. e., a measurable mapping defined on the
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probability space 〈Ω, Ã, P 〉 and taking its values in the measurable space 〈E, E〉. If ρ
is a complete compatibility relation over S×E, i. e., if ρ(s, x) ∈ {1, 0} holds for each
s ∈ S and x ∈ E, and if σ is an inclusively closed (incomplete) identification relation
such that the class P(S)−{∅} of subsets of S is decidable, the usual definition (1.3)
of the believeability function can be rewritten as follows.

Bel(T ) = P ({ω : ω ∈ Ω, σ({s ∈ S : ρ(s,X(ω)) = 1}, P(T )) = 1}/ (4)
{ω : ω ∈ Ω, σ({s ∈ S : ρ(s,X(ω)) = 1}, P(S)− {∅}) = 1}) ,

where {s ∈ S : ρ(s,X(ω)) = 1} stands for U(ω), σ(U(ω), P(T )) = 1 stands for
U(ω) ∈ P(T ), i. e., for U(ω) ⊂ T , and σ(U(ω), P(S) − {∅}) = 1 stands for U(ω) ∈
P(S)−{∅}, i. e. for U(ω) 6= ∅. A reasonable (as will be argued below) generalization
of (1.3) and (2.1) to the case of incomplete compatibility relation and identification
relation reads as follows.

Definition 2.3. Let S and E be nonempty sets, let S be finite, let E be a nonempty
σ-field of subsets of E, let X be a random variable defined on the probability space
〈Ω, Ã, P 〉 and taking its values in the measurable space 〈E, E〉, let ρ be an incomplete
compatibility relation on S × E and let σ be an incomplete identification relation
on S such that {ω ∈ Ω : σ({s ∈ S : ρ(s,X(ω)) = α}, A) = β} ∈ Ã holds for each
α, β ∈ {1, 0, ∗} and each A belonging to the minimal σ-field generated in P(P(S))
by the set {P(T ) : T ⊂ S} of systems of subsets of S. Generalized believeability
function Bel∗ (Bel∗(X, ρ, σ), in more detail), generated on P(S) by X, ρ, and σ, is
then defined, for each T ⊂ S, by the conditional probability

Bel(T ) = P ({ω : ω ∈ Ω, σ({s ∈ S : ρ(s,X(ω)) 6= 0}, P(T )) = 1}/ (5)
{ω : ω ∈ Ω, σ({s ∈ S : ρ(s,X(ω)) = 1}, P(S)− {∅}) = 1}) ,

if P ({ω ∈ Ω : σ({s ∈ S : ρ(s,X(ω)) = 1}, P(S)− {∅}) = 1}) > 0 holds, or by

Bel∗(T ) = P ({ω : ω ∈ Ω, σ(U(X(ω)), P(T )) = 1} / (6)
{ω : ω ∈ Ω, σ(U0(X(ω)), P(S)− {∅}) = 1}) ,

when using the definitions of U(x) and U0(x) introduced above.

At the first sight, we could consider also other variants of the original function Bel,
e. g., replacing U by U0 in the conditioned random event in (2.3) and/or replacing
U0 by U in the conditioning event, however, only the variant introduced in (2.3)
conserves the main idea of the D.-S. reasoning. Or, (2.3) defines the probability of
occurrence of such empirical data that

(1) we are sure that the data are consistent as we are sure that there exists at
least one state of the investigated system which is compatible with these data by
virtue of the objective properties of the system and environment, not only by virtue
of our ignorance and limited abilities, and

(2) we are sure that every state compatible with the data in this objective sense,
no matter whether we are able to verify this compatibility for every such state in
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particular, must lie in the critical set T the degree of believeability of which is to be
numerically quantified. In other words,

(3) Bel∗(T ) defines the probability of occurrence of such empirical data which
enable to conclude, supposing that these data holds true in the actual state of the
system and of the environment, that the actual state of the system must be in
the critical set T , and this deduction is not charged by any kind and degree of
uncertainty. An easy re-consideration of other possible variants of the generalized
believeability function shows that no of them conserves this basic property of the
D.-S. reasoning.

3. INCOMPLETE IDENTIFICATION RELATIONS RELATED TO EQUIVA-
LENCE RELATIONS OF INDISTINGUISHABILITY

In this chapter we shall investigate the special case of the model described above
arising when we are not able to distinguish the set of states compatible with the
obtained empirical values from some other subsets of S, so that we are able to
decide that U(X) ⊂ T (U0(x) ⊂ T , resp.) holds only if this inclusion holds for
every A ⊂ S indistinguishable from U(X) (U0(x), resp.). In order to simplify the
situation we shall suppose, throughout this chapter, that

(a) the set S is finite,

(b) the compatibility relation ρ on S × E is complete, so that ρ(s, x) = 1 or 0 for
each s ∈ S, x ∈ E and, consequently, U0(x) = U(x) for each x ∈ E,

(c) the indistinguishability relation on P(S) × P(S) is defined by an equivalence
relation ∼ on P(S)×P(S), so that two subsets A, B of S are indistinguishable
iff A ∼ B holds,

(d) the incomplete identification relation σ on P(S) × P(P(S)) is such that, for
each A, T ⊂ S,

σ(A,P(T )) = 1 iff B ⊂ T (i. e., B ∈ P(T )), holds for each B ∼ A,

σ(A,P(S)−P(∅))=1 iff B 6= ∅ (i. e., B ∈ P(S)−P(∅)), holds for each B∼A,

(e) the measurable space 〈E, E〉, in which the random variable X defined on the
probability space 〈Ω, Ã, P 〉 takes its values, is rich enough so that the set⋃

B∼A{x ∈ E : U(x) = B} is in E for each A ⊂ S.

Denoting, for each A ⊂ S, by [A] = {B : B ⊂ S, B ∼ A} the equivalence class in
the factor-space P(S)/ ∼, to which A belongs, we can rewrite the definition of Bel∗
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as follows. Let T ⊂ S, then

Bel∗(T ) = P ({ω ∈ Ω : σ(U(X(ω)), P(T )) = 1} / (7)
{ω ∈ Ω : σ(U(X(ω)),P(S)− P(∅)) = 1}}) =

= P ({ω ∈ Ω : B ⊂ T for all B ∼ U(X(ω))} /

{ω ∈ Ω : B 6= ∅ for all B ∼ U(X(ω))}) =
= P ({ω ∈ Ω : B ∈ P(T ) for all B ∼ U(X(ω))} /

{ω ∈ Ω : ∅ /∈ [U(X(ω))]}) =
= P ({ω ∈ Ω : [U(X(ω))] ⊂ P(T )} / {ω ∈ Ω : [U(X(ω))] 6= [∅]}) =

= P
(⋃

A∈P(S)/∼,A⊂P(T ){ω ∈ Ω : [U(X(ω))] = A} /

⋃
A∈P(S)/∼,A6=[∅]{ω ∈ Ω : [U(X(ω))] = A}

)

For each A, B ⊂ S, B ∈ [A] holds iff [B] = [A], so that, for each A ∈ P(S)/ ∼, i. e.,
for each A = [A] for some A ⊂ S, an easy calculation yields that

{ω ∈ Ω : [U(X(ω))] = A} = {ω ∈ Ω : [U(X(ω))] = [A]} = (8)
= {ω ∈ Ω : U(X(ω)) ∈ [A]} = {ω ∈ Ω : X(ω) ∈ {x ∈ E : U(X) ∈ [A]}} =

=
{

ω ∈ Ω : X(ω) ∈ ⋃
B∈[A]{x ∈ E : U(x) = B}

}
=

= {ω ∈ Ω : X(ω) ∈ ⋃
B∼A{x ∈ E : U(x) = B}} .

