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SUBOPTIMAL CONTROL OF LINEAR DELAY
SYSTEMS VIA LEGENDRE SERIES

M. Razzaghi, M. F. Habibi and R. Fayzebakhsh

A method for finding the suboptimal control of linear delay systems with a quadratic cost
functional using Legendre series is discussed. The state variable, state delay, state rate, and
the control vector are expanded in the shifted Legendre series with unknown coefficients.
The relation between the coefficients of the state rate with state variable is provided and
the necessary condition of optimality is derived as a linear system of algebraic equations.
A numerical example is included to demonstrate the validity and the applicability of the
technique.

1. INTRODUCTION

The control of systems with time-delay has been of considerable concern. Delays
occur frequently in biological, chemical, electronic and transportation systems [1].
Time-delay systems are therefore a very important class of systems whose control and
optimization have been of interest to many investigators. The application of Pon-
tryagin’s maximum principle to the optimization of control systems with time-delays
as outlined by Kharatishvili [2] results in a system of coupled two-point boundary-
value (TPBV) problem involving both delay and advance terms whose exact solution,
except in very special cases, is very difficult. Therefore, the main object of all com-
putational aspect of optimal time-delays systems has been to devise a methodology
to avoid the solution of the mentioned (TPBV) problem.

Inoue et al. [3] have proposed a sensitivity approach to obtain the suboptimal
control for linear systems with small delay in the state. They expanded the control in
a Maclaurin’s series in the delay and obtained the series coefficients from the solution
of simple (TPBV) problems. The method presented in [4, 5] are also sensitivity
approaches in which the original system is imbedded in a class of non-delay systems
using an appropriate parameter.

Recently, orthogonal functions and polynomial series have received considerable
attention in dealing with various control problems. The main characteristic of this
technique is that it reduces these problems to those of solving a system of algebraic
equations thus greatly simplifying the problem and making it computationally plau-
sible. The approach is based on converting the underlying differential equations into
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an integral equations through integration, approximating a various signals involved
in the equation by truncated orthogonal series and using the operational matrix of
integration P , to eliminate the integral operations. Clearly, the form of P depends
on the particular choice for the orthogonal functions. Special attention has been
given to applications of Walsh functions [6], Block pulse functions [7], Bessel series
[8], Laguerre polynomials [9], Chebyshev polynomials [10], [11], Legendre series [12],
and Fourier series [13].

The numerical methods for obtaining the optimal control of linear delay systems
with a quadratic cost functional has been presented, among others, by Hwang and
Shih [7], Chou and Horng [11], Perng [12] and Hwang and Chen [14]. References [7],
[11] and [12] used Block pulse, shifted Chebyshev and shifted Legendre operational
matrices of integration respectively to calculate the integral involved in the perfor-
mance index and Reference [14] employed the integration of the product of three
shifted Legendre polynomials and the integration of the product of shifted Legendre
polynomials and its derivative to obtain the integral in the performance index.

In this paper, the shifted Legendre series is used for the optimal control of lin-
ear delay systems with a quadratic cost functional. The state variable x(t), state
delay x(t− τ), state rate ẋ(t) and control variable u(t) are expanded in the shifted
Legendre series with unknown coefficients. The Legendre properties are used to re-
late the coefficients of state rate and state delay to the coefficients of state. Using
the method, the performance index, system dynamics, and the initial condition are
converted to a system of algebraic equations. A method of constrained extremum
is applied which consists of adjoining the constraints equations which are derived
from the given dynamical system and the initial condition to the performance index
by a set of undetermined Lagrange multipliers. As a result the necessary conditions
of optimality are derived as a system of linear algebraic equations in the unknown
coefficients of x(t), u(t) and the Lagrange multipliers. These coefficients are deter-
mined in such a way that the necessary conditions for extremization are imposed.
As compared to Perng [12] and Hwang and Chen [14] the present method is sim-
pler to use. An illustrative example is given to demonstrate the applicability of the
proposed method.

