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NONNEGATIVE MULTIVARIATE AR(1) PROCESSES

Jiř́ı Anděl

Conditions for nonnegativity of a p-dimensional AR(1) process Xt = UXt−1 +et are investigated

in the paper. If all the elements of the matrix U are nonnegative, a new method for estimating U

is proposed. It is proved that the estimators are strongly consistent. Small-sample properties of the

estimators are illustrated in a simulation study.

1. INTRODUCTION

A one-dimensional AR(1) process is given by Xt = bXt−1 +et where et is a white noise
and b ∈ (−1, 1). Assume that b ∈ [0, 1) and that et are nonnegative independent iden-
tically distributed random variables with a distribution function F . Then, of course,
Xt ≥ 0 for all t. Let a realization X1, . . . , Xn be given. Then Bell and Smith [9] proved
that

b? = min
2≤t≤n

Xt /Xt−1

is a strongly consistent estimator for b if and only if

F (d)− F (c) < 1

holds for all 0 < c < d < ∞. Anděl [2] derived the distribution of b? when et have an
exponential distribution. Some moments of b? in this case were calculated by Anděl and
Zvára [8]. Turkman [11] presents a Bayesian analysis of the model. A generalization
to the autoregressive processes of a higher order can be found in [5]. This method was
also applied to nonlinear AR process (see [4] and [6]).

In the present paper we deal with multivariate AR(1) processes. First, we derive
conditions under which the process is nonnegative. Second, we propose a method for
estimating parameters of a nonnegative AR(1) process. It is proved that the estimators
are strongly consistent.

2. PRELIMINARIES

Let Xt = (Xt1, . . . , Xtp)
′ be a p-dimensional process given by

Xt = UXt−1 + et (1)

where U = (uij) is a p × p matrix and et = (et1, . . . , etp)
′ are random vectors. We

make the following assumptions.

A1. All the roots of the matrix U lie inside the unit circle.
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A2. The random vectors et are independent identically distributed with a distribution
function F .

A3. The random vectors et have finite second moments.

Our assumptions ensure that there exists a stationary solution Xt of the equation
(2.1) and that it can be written in the form

Xt = et + Uet−1 + U2 et−2 + . . . (2)

where the series converges in the quadratic mean. If we denote Uk =
(
u

(k)
ij

)
, then

(2.2) can be also expressed as

Xti = eti +
∞∑

k=1

p∑

j=1

u
(k)
ij et−k,j (i = 1, . . . , p). (3)

Let us remark that under A1 – A3 we have
∑

k

∑

i

∑

j

∣∣∣u(k)
ij

∣∣∣ < ∞. (4)

We denote µi = E Xti, i = 1, . . . , p.

3. CONDITIONS FOR NONNEGATIVITY

If all the elements uij of the matrix U are nonnegative and all the components eti are
also nonnegative, then it is clear that Xti ≥ 0 for all t and i. On the other hand, these
sufficient conditions for nonnegativity of Xti are not necessary (cf. Remarks 3.3 and
3.4). It is possible to generalize the results concerning one-dimensional case introduced
in Lemma 10.2 in [3] to multidimensional models.

Theorem 3.1. Assume that the distribution of et has the property that

P

(∑

i

ci eti < ε

)
> 0 (5)

holds for every ε > 0 and for every reals c1, . . . , cp. If there exist numbers q ≥ 1 and
c > 0 such that

P


∑

j

u
(q)
ij etj < −c


 > 0 (6)

for an i ∈ {1, . . . , p}, then with probability 1 there exist infinitely many subscripts t
such that Xti < 0.

P r o o f . For m > q introduce the events

Qtm1 =



ω : eti +

m∑

k=1

p∑

j=1

u
(k)
ij et−k,j < − c

2



 ,

Qtm2 =



ω :

∞∑

k=m+1

p∑

j=1

u
(k)
ij et−k,j <

c

2



 .
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From A3 and (2.4) we get that P (Qtm2) −→ 1 as m → ∞. Moreover, P (Qtm2) does
not depend on t. Denote Mmq = {1, 2, . . . , q − 1, q + 1, . . . ,m} for m > q. We have

P (Qtm1) ≥ πm

where

πm = P


eti <

c

2m
,
∑

j

u
(k)
ij et−k,j <

c

2m
for k ∈ Mmq,

∑

j

u
(q)
ij et−q,j < −c


 =

= P
(
eti <

c

2m

) ∏

k∈Mmq

P


∑

j

u
(k)
ij et−k,j <

c

2m


 ·

·P

∑

j

u
(q)
ij et−q,j < −c


 > 0.