The condition (e) above yields that
⋃

B∼A{x ∈ E : U(x) = B} ∈ E holds for each
A ⊂ S and X is a random variable defined on 〈Ω, Ã, P 〉 and taking its values in
〈E, E〉, hence, the subset of Ω defined in (3.2) is in Ã, consequently, P ({ω ∈ Ω :
[U(X(ω))] = A}) is defined for each A ∈ P(S)/ ∼. Combining (3.1) and (3.2) we
obtain that

Bel∗(T ) =

∑
A∈P(S)/∼,A6=[∅],A⊂P(T )P ({ω ∈ Ω : [U(X(ω))] = A})∑

A∈P(S)/∼,A6=[∅]P ({ω ∈ Ω : [U(X(ω))] = A}) . (9)

This expression can be easily written in the form using the basic probability
assignment and yielding the usual believeability function, but this time with P(S)
playing the role of the basic space S. Let m : P(P(S)) → 〈0, 1〉 be defined, for each
A ∈ P(S), by

m(A) = P ({ω ∈ Ω : [U(X(ω))] = A}) (10)

if A ∈ P(S)/ ∼, i. e., A = [A] for some A ⊂ S, m(A) = 0 otherwise. Then,
obviously,

∑
A∈P(S)/∼m(A) = 1 and

Bel∗(T ) =

∑
A∈P(S)/∼,A6=[∅],A⊂P(T )m(A)∑

A∈P(S)/∼,A6=[∅]m(A)
=

∑
A∈P(S)/∼,A6=[∅],A⊂P(T )m(A)

1−m([∅]) ,

(11)
supposing that m([∅]) < 1, otherwise Bel∗(T ) is not defined.
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The interpretation behind may be such that a more complicated system with
several possible compatibility functions is considered. The states of this new system
are sets of states of the original system and a state of this new system is compatible
with some data, if it is indistinguishable, with respect to the equivalence relation ∼,
from the actual state of the new system by which the data in question have been
generated.

It is perhaps worth investigating, in particular, the case when the equivalence
relation ∼ coincides with the identity relation Id on P(S)×P(S). Then, evidently,
[A] = {A} for each A ⊂ S and P(S)/Id = {{A} : A ⊂ S}, so that (3.1) implies

Bel∗(T )=P ({ω ∈ Ω : {U(X(ω))} ⊂ P(T )} / {ω ∈ Ω : {U(X(ω))} 6= {∅}}) (12)
=P ({ω ∈ Ω : U(X(ω)) ⊂ T} / {ω ∈ Ω : U(X(ω)) 6= ∅}) ,

hence, Bel∗(T ) agrees with the usual believeability function Bel(T ) generated on
P(S) by X and ρ, as could be expected. The condition (e) yields, in this case, that
the probability

P ({ω ∈ Ω : U(X(ω)) = A}) = (13)
= P ({ω ∈ Ω : X(ω) ∈ {x ∈ E : U(x) ∈ {A}}})
= P ({ω ∈ Ω : X(ω) ∈ {x ∈ E : U(x) = A}})

is defined for each A ⊂ S. Denoting this value by m0(A) we easily obtain that m0

is a basic probability assignment of P(S) and, by (3.4),

m([A]) = m({A}) = (14)
= P ({ω ∈ Ω : {U(X(ω))} = {A}}) = P ({ω ∈ Ω : U(X(ω)) = A}) = m0(A),

so that

Bel∗(T ) =

∑
{A}∈P(S)/Id, {A}6={∅}, {A}⊂P(T )m(A)∑

{A}∈P(S)/Id, {A}6={∅}m(A)
=

∑
A 6=∅, A⊂T m0(A)∑

A 6=∅m0(A)
, (15)

and this agrees with the definition of usual believeability function over P(S) through
a basic probability assignment.

Let us turn to the case with a general, not necessary identity, equivalence relation
∼ on P(S) × P(S), but let us suppose that the condition (e) holds for the identity
relation Id (its validity for each equivalence relation on P(S) × P(S) then easily
follows from the finiteness of the basic space S). Hence, the values m0(A) are defined,
by (3.7), for each A ⊂ S. (3.2) and (3.4) then yield that, for eachA = [A] ∈ P(S)/ ∼,

m(A) = m([A]) = P ({ω ∈ Ω : [U(X(ω))] = [A]}) = (16)
= P ({ω ∈ Ω : U(X(ω)) ∈ [A]})=
=

∑
B, B∼AP ({ω ∈ Ω : U(X(ω)) = B}) =

∑
B∈Am0(B),

so that the expression (3.5) for Bel∗(T ) can be expressed directly by the values of
the basic probability assignment m0, namely,

Bel∗(T ) =

∑
A∈P(S)/∼,A6=[∅],A⊂P(T )

∑
A∈Am0(A)∑

A∈P(S)/∼,A6=[∅]
∑

A∈Am0(A)
. (17)
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Obviously, A = [A], A ⊂ P(T ) implies that A ⊂ T but, in general, A ⊂ T does
not imply that [A] ⊂ P(T ), so that, if m([∅]) = 0 (consequently, m0(∅) = 0),
we obtain that Bel∗(T ) ≤ Bel(T ) holds for each T ⊂ S. Again, this inequality
could be intuitively expected when taking into consideration the interpretation of
the values in question. As can be almost immediately seen, everything what has
been proved above for the case of identity equivalence relation Id remains valid for
any equivalence relation ≈ on P(S) × P(S) refining the relation ∼, i. e., such that
A ≈ B implies A ∼ B for each A, B ⊂ S. The mapping m0 will then be a basic
probability assignment on the equivalence classes generated in P(S) by the finer
equivalence relation ≈, i. e., on P(S)/ ≈.

It may be perhaps worth presenting the obtained results once more, in the form
of an assertion.

Theorem 3.1. Let 〈Ω, Ã, P 〉 be an abstract probability space, 〈E, E〉 a measurable
space of empirical values, X a random variable taking 〈Ω, Ã, P 〉 into 〈E, E〉, S a finite
set, ρ a complete compatibility relation over S×E, and σ an incomplete identification
relation on P(S) × P(P(S)) such that the conditions (a) – (e) hold. Let m(A) be
defined, for each A ⊂ P(S), by (3.4). Then, for each T ⊂ S, (3.5) holds. If
the condition (e) is valid for the identity relation on P(S) × P(S) and if m0(A) is
defined for each A ⊂ S by (3.7), then (3.11) holds for each T ⊂ S, If m([∅]) = 0, if
the condition (e) holds with respect to an equivalence relation ≈ refining the original
relation ∼, and if Bel∗∗(T ) is defined with respect to ≈, then Bel∗(T ) ≤ Bel∗∗(T )
holds for each T ⊂ S. In particular, if ≈= Id, then Bel∗(T ) ≤ Bel(T ) holds for each
T ⊂ S.

4. DEMPSTER COMBINATION RULE FOR GENERALIZED BELIEVEABIL-
ITY FUNCTIONS

In the introductory part of this paper we describe the way of reasoning paradigmatic
for the D.-S. theory and yielding the believeability function as the principal numer-
ical characteristic of uncertainty introduced and investigated within the framework
of this theory. Under the presented interpretation, a subject (observer, user,. . . )
obtains some empirical data of random nature concerning the investigated system
and the environment in which this system works, and combining these data with
her/his a priori knowledge, she/he arrives at the set U(X(ω)) of all possible internal
states of the system compatible with the empirical data X(ω). Given a subset T of
the set S of all possible internal states of the system in question, the believeability
BelU (T ) ascribed to this subset is then defined by the probability with which ev-
ery state compatible with X(ω) is in T , hence, as the probability with which the
inclusion U(X(ω)) ⊂ T holds.

Consider, now, the case when two subjects observe the same system, the first
one obtains empirical data X1(ω) and the other one empirical data X2(ω), and they
combine these data separately and independently of each other, with their individual
a priori knowledge into sets U(X1(ω)) and U(X2(ω)), where U(Xi(ω)) denotes the
set of states compatible with the data obtained by the i-th subject (i = 1, 2). A
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third subject, to whom the results of both the former subjects represented by the set
U(X1(ω)) and U(X2(ω)) are accessible, wants to combine them in a way improving
both the particular results in the sense that the believeability ascribed to a subset
T of S should increase supposing that the data obtained by both the subjects are
true and that the actual state of the investigated system is, in fact, in T . This
is an optimistic way of combination of the particular results, a pessimistic way of
combination when any new uncertain knowledge can only deteriorate the information
being already at hand is also possible and worth a more detailed investigation, but
we shall not take this possibility into consideration here.