2. PROPERTIES OF SHIFTED LEGENDRE POLYNOMIALS

The shifted Legendre polynomials, Pn(t), where 0 ≤ t ≤ h are obtained from [15],

Pi+1(t) =
2i + 1
i + 1

(
2

t

h
− 1

)
Pi(t)− i

i + 1
Pi−1 (t), i ≥ 1 (1)

with

P0(t) = 1 (2)

P1(t) = 2
t

h
− 1 (3)
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The orthogonality property is given by

∫ h

0

Pi(t)Pj(t) dt =

{
0, i 6= j

h
2i+1 , i = j.

(4)

Further a function, f(t), which is absolutely integrable within 0 ≤ t ≤ h may be
expressed in terms of shifted Legendre series as

f(t) =
∞∑

i=0

fiPi(t) (5)

where

fi =
(2i + 1)

h

∫ h

0

f(t)Pi(t) dt (6)

if Eq. (5) is truncated up to its first m terms, then

f(t) ≈
m−1∑

i=0

fiPi(t) = fTP (t) (7)

where
fT = [f0, f1, . . . , fm−1] (8)

PT(t) = [P0(t), P1(t), . . . , Pm−1(t)]. (9)

If we assume that the derivative of f(t) in (5) be described by

ḟ(t) =
∞∑

i=0

giPi(t) (10)

then, using the recurrence formula

Pi(t) =
h

2(2i + 1)
[Ṗi+1(t)− Ṗi−1(t)] (11)

the relationship between the coefficients fi in Eq. (5) and gi in Eq. (10) can be
obtained from [16]

fi =
h

2

[
gi−1

(2i− 1)
− gi+1

(2i + 3)

]
i = 1, 2, . . . (12)

Also, if f(t) in (7) has its initial function for t < 0 as

f(t) = f1(t) − τ ≤ t < 0 (13)

then the delay function f(t− τ) can be expressed by [12]

f(t− τ) = [fTD(τ) + GT(τ)] P (t) (14)
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where D(τ) is an m×m matrix and is given in [12] and G(τ) is an m vector given
by

GT(τ) = [G0(τ), G1(τ), . . . , Gm−1(τ)]

where
Gi(τ) =

2i + 1
h

∫ τ

0

f1(t− τ)Pi(t) dt, i = 0, 1, . . . , m− 1. (15)

3. PROBLEM STATEMENT

Consider the following class of linear systems with time-delay

ẋ(t) = Ax(t) + Bu(t) + Cx(t− τ) (16)

x(0) = x0

x(t) = x1(t) − τ ≤ t < 0

where x(t) and u(t) are n × 1 state and control vectors, respectively, A and B are
matrices of appropriate dimensions and τ is the time-delay. The problem is to find
the optimal control u(t) and the corresponding state trajectory x(t), 0 ≤ t ≤ h,
satisfying (16) while minimizing the quadratic cost functional

J =
1
2
xT(h)Sx(h) +

1
2

∫ h

0

[xT(t)Qx(t) + uT(t)Ru(t)] dt (17)

where T denotes transposition, S, Q, and R are matrices of appropriate dimensions,
S and Q are symmetric positive semi-definite matrices and R is a symmetric positive
definite matrix.

4. THE PERFORMANCE INDEX APPROXIMATION

By expanding each state vector and each control vector in shifted Legendre series of
order m, we determine the following approximate solutions, i .e., for N = 0, 1, . . . , n−
1

xN (t) =
m−1∑

i=0

aNiPi(t) (18)

uN (t) =
m−1∑

i=0

bNiPi(t) (19)

where (aN0, aN1, . . . , aN(m−1)) and (bN0, bN1, . . . , bN(m−1)) are unknown.
Let

α = (a0 a1 . . . am−1)T =




(a00 a01 . . . a0(m−1))T
...

(a(n−1)0 a(n−1)1 . . . a(n−1)(m−1))T


 , (20)
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β = (b0 b1 . . . bm−1)T =




(b00 b01 . . . b0(m−1))T
...

(b(n−1)0 b(n−1)1 . . . b(n−1)(m−1))T


 , (21)

and

P̂ (t) =




PT(t) 0
. . .