Let wm be the smallest integer such that wm πm ≥ 1. Introduce the subsets Sq+2, Sq+3, . . .
of positive integers in the following way. Let Sq+2 contain the elements of wq+1 (q+2)-
tuples (1, . . . , q+2), (q+3, . . . , 2q+4), . . . , (1 + (wq+1 − 1) (q + 2), . . . , 2 + q + (wq+1 − 1)
(q + 2)). Let Sq+3 contain the elements of wq+2 (q + 3)-tuples starting with

(3 + q + (wq+1 − 1) (q + 2), . . . , 5 + 2q + (wq+1 − 1) (q + 2))

and so on. The last terms of (q + 2)-tuples, (q + 3)-tuples etc. denote t1, t2, . . .. If
tr ∈ Sm, then we use the decomposition

Xtr,i = Utr + Ztr

where

Utr = etr,i +
m−1∑

k=1

p∑

j=1

u
(k)
ij etr−k,j ,

Ztr =
∞∑

k=m

p∑

j=1

u
(k)
ij etr−k,j .

Denote
Ar = Qtr,m−1,1, Br = Qtr,m−1,2.

The events A1, A2, . . . are independent,

∑
P(Ar) ≥

∞∑
m=q+1

wm πm = ∞,

P(Br) → 1 as r →∞ and the events Ar, Br are independent. Theorem 8.1 yields that
with probability 1 infinitely many events Ar ∩ Br occur and thus also infinitely many
events {Xti < 0}. 2

Corollary 3.2. Let et1, . . . , etp be independent nonnegative random variables. As-
sume that P (eti < ε) > 0 for all i = 1, . . . , p and for every ε > 0. Further assume
that P (eti = 0) < 1 for i = 1, . . . , p. Then the AR(1) process Xt given by (2.1) has
all its components nonnegative if and only if all the elements uij of the matrix U are
nonnegative.

P r o o f . Obviously, if all uij are nonnegative, then Xt has only nonnegative compo-
nents. Now, assume that there exists a pair (i, j) such that uij < 0. Our assumptions
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ensure that (3.1) is fulfilled. Since etj are nonnegative and P (etj = 0) < 1, there exists
c > 0 such that

P (uij etj < −2c) > 0.
Then we have

P

(∑
m

uim etm < −c

)
≥ P (uij etj < −2c) P


∑

m 6=j

uim etm < c


 > 0.

2

Remark 3.3. If all the elements etj are nonnegative, then all Xti can be nonnegative
even if some elements uij of the matrix U are negative.

We can demonstrate this fact by the following example. Let p = 2, et1 ≥ 0 and
et2 = et1. Let c and u be numbers such that 0 < c < u and u + c < 1. Consider the
matrix

U =
(

u −c
−c u

)
.

The roots of U are λ12 = u± c, and thus |λ1| < 1, |λ2| < 1. Since

Un =
1
2
(u + c)n

(
1 −1

−1 1

)
+

1
2
(u− c)n

(
1 1
1 1

)

and et = (et1, et1)
′, we have

Un et−n = (u− c)n

(
et−n,1

et−n,1

)
.

Thus Un et−n is a random vector with nonnegative components. Taking into account
(2.2) we can see that the same is true for Xt.

Remark 3.4. If all the elements uij of the matrix U are positive, then all the variables
Xti can be positive even if a component of the random vector et is negative.

Choose again p = 2. Let 0 < a < et1 < b and define et2 = − 1
2 et1. Let c ∈ (

0, 1
2

)
.

Consider the matrix

U =
(

c c
c c

)
.

The roots of U are λ1 = 0, λ2 = 2c. Both of them lie inside the unit circle. Since

Un = 2n−1 cn

(
1 1
1 1

)
, n ≥ 1,

we get
Un et−n = 2n−2 cn

(
et−n,1

et−n,1

)
, n ≥ 1,

From (2.2) we have

Xt1 = et1 +
∞∑

n=1

2n−2 cn et−n,1,

Xt2 = −1
2

et1 +
∞∑

n=1

2n−2 cn et−n,1.

It is clear that Xt1 > 0. If we take c = 0.4, a = 1, b = 2, then

Xt2 > −1
2

b +
∞∑

n=1

2n−2 cn a = 0.
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4. AUXILIARY RESULTS FOR ESTIMATION

Till the end of this paper we assume that not only A1 – A3, but also the following
assumptions B1 – B4 are satisfied.

B1. All the elements uij of the matrix U are nonnegative.
B2. Random vectors et have only nonnegative components.
B3. P (et1 < z, . . . , etp < z) > 0 for all z > 0.
B4. There exists a number γ > 0 such that for every η > 0 and for each i ∈ {1, . . . , p}

P (et1 < η, . . . , et,i−1 < η, eti > γ, et,i+1 < η, . . . , etp < η) > 0.