The most simple optimistic combination can be easily defined as follows. The
third subject takes a state of the system as compatible with the joined data 〈X1(ω),
X2(ω)〉, if it is taken as compatible by both the first and the second subjects. In
other words, the reasons leading at least one of the original two subjects to the
statement that a state is incompatible are fully accepted by the third subject (the
believing of the third subject to what the first or the second one say expresses, in
a sense, an optimistic point of view of the third subject). So, the third subject
defines her/his own set U(〈X1(ω), X2(ω)〉 of states compatible with the joined data
〈X1(ω), X2(ω)〉 by the set-theoretic joint U(X1(ω)) ∩ U(X2(ω)), i. e. by U1(ω) ∩
U2(ω), if abbreviating U(Xi(ω)) by Ui(ω). Then the third subject defines her/his
own believeability function BelU1∩U2 in the usual way, setting (U1∩U2) (ω) = U1(ω)∩
U2(ω) for all ω ∈ Ω. So, the third subject obtains that

BelU1∩U2(T ) = P ({ω ∈ Ω : (U1 ∩ U2) (ω) ⊂ T} / {ω ∈ Ω : (U1 ∩ U2) (ω) 6= ∅}) (18)

for each T ⊂ S. This new believeability function can be written in the form
BelU1∩U2(T ) = f(BelU1 , BelU2) (T ) and interpreted as the result of a binary opera-
tion f applied to the original believeability functions BelU1 and BelU2 . Under some
simplifying conditions, BelU1∩U2 can be expressed in a more explicit way through
BelU1 and BelU2 . Namely, if

(i) S is finite, so that mi(A) = P ({ω ∈ Ω : Ui(ω) = A}) is defined for each A ⊂ S
and for both i = 1, 2,

(ii)
∑

A,B∈S, A∩B=∅m1(A) m2(B) < 1 holds,

(iii) the set-valued random variables U1, U2, defined on the probability space
〈Ω, Ã, P 〉 and taking their values in the measurable space 〈P(S),P(P(S))〉 are sta-
tistically independent, i. e.,

P ({ω ∈ Ω : U1(ω) = A, U2(ω) = B}) = (19)
= P ({ω ∈ Ω : U1(ω) = A}) · P ({ω ∈ Ω : U2(ω) = B})

holds for each A, B ⊂ S, then (4.1) converts into the combinatoric expression

BelU1∩U2(T ) =

∑
A,B⊂S, ∅6=A∩B⊂T m1(A) m2(B)∑

A,B⊂S, ∅6=A∩Bm1(A) m2(B)
. (20)

In this simplified case when (4.3) holds we usually write BelU1∩U2(T ) =
(BelU1 ⊕ BelU2) (T ), instead of a general operation f , and the operation ⊕ is called
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the Dempster combination rule yielding the believeability function BelU1∩U2 as the
result of combination of the original believeability functions BelU1 and BelU2 . If
the state space S is supposed to be finite, (4.3) is often immediately introduced
as an abstract axiomatic definition of the Dempster combination rule applied to
two believeability functions defined by their basic probability assignments m1, m2.
Obviously, BelU1∩U2 can be also defined through a new probability assignment m3,
setting

m3(C) =
∑

A,B⊂S, A∩B=Cm1(A)m2(B) (21)

for each C ⊂ S.
In order to investigate a possibility how to extend the Dempster combination

rule to generalized believeability function or how to define another rule playing the
same or similar role let us reconsider the relation (2.1) when believeability functions
are defined through complete compatibility relations and complete identification
relations taken as the primary notions. So, let ρ1, ρ2 : S × E → {0, 1} be two
complete compatibility relations corresponding to the two subjects in question and
inducing, consecutively, two set-valued random variables U1, U2 such that Ui(ω) =
U(Xi(ω)) = {s ∈ S : ρ(s,Xi(ω)) = 1}. Hence,

BelUi(T ) = P ({ω ∈ Ω : σ({s ∈ S : ρi(s,Xi(ω)) = 1}, P(T )) = 1} / (22)
/ {ω ∈ Ω : σ({s ∈ S : ρi(s,Xi(ω)) = 1}, P(S)− {∅}) = 1})

for all T ⊂ S and for both i = 1, 2, supposing that BelUi(T ) is defined. Defining a
new compatibility relations ρ3 on S × (E × E) by

ρ3(s, 〈x1, x2〉) = min{ρ1(s, x1), ρ2(s, x2)} (23)

for all s ∈ S, x1, x2 ∈ E, we easily obtain that for each such x1, x2,

U2(〈x1, x2〉) = {s ∈ S : ρ3(s, 〈x1, x2〉) = 1} = (24)
= {s ∈ S : ρ1(s, x1) = 1} ∩ {s ∈ S : ρ2(s, x2) = 1} = U1(x1) ∩ U2(x2),

so that BelU1∩U2(T ) = BelU3(T ) can be expressed, for each T ⊂ S, by

BelU1∩U2(T )=P ({ω ∈ Ω : σ({s∈S : ρ3(s, 〈X1(ω), X2(ω)〉)=1}, P(T ))=1} /

/ {ω ∈ Ω : σ({s ∈ S : ρ3(s, 〈X1(ω), X2(ω)〉) = 1}, P(S)− {∅}) = 1}) = (25)
=P ({ω ∈ Ω : σ({s ∈ S : ρ1(s,X1(ω)) = ρ2(s,X2(ω)) = 1}, P(T )) = 1} /

/ {ω ∈ Ω : σ({s ∈ S : ρ1(s,X1(ω)) = ρ2(s,X2(ω)) = 1}, P(S)− {∅}) = 1}) ,

or, in still another notation,

BelU1∩U2(T )=P ({ω ∈ Ω : σ({s∈S : min{ρi(s, Xi(ω)), i=1, 2}=1}, P(T ))=1} /

/ {ω ∈ Ω : σ({s ∈ S : min{ρi(s,Xi(ω)), i = 1, 2} = 1}, P(S)− {∅}) = 1}) . (26)

This last expression for BelU1∩U2(T ) seems to be the most appropriate for be-
ing immediately generalized to the case of three-valued incomplete compatibility
functions. Consider, again, two independent subjects, but this time represented
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by incomplete compatibility functions ρ1, ρ2 : S × E → {1, ∗, 0}. A third subject
uses the incomplete compatibility function ρ3 : S × (E × E) → {1, ∗, 0} defined
as follows: she/he takes a state s as surely (or provably) compatible with a pair
〈x1, x2〉 ∈ E ×E of observations, iff s is surely compatible with x1 for the first sub-
ject and with x2 for the second subject, hence, ρ3(s, 〈x1, x2〉) = 1 iff ρi(s, xi) = 1 for
both i = 1, 2. Also, the third subject takes s as surely incompatible with 〈x1, x2〉,
if s is surely incompatible with xi with respect to ρi for at least one of the two
original subjects, hence, ρ3(s, 〈x1, x2〉) = 0 iff either ρ1(s, x1) = 0, or ρ2(s, x2) = 0.
Finally, the third subject takes the compatibility of s with 〈x1, x2〉 as uncertain,
i. e., ρ3(s, 〈x1, x2〉) = ∗, in all the other cases. An easy reasoning proves that ρ3

is the only three-valued extension of the two-valued case of ρ3 investigated above
which preserves its two basic principles: each subject in particular decides ulti-
mately about the incompatibility of a state, on the other side, if s is considered as
compatible with data 〈x1, x2〉, then s is in fact (at an objective level) compatible
with x1 as well as with x2, consequently, if x1 and x2 are true (valid) in the actual
state s0 of the system, then s0 is compatible with x1, x2, and 〈x1, x2〉, no matter
whether the corresponding subjects are able to deduce this fact. E. g., when setting
ρ̃3(s, 〈x1, x2〉) = min {ρ1(s, x1), ρ2(s, x2)}, if ρi(s, xi) ∈ {1, 0} for both i = 1, 2, and
setting ρ̃3(s, 〈x1, x2〉) = ρi(s, xi), if ρj(s, xj) = ∗ for i, j = 1, 2, i 6= j, then ρ̃3 does
not possess the property mentioned above, even if it may be also taken as reasonable
from a certain point of view (an uncertain answer about the compatibility of a state
given by one subject is neglected supposing that the other subject offers a certain
answer).