0 PT(t)


 (22)

Note that α, β, and P̂ (t) are matrices of order nm×1, nm×1, and n×nm respectively.
Then using (18) and (19) the state and control vector can be expressed as

x(t) = P̂ (t)α (23)

u(t) = P̂ (t)β (24)

substituting (23) and (24) in (17) we get

J =
1
2
αTP̂T(h)SP̂ (h)α +

1
2
αT

[∫ h

0

P̂TQP̂ (t) dt

]
α +

1
2
βT

[∫ h

0

P̂T(t)RP̂ (t) dt

]
β

(25)
Equation (25) can be computed more efficiently by writing J as

J =
1
2
αT[P (h)PT(h)⊗ S]α +

1
2
αT(D ⊗Q)α +

1
2
βT(D ⊗R)β (26)

where

D =
∫ h

0

P (t)PT(t) dt = h

(
diag

[
1,

1
3
,
1
5
, . . . ,

1
2m− 1

])
. (27)

In (26), ⊗ denotes Kronecker product [17].

5. APPROXIMATION OF THE TIME DELAY SYSTEM

By expanding the derivative of each of the n state vector in equation (16) by shifted
Legendre series, we get

ẋN =
m−2∑

i=0

CNiPi(t), N = 0, 1, . . . , n− 1 (28)

Let

(A(x(t))N =
m−1∑

i=0

yNiPi(t) (29)
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(Bu(t))N =
m−1∑

i=0

zNiPi(t) (30)

(Cx(t− τ))N =
m−1∑

i=0

wNiPi(t) (31)

Using (29) – (31) for each N , N = 0, . . . , n − 1, the right hand side of (16) has the
form

m−1∑

i=0

(yNi + zNi + wNi)Pi(t) (32)

which is a polynomial of degree m−1 while the left hand side is a polynomial of degree
m− 2. By equating the coefficients of same-order shifted Legendre polynomials, we
obtain

yNi + zNi + wNi =
{

CNi, i = 0, 1, . . . ,m− 2
0 i ≥ m− 1 (33)

Equation (12), (18), and (33) give the following relationship

Fi−1 = h
[
(2i + 3)CN(i−1) − (2i− 1)CN(i+1)

]

−2(2i− 1)(2i + 3)aNi = 0, i = 1, 2, . . . , m− 1 (34)

Fi−1 = (2i + 3)CN(i−1) − (2i− 1)CN(i+1) = 0, for i ≥ m, (35)

with
CN(m−1) = CN(m) = 0 (36)

Using (18), the initial condition x(0) = x0, can be replaced by

Fm =
m−1∑

i=0

aNiPi(0) =
m−1∑

i=0

(−1)iaNi = xN (0), N = 0, 1, . . . , n− 1 (37)

Further the relation between wNi and aNi can be obtained by using (14).

6. THE SHIFTED LEGENDRE COEFFICIENTS FOR x(t) AND u(t)

The optimal control problem has been reduced to a parameter optimization problem
which can be stated as follows. Find α and β so that J(α, β) is minimized subject
to the constraints (34) – (37).

Let

L(α, β) = J(α, β) +
m∑

j=0

λjFj(α, β) (38)
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where λ = (λ0, λ1, . . . λm) represents the unknown Lagrange multipliers, then the
necessary conditions for stationarity are given by

∂L

∂ai
=

∂J

∂ai
+

m∑

j=0

λj
∂Fj

∂ai
= 0, i = 0, 1, . . . , m− 1 (39)

∂L

∂bi
=

∂J

∂bi
+

m∑

j=0

λj
∂Fj

∂bi
= 0, i = 0, 1, . . . , m− 1 (40)

Fj = 0, j = 0, 1, . . . , m (41)

7. ILLUSTRATIVE EXAMPLE

Consider the linear system with time delay

ẋ(t) = u(t) + x(t− 1) 0 ≤ t ≤ 2 (42)
x(t) = 1 − 1 ≤ t < 0 (43)

with the cost functional

J =
1
2

[
105x2(2) +

∫ 2

0

u2(t) dt

]
. (44)

The problem is to find the optimal control u(t) which minimizes (44) subject to (42)
and (43). We determine the shifted Legendre approximation for m = 6.