It was already pointed out that A1 – A3, B1, B2 ensure nonnegativity of all variables
Xti.

Remark 4.1. Let p = 2. If B1 holds, then U has only real roots. Really, an easy
calculation gives

|U− λ I| = λ2 − (u11 + u22) λ + u11 u22 − u12 u21

and thus the roots are

λ12 =
1
2

{
u11 + u22 ±

[
(u11 − u22)

2 + 4u12 u21

] 1
2
}

.

Remark 4.2. The assumptions B3 and B4 are independent. This can be shown in
an example with p = 2. If P (et1 = 0, et2 = 0) = 1, then B3 is fulfilled but B4 does not
hold. If P (et1 = 0, et2 = 5) = P (et1 = 5, et2 = 0) = 1

2 , then B3 is not fulfilled but B4
holds.

Remark 4.3. Consider the case p = 2. Let ξti be i. i. d. random variables with
exponential distribution Ex(λ) where i = 1, 2, 3 and t = . . . ,−1, 0, 1, . . .. If et1 =
ξt1 + ξt3, et2 = ξt2 + ξt3, then the condition B4 is fulfilled, since

P (ξt1 + ξt3 < η, ξt2 + ξt3 > γ) ≥
≥ P

(
ξt1 <

η

2
, ξt3 <

η

2
, ξt2 > γ

)
=

= P
(
ξt1 <

η

2

)
P

(
ξt3 <

η

2

)
P (ξt2 > γ) > 0

for every η > 0, γ > 0. If et1 = ξt1 + ξt2, et2 = ξt1, then P (ξt1 + ξt2 < η, ξt1 > γ) = 0
for every 0 < η < γ, and thus B4 is not fulfilled.

Theorem 4.4. Define
u0

ij = min
2≤t≤n

(Xti / Xt−1,j)

for i, j = 1, . . . , p. Then u0
ij −→ uij a. s. as n →∞ for each i, j ∈ {1, . . . , p}.

P r o o f . First, consider the case i = j = 1. Since

Xt1 =
p∑

β=1

u1β Xt−1,β + et1,
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we obtain

u0
11 = u11 + min

2≤t≤n




p∑

β=2

u1β Xt−1,β + et1


 /Xt−1,1.

Since Xt−1,1 ≥ et−1,1, it is sufficient to prove that

min
2≤t≤n




p∑

β=2

u1β Xt−1,β + et1


 / et−1,1 −→ 0 a. s.

Let ε > 0 be a given number. Consider the events

Qt =



ω :




p∑

β=2

u1β Xt−1,β + et1


 / et−1,1 < ε



 .

Using (2.3) we can write

Qt =



ω : et1 +

p∑

β=2

u1β

(
et−1,β +

m∑

k=2

p∑
r=1

u
(k)
βr et−k,r

)
+

+
p∑

β=2

u1β

∞∑

k=m+1

p∑
r=1

u
(k)
βr et−k,r < ε et−1,1



 .

Denote A = 2p[1 + (p− 1) (m− 1)]. It is clear that Qt ⊃ Qtm1 ∩Qtm2 where

Qtm1 = {ω : et−1,1 > γ, et1 < εγ/A, u1β et−1,β < εγ/A for β = 2, . . . , p;

u1β u
(k)
βr et−k,r < εγ/A for β = 2, . . . , p, k = 2, . . . , m, r = 1, . . . , p

}
.

Qtm2 = {ω : Ztm < εγ/2}

with
Ztm =

p∑

β=2

u1β

∞∑

k=m+1

p∑
r=1

u
(k)
βr et−k,r.

From (2.4) we can see that there exists Λ > 0 such that

0 ≤ u
(k)
ij < Λ for all i, j, k.

Therefore P (Qtm1) ≥ πm where

πm = P (et1 < εγ/A) P
(
et−1,1 > γ, et−1,β <

εγ

AΛ
for β = 2, . . . , p

)
·

·
[
P

(
et−2,r <

εγ

AΛ2
for r = 1, . . . , p

)]m−1

.

Our assumptions imply that neither P (Qtm1) nor πm depend on t. The value of γ can
be chosen in such a way that πm > 0.

It is easy to show that E Ztm → 0 and var Ztm → 0 as m → ∞ for every fixed t.
Thus P (Qtm2) → 1. Moreover, P (Qtm2) also does not depend on t.