If follows immediately that the incomplete compatibility relation ρ3 can be for-
mally defined by

ρ3(s, 〈x1, x2〉) = µ{ρ1(s, x1), ρ2(s, x2)}, (27)

where µ is the minimum operation on {1, ∗, 0} defined by the linear ordering 0 ≺ ∗ ≺
1 on this set. In order to be able to write an analogy to the Dempster combination
rule for generalized believeability functions in a form as close to (4.9) as possible,
let us realize that the random variable U1 (U2, resp.) in (4.5) is uniquely defined by
the (complete) compatibility function ρ1 (ρ2, resp.) and by the random variable X,
so that we could also write Belρi(T ) instead of BelUi(T ). In the case of incomplete
compatibility functions, the same role is played by the pairs Ui(ω) = 〈U0

i (ω), Ui(ω)〉,
i = 1, 2, of random variables defined by

U0
i (ω) = {s ∈ S : ρi(s,X(ω)) = 1} , (28)

Ui(ω) = {s ∈ S : ρi(s,X(ω)) 6= ∅} . (29)

Obviously, if U3(ω) = 〈U0
3 (ω), U3(ω)〉 is generated by ρ3 and ρ3 is defined by (4.10),

then U0
3 (ω) = U0

1 (ω) ∩ U0
2 (ω) and U3(ω) = U1(ω) ∩ U2(ω). Denoting these last two

equalities together by U3(ω) = U1(ω)∩U2(ω), or simply by U3 = U1∩U2, we arrive at
the following Dempster combination rule ⊕∗ for generalized believeability functions.
If BelUi(T ), i = 1, 2 are defined by (2.2) with ρ replaced by ρ1 and ρ2 and with Ui
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generated by ρi according to (4.11) and (4.12), then for each T ⊂ S,
(
Bel∗U1

⊕∗ Bel∗U2

)
(T ) = Bel∗U1∩U2

(T ) = (30)
= P ({ω ∈ Ω : σ({s ∈ S : µ{ρi(s,Xi(ω)) : i = 1, 2} 6= 0}, P(T )) = 1} /

/ {ω ∈ Ω : σ({s ∈ S : µ{ρi(s,Xi(ω)) : i = 1, 2} = 1}, P(S)− {∅}) = 1}) .

In the case of generalized believeability functions with complete compatibility
relations and with incomplete identification relations related to equivalence relations
and investigated in Chapter 3 we have seen that these generalized believeability
functions can be defined by usual believeability functions over appropriate factor-
spaces generated by the equivalence relation in question in the power-set P(S) over
the state space S. A natural question arises, whether the generalized Dempster
combination rule defined by (4.13) could be expressed, in this case, through the
usual Dempster combination rule applied to the corresponding usual believeability
functions over the factor-spaces in question.

As will be proved below, the answer can be affirmative only under certain addi-
tional restrictive conditions imposed on the equivalence relation ∼ defined on P(S).
Or, when considering the original set-valued random variables U1 = U(X1(·)), U2 =
U(X2(·)), the random event occurring when U1(ω) ∩ U2(ω) = A for some A ⊂ S
can be easily defined by random events U1(ω) = B and U2(ω) = C for appropriate
B, C ⊂ S, namely,

{ω ∈ Ω : U1(ω) ∩ U2(ω) = A} = (31)
=

⋃
B,C⊂S, B∩C=A {ω ∈ Ω : U1(ω) = B, U2(ω) = C} .

This relation cannot be, in general, extended to the random variables [U1]=[U(X1(·))]
and [U2] = [U(X2(·))], as the random event {ω ∈ Ω : [U1(ω) ∩ U2(ω)] = A}, A ∈
P(S)/ ∼, cannot be defined by random events {ω ∈ Ω : [U1(ω)] = B}, {ω ∈ Ω :
[U2(ω)] = C}, for some B, C ∈ P(S)/ ∼. The reason is that if B = [B], C = [C]
for some B, C ⊂ S, and if B1 ∈ B, C1 ∈ C, i. e., if B1 ∼ B and C1 ∼ C hold, then
B1∩C1 ∼ B∩C need not hold. In other words, [U1(ω)∩U2(ω)] need not be definable
by [U1(ω)] and [U2(ω)]. The following definition will restrict our consideration to
the particular case when such a relation can be defined.

Definition 4.1. An equivalence relation ∼ on P(S) is called conservative with
respect to a binary set operation ϕ on S, if for each A, B, A1, B1 ⊂ S the implication

(A ∼ A1)& (B ∼ B2) =⇒ ϕ(A,B) ∼ ϕ(A1, B1) (32)
holds. The relation ∼ is conservative with respect to a unary set operation χ on S,
if for each A, A1 ⊂ S the implication

A ∼ A1 =⇒ χ(A) ∼ χ(A1) (33)

holds.
Let the equivalence relation ∼ be conservative with respect to a binary set oper-

ation ϕ on S. Then its extension to P(S)/ ∼ is the binary operation ϕ0 defined, for
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each [A], [B] ∈ P(S)/ ∼, by

ϕ0([A], [B]) = [ϕ(A,B)]. (34)

Let the equivalence relation ∼ be conservative with respect to a unary set oper-
ation χ on S. Then its extension to P(S)/ ∼ is the unary operation χ0 defined, for
each [A] ∈ P(S)/ ∼, by

χ0([A]) = [χ(A)]. (35)

The relations (4.15) and (4.16) yield immediately that the definitions (4.17) and
(4.18) are correct in the sense that the classes ϕ0([A], [B]) and χ0([A]) in P(S)/ ∼
are defined uniquely no matter how the representatives A and B of the classes [A]
and [B] are chosen. If ϕ is the operation ∪ of set-theoretic union (operation ∩ of
set-theoretic joint, resp.), we shall write [A]t [B] and [A]u[B] instead of

⋃0([A], [B])
and

⋂0([A], [B]). Let us recall that [A] ∩ [B] = [A] = [B], if B ∼ A, [A] ∩ [B] = ∅
otherwise.

The following trivial assertion shows that Definition 4.1 is non-trivial, i. e., non-
empty.

Lemma 4.1. The identity relation = on P(S) is conservative with respect to each
extensional binary and unary set operation on S.