Let

x(t) =
5∑

i=0

aiPi(t) = aTP (t) (45)

u(t) =
5∑

i=0

biPi(t) = bTP (t) (46)

x(t− 1) =
5∑

i=0

diPi(t) = dTP (t) (47)

ẋ(t) =
4∑

i=0

ciPi(t) = cTP (t) (48)

using (33) and (42) we have

ci = bi + di i = 0, 1, . . . , 4 (49)
c5 = b5 + d5 = 0 (50)

Further, using (14) we obtain

aTD(τ) + G(τ) = dT (51)
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where, τ = 1,

D(τ) =




1
2

3
4 0 − 7

16 0 11
32

− 1
4 − 1

4
5
16

7
16 − 3

32 − 11
32

0 − 3
16 − 7

16 − 7
32

9
32

77
256

1
16

3
16

5
32 − 5

32 − 99
256 − 33

256

0 1
32

5
32

77
256

53
256 − 77

512

− 1
32 − 3

32 − 35
256 − 21

256
63
512

157
512




, (52)

and

G(τ) =
(

1
2

− 3
4

0
7
16

0
11
32

)T

(53)

By applying (33) – (37) the unknown coefficients must satisfy the constraints

F0 = 10c0 − 2c2 − 10a1 = 0
F1 = 14c1 − 6c3 − 42a2 = 0
F2 = 18c3 − 10c4 − 90a3 = 0
F3 = 22c3 − 14c5 − 254a4 = 0 (54)
F4 = 26c4 − 234a5 = 0
F5 = 15c5 = 0
F6 = a0 − a1 + a2 − a3 + a4 − a5 − 1 = 0 (55)

Using (26) we obtain the following approximation for J

J =
1
2

[
105

5∑

i=1

a2
i +

5∑

i=1

2
2i + 1

b2
i

]
(56)

Equations (39) – (41) give 19 equations from which x(t) and u(t) in (45) and (46)
can be calculated.

In Table (1), a comparison is made between the values of x(t) and u(t) using
present method with m = 6, method of [11] with m = 8 and the exact solution.

Table 1. Estimated and Exact values of x(t) and u(t).
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x(t) u(t)

Method of [11] Present Method of [11] Present
t m = 8 m = 6 Exact m = 8 m = 6 Exact

0.0 1.000043 1.000000 1.000000 –2.114431 –2.108100 –2.100000
0.2 0.800846 0.801121 0.801000 –1.893601 –1.890831 –1.890000
0.4 0.644449 0.644048 0.644000 –1.676797 –1.679410 –1.680000
0.6 0.528564 0.529163 0.529000 –1.475604 –1.475431 –1.470000
0.8 0.456059 0.456019 0.456000 –1.250573 –1.257838 –1.260000
1.0 0.424890 0.424948 0.425000 –1.078828 –1.055281 –1.050000
1.2 0.394360 0.394385 0.394400 –1.040670 –1.052383 –1.050000
1.4 0.328484 0.328397 0.328200 –1.057799 –1.054334 –1.050000
1.6 0.234327 0.234542 0.234800 –1.046507 –1.051482 –1.050000
1.8 0.122659 0.122576 0.122600 –1.053616 –1.053163 –1.050000
2.0 0.000182 0.000010 0.000000 –1.064356 –1.054316 –1.050000

8. CONCLUSIONS

In the present work, a technique has been developed for obtaining the optimal con-
trol of linear delay systems with a quadratic cost functional using shifted Legendre
polynomials. The method is based upon reducing a linear delay quadratic opti-
mization problem to a set of linear equations. The unity of the weight function
of orthogonality for shifted Legendre series and the simplicity of the approximated
performance index are merits that make the approach very attractive. Moreover,
only a small number of shifted Legendre series are needed to obtain a satisfactory
solution. The given numerical example supports this claim.
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