P r o o f . Let ϕ (χ, resp.) be a binary (unary, resp.) operation on S, let
A, B, A1, B1 ⊂ S be such that A = A1 and B = B1. The extensionality of the
operations on S then yields that ϕ(A,B) = ϕ(A1, B1) and χ(A) = χ(A1) hold. 2

Theorem 4.1. Let 〈Ω, Ã, P 〉 be an abstract probability space, let 〈Ei, Ei〉, i = 1, 2,
be two measurable spaces of empirical values, let Xi, i = 1, 2, be a random variable
taking 〈Ω, Ã, P 〉 into 〈Ei, Ei〉. Let S be a finite set, let ρi, i = 1, 2, be a complete
compatibility relation over S×Ei, let Ui(ω) = U(Xi(ω)) = {s ∈ S : ρ(s,Xi(ω)) = 1}
for both i = 1, 2. Let σ be an incomplete identification relation on P(S)×P(P(S))
such that the conditions (a) – (e) introduced in Chapter 3 hold for i = 1, 2. Let
mi(A) = P ({ω ∈ Ω : [Ui(ω)] = A}) for each A ∈ P(S)/ ∼ and for both i = 1, 2,
let Bel∗Ui

be defined by (2.2) for i = 1, 2 with ρ and X replaced by ρi and Xi, let
Bel∗U1

⊕∗ Bel∗U2
be defined by (4.13). Let the random variables [U1(·)] and [U2(·)],

defined on the probability space 〈Ω, Ã, P 〉 and taking their values in the measurable
spaces 〈P(S)/ ∼, P(P(S)/ ∼)〉, be statistically independent, i. e., let the equality

P ({ω ∈ Ω : [U1(ω)] = A, [U2(ω)] = B}) = (36)
= P ({ω ∈ Ω : [U1(ω)] = A}) P ({ω ∈ Ω : [U2(ω)] = B})

hold for each A, B ∈ P(S)/ ∼. Let the equivalence relation ∼ on P(S) be con-
servative with respect to the set operation of joint on S. Then, for each T ⊂ S,

(
Bel∗U1

⊕∗ Bel∗U2

)
(T ) =

∑
A,B∈P(S)/∼,AuB6=[∅],AuB⊂P(T )m1(A) m2(B)∑

A,B∈P(S)/∼,AuB6=[∅]m1(A)m2(B)
(37)
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supposing that
∑
A,B∈P(S)/∼,AuB6=[∅] m1(A)m2(B) > 0 holds, otherwise (Bel∗U1

⊕∗
Bel∗U2

) (T ) is not defined.

P r o o f . As the compatibility relations ρ1, ρ2 are complete, Ui = 〈Ui, Ui〉 =
〈U0

i , U0
i 〉 for both i = 1, 2. An easy calculation yields that

(
Bel∗U1

⊕∗ Bel∗U2

)
= Bel∗U1∩U2

(T ) = (38)
=P ({ω ∈ Ω : σ(U(X1(ω)) ∩ U(X2(ω)), P(T )) = 1} /

/ {ω ∈ Ω : σ(U(X1(ω)) ∩ U(X2(ω)), P(S)− {∅}) = 1}) =
=P ({ω ∈ Ω : [U1(ω) ∩ U2(ω)] ⊂ P(T )} / {ω ∈ Ω : [U1(ω) ∩ U2(ω)] 6= [∅]}) =
=P ({ω ∈ Ω : [U1(ω)] u [U2(ω)] ⊂ P(T )} / {ω ∈ Ω : [U1(ω)] u [U2(ω)] 6= [∅]}) =

=
P ({ω ∈ Ω : [∅] 6= [U1(ω)] u [U2(ω)] ⊂ P(T )})

P ({ω ∈ Ω : [∅] 6= [U1(ω)] u [U2(ω)]}) =

=

∑
A,B∈P(S)/∼,AuB6=[∅],AuB⊂P(T )P ({ω ∈ Ω : [U1(ω)]=A, [U2(ω)]=B})∑

A,B∈P(S)/∼,AuB6=[∅]P ({ω∈Ω:[U1(ω)]=A, [U2(ω)]=B}) =

=

∑
A,B∈P(S)/∼,AuB6=[∅],AuB⊂P(T )P ({ω∈Ω:[U1(ω)]=A})P ({ω∈Ω:[U2(ω)]=B})∑

A,B∈P(S)/∼,AuB6=[∅]P ({ω∈Ω:[U1(ω)=A})P ({ω∈Ω:[U2(ω)]=B}) =

=

∑
A,B∈P(S)/∼,AuB6=[∅],AuB⊂P(T )m1(A)m2(A)∑

A,B∈P(S)/∼,AuB6=[∅]m1(A) m2(B)
.

The assertion is proved. 2

When ∼ is the identity relation Id on P(S), i. e. when [A] = {A} for each A ⊂ S
and P(S)/Id = {{A} : A ⊂ S}, an easy verification yields that, defining m0

i (A) by
mi({A}) for each A ⊂ S and for both i = 1, 2, we obtain

(
Bel∗U1

⊕∗ Bel∗U2

)
(T ) = (39)∑

{A},{B}∈P(S)/Id, {A}u{B}6={∅}, {A}u{B}⊂P(T )m1({A})m2({B})∑
{A},{B}∈P(S)/Id, {A}u{B}6={∅}m1({A}) m2({B})∑

A,B⊂S, A∩B 6=∅, A∩B⊂T m0
1(A) m0

2(B)∑
A,B⊂S, A∩B 6=∅m0

1(A)m0
2(B)

= (BelU1 ⊕ BelU2) (T ),

where BelU1 and BelU2 are usual believeability functions defined on P(S) by the
usual basic probability assignments m0

1 and m0
2.

5. AN ABSTRACT MODEL FOR INCOMPLETELY IDENTIFIABLE SETS
OF COMPATIBLE STATES

During our introductory explanation of basic ideas of D.-S. theory we started from
an extra-mathematical interpretation and motivation for the presented ideas and
notions, just at a secondary level mentioning the possibility of a purely abstract
presentation of this theory. Also when investigating the abilities how to process
the case with incompletely identifiable sets of compatible states we used a rather
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intuitive approach based, e. g., on the idea of indistinguishability of sets within the
same equivalence class generated on P(S). An alternative, purely abstract and
formalized model may be settled as follows.

For the sake of simplicity we shall suppose, again, that the basic space S is finite
so that all the probabilities under consideration will be definable by appropriate
basic probability assignments. Let ν : P(S) → P(P(S)) be the operation of neigh-
bourhood ascribing to each A ⊂ S a system ν(A) ⊂ P(S) of subsets of S in such a
way that A ∈ ν(A) holds for each A ⊂ S. The interpretation behind may be that if
B ∈ ν(A), then A and B are so close to each other that they are indistinguishable
from each other in the sense that, for each A ⊂ P(S), A ∈ A can be proved iff B ∈ A
holds for each B ∈ ν(A), hence, iff ν(A) ⊂ A holds. Consequently, ν(A) immedi-
ately generalizes the equivalence class [A] introduced and investigated above. Let
X = 〈Ω, Ã, P 〉 → 〈E, E〉 be a random variable the values of which are the empirical
results being to the subject’s disposal, let ρ be a complete compatibility relation on
S×E, let U(X(ω)) = U(ω) = {s ∈ S : ρ(X(ω)) = 1} be defined as above. Then the
ν-induced generalized believeability function BelνU is defined, on P(S), by

BelνU (T ) = P ({ω ∈ Ω : ν(U(X(ω))) ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ ν(U(X(ω)))}) (40)

for each T ⊂ S supposing that P ({ω ∈ Ω : ∅ /∈ ν(U(X(ω)))} > 0 holds, BelνU being
undefined otherwise. Defining m∗ : P(P(S)) → 〈0, 1〉 by

m∗(A) = P ({ω ∈ Ω : ν(U(X(ω))) = A}) (41)

for each A ⊂ P(S), we easily obtain that

BelνU (T ) =

∑
A∈P(P(S)), ∅/∈A,A⊂P(T )m

∗(A)∑
A∈P(P(S)), ∅/∈Am∗(A)

. (42)

Obviously, instead of the random variable ν(U(X(·))), defined on 〈Ω, Ã, P 〉 and
taking its values in P(P(S)), we can take the basic probability assignment defined
on P(P(S)) as the keystone of all further considerations and constructions.

Let us recall that if ν(A) = [A] for some equivalence relation ∼, then ν(B) =
ν(A) for each B ∈ [A], i. e. for each B ∼ A, however, in general the implication
B ∈ ν(A) ⇒ ν(B) = ν(A) need not hold.

The following theorem proves that if the case of inconsistent data is strictly sep-
arable from all other cases, then each ν-induced generalized believeability function
BelνU can be defined by the usual believeability function Bel

U
for an appropriate

set-valued random variable U : 〈Ω, Ã, P 〉 −→ 〈P(S), P(P(S))〉. Set A =
⋃

B∈AB

for each nonempty A ⊂ P(S), set A = ν(A) for each A ⊂ S, set ∅∗ = ∅ for the
empty subset φ∗ of P(S).

Theorem 5.1. Let S finite, 〈Ω, Ã, P 〉, 〈E, E〉, X : 〈Ω, Ã, P 〉 −→ 〈E, E〉, and
U : E → P(S) be as above, let ν : P(S) → P(P(S)) be such that A ∈ ν(A) holds
for each A ⊂ S, ν(∅) = {∅}, and ∅ /∈ ν(A) for each A 6= ∅, A ⊂ S. Then

BelνU (T ) = Bel
U

(T ) = P
(
{ω ∈ Ω : U(ω) ⊂ T} / {ω ∈ Ω : U(ω) 6= ∅}

)
(43)
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holds for each T ⊂ S supposing that P ({ω ∈ Ω : U(ω) 6= ∅}) > 0. If m∗ : P(P(S)) →
〈0, 1〉 for each A ⊂ P(S), and if m : P(S) → 〈0, 1〉 is defined by

m(A) =
∑
A⊂P(S),A=Am∗(A), (44)

then m : P(S) → 〈0, 1〉 is a basic probability assignment on S and

BelνU (T ) =

∑
A⊂S, A 6=∅, A⊂T m(A)∑

A⊂S, A 6=∅m(A)
(45)

for each T ⊂ S supposing that this value is defined.

P r o o f . The conditions imposed to ν yield that if ∅ /∈ ν(U(X(ω)), then U(X(ω))
= U(ω) 6= ∅, hence, as U(ω) ∈ ν(U(ω)) and U(ω) ⊂ U(ω), also U(ω) 6= ∅. As far as
the inverse implication is concerned, if U(ω) 6= ∅, then there exists ∅ 6= A ∈ ν(U(ω)),
so that ν(U(ω)) 6= {∅}. Consequently, ν(U(ω)) 6= ν(∅) and ∅ /∈ ν(U(ω)) hold.
Moreover, ν(U(ω)) ⊂ P(T ) is valid iff A ∈ P(T ) is valid for each A ∈ ν(U(ω)), but
this relation holds iff

⋃
A∈ν(U(ω)) A = ν(U(ω)) = U(ω) ⊂ T . An easy calculation

then yields, using (5.1), that for each T ⊂ S,

BelνU (T ) = P ({ω ∈ Ω : ν(U(ω)) ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ ν(U(X(ω)))}) = (46)

= P
(
{ω ∈ Ω : U(X(ω)) ⊂ T} / {ω ∈ Ω : U(X(ω)) 6= ∅}

)
= Bel

U
(T )

whenever this conditional probability is defined.
If m∗(A) = P ({ω ∈ Ω : ν(U(X(ω))) = A}) for each A ⊂ P(S), then m is evi-

dently a basic probability assignment on S. Moreover, by (5.3),

BelνU (T ) =

∑
A∈P(P(S)), {∅}6=A,A⊂P(T )m

∗(A)∑
A∈P(P(S)), {∅}6=Am∗(A)

= (47)

=

∑
A∈P(S), ∅/∈ν(A), A⊂T∑
A∈P(S), ∅/∈ν(A)

(∑
A∈P(P(S)),A=Am∗(A)

)
(∑

A∈P(P(S)),A=Am∗(A)
) =

∑
A⊂S, ∅6=A, A⊂T m(A)∑

A⊂S, ∅6=Am(A)
,

as m∗(A) 6= ∅ may hold only if A = ν(A) for some A ⊂ S, and for each A ⊂ S the
summation condition A ⊂ T is equivalent to ν(A) ⊂ P(T ). The theorem is proved.

2

An immediate corollary of Theorem 5.1 reads that under the conditions of this
theorem the inequality BelνU (T ) ≤ BelIdU (T ) = BelU (T ) holds for each T whenever the
values are defined, more generally, Belν1

U (T ) ≤ Belν2
U (T ) holds for each T supposing

that ν1, ν2 satisfy the demands of Theorem 5.1 and ν1(A) ⊃ ν2(A) is valid for
each A ⊂ S. The assertion immediately follows from the obvious fact that U(ω) =

U
Id

(ω) ⊂ U
ν2

(ω) ⊂ U
ν1

(ω) holds for ν1, ν2 in question and for all ω ∈ Ω, here
ν = Id means that ν(A) = {A} for each A ⊂ S. Hence, BelνU (T ) can be interpreted
and used as a lower approximation of BelU (T ), consequently, if we have to decide
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whether BelU (T ) ≥ α holds for some threshold value α, we may arrive at the positive
answer supposing that we prove the inequality BelνU (T ) ≥ α for some neighbouring
operation ν satisfying the conditions of Theorem 5.1. For ν = Id these conditions
are obviously fulfilled.

It may be a matter of interest to define and briefly discuss the Dempster combi-
nation rule for the case of ν-induced generalized believeability functions BelνU1

, BelνU2
.

From an apriori point of view at least the three following combination rules⊕1,⊕2,⊕3

should be considered; we write Ui(ω) for U(Xi(ω)) and for both i = 1, 2.
(
BelνU1

⊕1 BelνU2

)
(T ) = (48)

=P ({ω ∈ Ω : ν(U1(ω) ∩ U2(ω)) ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ ν(U1(ω) ∩ U2(ω))}) ,(
BelνU1

⊕2 BelνU2

)
(T ) = (49)

=P ({ω ∈ Ω : ν(U1(ω)) ∩ ν(U2(ω)) ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ ν(U1(ω)) ∩ ν(U2(ω))}) ,(
BelνU1

⊕3 BelνU2

)
(T ) = (50)

=P ({ω ∈ Ω : ν(U1(ω)) u ν(U2(ω)) ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ ν(U1(ω)) u ν(U2(ω))}) ,

where A u B = {A ∩ B : A ∈ A, B ∈ B} for A, B ⊂ P(S). Of course, all the
three functions are defined only when the corresponding conditional probabilities
are defined, i. e., when the apriori probabilities of the conditioning random events
in question are positive. The following simple assertion shows, whether these rules
are compatible with the usual Dempster combination rule in some simple particular
cases; an eventual incompatibility should eliminate the corresponding combination
rule from the scale of possible candidates to the role of Dempster combination rule
for ν-induced generalized believeability functions.

Theorem 5.2. (a) Let the notations of Theorem 5.1 hold, let A ∈ ν(A) hold for
each A ⊂ S, let the random variables X1, X2 be equivalent in the sense that for all
ω ∈ Ω the equality

U1(ω) = U(X1(ω)) = U2(ω) = U(X2(ω)) (51)

hold. Then (
BelνU1

⊕j BelνU2

)
(T ) = BelνU1

(T ) = BelνU2
(T ) (52)

holds for all T ⊂ S (supposing that the values are defined), if j = 1 or j = 2, but
not, in general, for j = 3.

(b) Under the same notations and for ν = Id, the equality
(
BelIdU1

⊕j BelIdU2

)
(T ) = (BelU1 ⊕ BelU2) (T ) (53)

holds for all T ⊂ S (supposing that the values are defined), if j = 1 or j = 3, but
not, in general, for j = 2.

P r o o f . (a) If U1(ω) = U2(ω) for all ω ∈ Ω, then ν(U1(ω)) = ν(U2(ω)), so that
U1(ω) ∩ U2(ω) = U1(ω) = U2(ω) and ν(U1(ω) ∩ U2(ω)) = ν(U1(ω)) = ν(U2(ω)). So,
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the definitions (5.9) and (5.10) immediately imply that (5.13) holds for each T ⊂ S
and for both j = 1, 2.

For j = 3, we have to take into consideration the subset ν(U1(ω)) u ν(U2(ω)) of
P(S), i. e., for U1(ω) = U2(ω), the subset ν(U1(ω)) u ν(U1(ω)) = {A ∩ B : A, B ∈
ν(U1(ω))} of P(S). Let ν(U1(ω)) ⊂ P(T ). Then, for each A, B ∈ ν(U1(ω)), we
have A, B ∈ P(T ), i. e., A, B ⊂ T , so that A ∩B ⊂ T and A ∩B ∈ P(T ) also hold,
consequently, ν(U1(ω))uν(U1(ω)) ⊂ P(T ) is valid. Let ν(U1(ω))uν(U1(ω)) ⊂ P(T ).
Then {A ∩ B : A, B ∈ ν(U1(ω))} ⊂ P(T ), so that also {A ∩ A : A ∈ ν(U1(ω))} =
ν(U1(ω)) ⊂ P(T ) holds. So, ν(U1(ω)) ⊂ P(T ) iff ν(U1(ω)) u ν(U1(ω)) ⊂ P(T ), and
analogously for U2, however, this equivalence is not sufficient to assure the validity
of (5.13) for j = 3, as the following counterexample proves.

Let ν(A) = {A,S − A} for all A ⊂ S, let ∅ 6= Ui(ω) 6= S hold for all ω ∈ Ω and
for both i = 1, 2. Then, for both i = 1, 2,

BelνUi
(T ) = P ({ω ∈ Ω : ν(Ui(ω)) ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ ν(Ui(ω))}) = (54)

=P ({ω ∈ Ω : {Ui(ω), S − Ui(ω)} ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ {Ui(ω), S − Ui(ω)}}) .

Hence, BelνUi
(T ) = 1, if T = S, and BelνUi

(T ) = 0 for T 6= S. Combining BelνU1
and

BelνU2
by the operation ⊕3 we obtain, for U1(ω) = U2(ω), that

(
BelνU1

⊕3 BelνU2

)
(T ) = (55)

= P ({ω ∈ Ω : ν(U1(ω)) u ν(U2(ω)) ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ ν(U1(ω)) u ν(U1(ω))}) .

But,

ν(U1(ω)) u ν(U2(ω)) = (56)
={A ∩B : A, B ∈ ν(U1(ω))} = {∅, U1(ω), S − U1(ω)} ,

so that
P ({ω ∈ Ω : ∅ /∈ ν(U1(ω)) u ν(U2(ω))}) = 0. (57)

Consequently, (BelνU1
⊕BelνU2

) (T ) is not defined for no matter which T ⊂ S, hence,
(5.13) does not hold for j = 3. The assertion (a) is proved.

(b) Let ν = Id. Two easy calculations yield that
(
BelIdU1

⊕1 BelIdU2

)
(T ) = (58)

=P ({ω ∈ Ω : {U1(ω) ∩ U2(ω)} ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ {U1(ω) ∩ U2(ω)}}) =
=P ({ω ∈ Ω : U1(ω) ∩ U2(ω) ⊂ T} / {ω ∈ Ω : ∅ 6= U1(ω) ∩ U2(ω)})
= (BelU1 ⊕ BelU2) (T ),(

BelIdU1
⊕3 BelIdU2

)
(T ) = (59)

=P ({ω ∈ Ω : {U1(ω)} u {U2(ω)} ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ {U1(ω)} u {U2(ω)}}) =
=P ({ω ∈ Ω : {U1(ω) ∩ U2(ω)} ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ {U1(ω) ∩ U2(ω)}}) =

=
(
BelIdU1

⊕1 BelIdU2

)
(T ) = (BelU1 ⊕ BelU2) (T )
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due to (5.19), as the equality {A}u{B} = {A∩B} trivially holds for each A, B ⊂ S.
So, (5.14) is proved for j = 1 and j = 3.

Let U1, U2 be such that ∅ 6= U1(ω) ∩ U2(ω) and U1(ω) 6= U2(ω) hold for each
ω ∈ Ω, let ∅∗ denote the empty subset of P(T ) to distinguish it from the empty
subset ∅ of S. Then

(BelU1 ⊕ BelU2) (∅) = (60)
=P ({ω ∈ Ω : U1(ω) ∩ U2(ω) ⊂ ∅} / {ω ∈ Ω : U1(ω) ∩ U2(ω) 6= ∅}) = 0,

but(
BelIdU1

⊕2 BelIdU2

)
(T ) = (61)

=P ({ω ∈ Ω : {U1(ω)} ∩ {U2(ω)} ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ {U1(ω)} ∩ {U2(ω)}}) =
=P ({ω ∈ Ω : ∅∗ ⊂ P(T )} / {ω ∈ Ω : ∅ /∈ ∅∗}) = 1,

as U1(ω) 6= U2(ω) for all ω ∈ Ω implies that {U1(ω)} ∩ {U2(ω)} = ∅∗ and the
relations ∅∗ ⊂ P(T ), ∅ /∈ ∅∗ are obviously valid. Hence, (5.14) does not hold for
j = 2 and the proof of Theorem 5.2 is completed. 2

A natural, interesting, and immediately arising question can be formulated as
follows. Let the conditions of Theorem 5.1 hold for two random variables X1, X2,
so that BelνUi

(T ) = Bel
Ui

(T ) for both i = 1, 2. Applying the usual Dempster com-
bination rule ⊕ to Bel

U1
and Bel

U2
we can ask, whether the identity

(
BelνU1

⊕j BelνU2

)
(T ) =

(
Bel

U1
⊕ Bel

U2

)
(T ) (62)

for all T ⊂ S holds for some j = 1, 2, 3. In other terms, we can define a new
Dempster combination rule ⊕4, setting

(
BelνU1

⊕4 BelνU2

)
(T ) =

(
Bel

U1
⊕ Bel

U2

)
(T ) (63)

for all T ⊂ S and supposing that the values are defined and that both the random
variables X1, X2 and the neigbourhood mapping ν satisfy the conditions of Theo-
rem 5.1, and we can ask whether ⊕4 is identical with ⊕j for some j = 1, 2, 3, or,
more generally, which are the relations between ⊕4 and ⊕1, ⊕2, ⊕3.

The identity ⊕1 = ⊕4, i. e.
(
BelνU1

⊕1 BelνU2

)
(T ) =

(
Bel

U1
⊕ Bel

U2

)
(T ) (64)

could hold only if U1(ω) ∩ U2(ω) = U1(ω) ∩ U2(ω) held for all ω ∈ Ω, hence, only
if A ∩B = A ∩ B held for all A, B ⊂ S. However, setting ν(A ∩ B) = {A ∩ B, S}
for fixed A, B ⊂ S such that S 6= A 6= A ∩ B 6= ∅, S 6= B 6= A ∩ B, and setting
ν(C) = {C} for all other C ⊂ S, in particular also ν(A) = {A} and ν(B) = {B},
we obtain that

A ∩B =
⋃
{C : C ∈ ν(A ∩B)} = (A ∩B) ∪ S = S 6= A ∩B = (65)

=
(⋃

{A1 : A1 ∈ ν(A)}
)
∩

(⋃
{B1 : B1 ∈ ν(B)}

)
= A ∩B.
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Consequently, (5.25) cannot hold identically, so that ⊕4 6= ⊕1.
A hypothetical identity ⊕2 = ⊕4 can be easily converted to the identity

ν(U1(ω)) ∩ ν(U2(ω)) = U1(ω) ∩ U2(ω). (66)

However, for U1 and U2 such that U1(ω) 6= U2(ω) and ∅ 6= U1(ω) ∩ U2(ω) hold for
each ω ∈ Ω, and for ν = Id we easily obtain that ν(U1(ω)) ∩ ν(U2(ω)) = {U1(ω)} ∩
{U2(ω)} = ∅∗, and ∅∗ = ∅, but U1(ω) ∩ U2(ω) = U1(ω) ∩ U2(ω) 6= ∅, so that (5.27)
cannot hold identically, consequently, ⊕2 6= ⊕4.

The neighbourhood mapping ν : P(S) → P(P(S)) is called consistence preserv-
ing, if for all A, B ⊂ S the following implication holds: if A∩B = ∅, then A1∩B1 = ∅
for all A1 ∈ ν(A), B1 ∈ ν(B). Consequently, if A1 ∩ B1 6= ∅ for some A1 ∈ ν(A)
and some B1 ∈ ν(B), then A ∩ B 6= ∅. If ν = Id, then ν is obviously consistence
preserving.

Theorem 5.3. Let the notations and conditions of Theorem 5.1 hold, let ν be
consistence preserving. Then ⊕3 and ⊕4 are identical, so that

(
BelνU1

⊕3 BelνU2

)
(T ) =

(
Bel

U1
⊕ Bel

U2

)
(T ) (67)

holds for each T ⊂ S supposing that the believeability functions in question are
defined.

P r o o f . Let A, B be arbitrary subsets of S, let x ∈ A∪B = (
⋃{A1 : A1 ∈ ν(A)})

∩ (
⋃{B1 : B1 ∈ ν(B)}). Then there exists A1 ∈ ν(A) and B1 ∈ ν(B) such that

x ∈ A1 and x ∈ B2 hold simultaneously, hence, x ∈ A1 ∩B1 and, consequently,

x ∈
⋃
{A1 ∩B1 : A1 ∈ ν(A), B1 ∈ ν(B)} = ν(A) u ν(B). (68)

Let x ∈ ν(A) u ν(B). Then there exist A1 ∈ ν(A), B1 ∈ ν(B) such that x ∈ A1∩B1,
hence, x ∈ A1 and x ∈ B1, so that x ∈ ν(A)∩ν(B) = A∩B. Applying this result to
U1(ω) and U2(ω) we obtain that the equality U1(ω)∩U2(ω) = ν(U1(ω)) u ν(U2(ω))
holds for each ω ∈ Ω.

Let ∅ /∈ ν(U1(ω)) u ν(U2(ω)). Hence, for each C ∈ ν(U1(ω)) u ν(U2(ω)), the
inequality C 6= 0 holds and, as U1(ω)∩U2(ω) ∈ ν(U1(ω))uν(U2(ω)) is trivially valid
due to the definition of the operation u, we may conclude that U1(ω) ∩ U2(ω) 6= ∅.
As Ui(ω) ⊂ U i(ω) holds trivially for both i = 1, 2, we obtain that U1(ω) ∩ U2(ω) ⊂
U1(ω) ∩ U2(ω), hence, U1(ω) ∩ U2(ω) 6= ∅.

The inverse implication does not hold in general, but it can be proved under the
condition that ν is consistence preserving as assumed above. Let U1(ω)∩U2(ω) 6= ∅,
let x ∈ S be such that

x ∈ U1(ω) ∩ U2(ω) =
(⋃

{A : A ∈ ν(U1(ω))}
)
∩

(⋃
{B : B ∈ ν(U2(ω))}

)
. (69)

Then there exist A ∈ ν(U1(ω)) and B ∈ ν(U2(ω)) such that x ∈ A and x ∈ B,
hence, x ∈ A ∩ B, so that A ∩ B 6= ∅. As ν is consistence preserving, we obtain
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immediately that U1(ω) ∩ U2(ω) 6= ∅. Using the other properties of ν assumed in
Theorem 5.1 (hence, also in Theorem 5.3), we can conclude that ∅ /∈ ν(U1(ω)) u
ν(U2(ω)). Combining the obtained results we arrive at the conclusion that, under
the conditions of Theorem 5.3, ∅ /∈ ν(U1(ω))uν(U2(ω)) holds iff U1(ω)∩U2(ω) 6= ∅.

The inclusions
ν(U1(ω)) u ν(U2(ω)) ⊂ T, (70)

i. e. ⋃
{A ∩B : A ∈ ν(U1(ω)), B ∈ ν(U2(ω))} ⊂ T, (71)

hold iff A∩B ⊂ T holds for each A ∈ ν(U1(ω)), B ∈ ν(U2(ω)), and this is equivalent
to the case when {A ∩ B : A ∈ ν(U1(ω)), B ∈ ν(U2(ω))} ⊂ P(T ) holds, hence, to
the case when ν(U1(ω))u ν(U2(ω)) ⊂ P(T ) holds. Using the proved equivalence, we
can complete the proof of Theorem 5.3 by the following easy calculation.

(
Bel

U1
⊕ Bel

U2

)
(T ) = (72)

=P
(
{ω ∈ Ω : U1(ω) ∩ U2(ω) ⊂ T} / {ω ∈ Ω : U1(ω) ∩ U2(ω) 6= ∅}

)
=

=P
(
{ω ∈ Ω : ν(U1(ω)) u ν(U2(ω)) ⊂ T} / {ω ∈ Ω : U1(ω) ∩ U2(ω) 6= ∅}

)
=

=P ({ω∈Ω : ν(U1(ω))uν(U2(ω))⊂P(T )} / {ω∈Ω : ∅ /∈ν(U1(ω))uν(U2(ω))})=
=

(
BelνU1

⊕3 BelνU2

)
(T ). 2

6. CONCLUSIONS

Having developed a generalized definition for believeability functions in the case
when the sets of compatible states are not completely identifiable in the sense that
their membership in certain classes of sets cannot be always decided, we considered,
in more detail, the case when this membership question can be positively answered
only if also some other sets of states, close to the tested one in the sense of a
neighbourhood relation or of an equivalence relation, are in the class of sets in
question. We have proved that when the case of an eventual inconsistence of the
input data is strictly and effectively separable from all other cases, the generalized
model can be reduced to the classical one, simply considering every set of states
inseparable from the actual set of compatible states also as a state compatible with
the data being at our disposal. So, if ν1(A) = ν2(A) for two neigbouring operations
ν1, ν2 and for all A ⊂ S, in particular, if [A]1 = [A]2 for two equivalence relations
and for all A ⊂ S, the corresponding generalized believeability functions will be
identical. In other words said, the abilities of believeability functions to quantify the
uncertainty arising from our limited abilities to identify the set of compatible states
are purely extensional and rather restricted. On the other side, when the case of
inconsistent data cannot be strictly and effectively separated from all other cases,
generalized believeability functions can play the role of a new tool to quantify the
uncertainty in a Dempster–Shafer-like style also in this case. However, it is the user
who must deduce which kind of definition of data inconsistence will be accepted;
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the problem of various definitions and interpretations of data inconsistence should
deserve a more detailed investigation.

A possible and perhaps fruitful path how to achieve some results in this direction
would be to abandon the assumption of closed world accepted in this paper, accord-
ing to which S is the exhaustive list of all possible internal states of the investigated
system (under the interpretation introduced in Chapter 1), in favour of the idea of
open world when S is the list of some, but not necessarily all, such states (cf. [8]
and [9] for more details). Under this interpretation, the case when no state from S
is compatible with the input data X(ω), i. e., the case when U(X(ω)) = ∅, is un-
derstood in such a way that the data are true or at least consistent, but the actual
internal state of the system in question is out of the set S of states. Consequently,
it is not necessary to eliminate this case from our considerations as something unde-
sirable and to re-normalize the probabilities used when believeability functions are
defined. The only what is needed is to introduce a new state s∗ /∈ S of the system,
compriming all the possible states of the system not listed in S, and to conclude, if
U(X(ω)) = ∅, that the investigated system is in the state s∗. This approach seems
to be hopeful from the point of view of mathematical technique, as we have seen,
that the greatest part of technical problems with generalized believeability functions
arise when defining and processing conditional probabilities resulting from such a
re-normalization, however, the theoretical limits of this approach should be carefully
investigated. Because of the limited extent of this paper we shall postpone such an
investigation till another occasion.

Another possible and perhaps interesting way of generalization of the ideas and
results presented above is to abandon the simplifying conditions that the set S of
state is finite and that just the maximum σ-field P(P(S)) of subsets of P(S) is taken
into consideration when the measurability of all the mappings taken their values in
P(S) is defined. The necessary modifications resulting from such a generalization
would not bring too much new from the basic philosophical and methodological point
of view as applied above, but the technical apparatus would be so space and time
consuming that it seems also better to investigate these matters separately.

Monographies [2], [5], and [6] in the list of references presented below can serve
as introductory guides to the Dempster–Shafer theory of evidence.

(Received September 30, 1993.)
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