Let wm be the smallest integer such that wm πm ≥ 1 (m = 2, 3, . . .). Let the set S2

contain elements of j2 triples

(1, 2, 3), . . . , (3j2 − 2, 3j2 − 1, 3j2) ,
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let S3 contain elements of j3 four-tuples

(3j2 + 1, 3j2 + 2, 3j2 + 3, 3j2 + 4) , . . . , (3j2 + 4j3 − 3, . . . , 3j2 + 4j3)

and so on. The last numbers of the triples, four-tuples etc. denote t1, t2, . . .. If ti ∈ Sm,
then we define

Ai = Qtim1, Bi = Qtim2.

The events A1, A2, . . . are independent,

∞∑

i=1

P (Ai) ≥
∞∑

m=2

wm πm = ∞,

events Ai and Bi are independent for each i, and P (Bi) → 1 as i →∞. It follows from
Theorem 8.1 that with probability 1 infinitely many events Ai ∩ Bi occur, and thus
also infinitely many events Qt.

The proof for other estimators u0
ij is quite similar. 2

Although u0
ij are strongly consistent estimators for uij , our experience from similar

models (see [5]) leads to the suspicion that the convergence u0
ij → uij a. s. as n → ∞

is too slow and u0
ij cannot be used in practical situations as reasonable estimators.

Simulations really confirmed this fact. In the next section we propose other estimators,
which are also strongly consistent, but which are good for moderate values of n.

5. ESTIMATING PARAMETERS

To simplify the notation and the proofs, we describe the estimating procedure in this
section only in the case p = 2. First, we introduce a motivation for our estimators.
Let et1, et2 be independent random variables such that et1 ∼ Ex (λ1), et2 ∼ Ex (λ2),
where Ex (λ) denotes the exponential distribution with the density f(x) = λ−1 e−x/λ

for x > 0. Then the conditional likelihood of X2, . . . ,Xn, given X1, is

λ−n+1
1 exp

{
−

n∑
t=2

(Xt1 − u11 Xt−1,1 − u12 Xt−1,2) / λ1

}
·

· λ−n+1
2 exp

{
−

n∑
t=2

(Xt2 − u21 Xt−1,1 − u22 Xt−1,2) / λ2

}

for

Xt1 − u11 Xt−1,1 − u12 Xt−1,2 ≥ 0, (7)
Xt2 − u21 Xt−1,1 − u22 Xt−1,2 ≥ 0 (8)

(t = 2, . . . , n). The conditional likelihood reaches its maximum for such u11 and u12

which maximize

u11

n∑
t=2

Xt−1,1 + u12

n∑
t=2

Xt−1,2 (9)

under the conditions (5.1) with u11 ≥ 0, u12 ≥ 0, and for such u21 and u22 which
maximize

u21

n∑
t=2

Xt−1,1 + u22

n∑
t=2

Xt−1,2 (10)
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under the conditions (5.2) with u21 ≥ 0, u22 ≥ 0. Define

X0
n1 = n−1

n∑
t=1

Xt1, X0
n2 = n−1

n∑
t=1

Xt2.

If n is large then one can expect that the maximization of (5.3) and (5.4) is nearly the
same as the maximization of X0

n1 u11 + X0
n2 u12 and X0

n1 u21 + X0
n2 u22, respectively.

Theorem 5.1. Let u?
i1, u?

i2 be a solution of the linear program LP(n)

max
(
X0

n1 vi1 + X0
n2 vi2

)
(11)

under conditions

Xti − vi1 Xt−1,1 − vi2 Xt−1,2 ≥ 0 (t = 2, . . . , n)

with vi1 ≥ 0, vi2 ≥ 0, for i = 1, 2. Then u?
ij → uij a. s. for all i, j = 1, 2 as n →∞.

P r o o f . Let i = 1. Assume that u11 > 0, u12 > 0. Define

Mn = {(v11, v12) : v11 ≥ 0, v12 ≥ 0, Xt1 − v11 Xt−1,1 − v12 Xt−1,2 ≥ 0 for t = 2, . . . , n} .

Let M be the oblong with vertices (0, 0), (u11, 0) , (u11, u12) , (0, u12). It is clear
that M2 ⊃ M3 ⊃ . . .. First we prove that Mn → M a. s. We have

Xt1

Xt−1,1
= u11 +

Xt−1,2

Xt−1,1
u12 +

et1

Xt−1,1
. (12)

-

6

@
@

@
@

@
@

@
@

@
@

@@
0 u11 Xt1

Xt−1,1

v11

u12
q2M

p

Xt1
Xt−1,1

v12 q1

Fig. 1.

Theorem 4.4 implies that there exists a sequence tr such that

Xtr1 /Xtr−1,1 −→ u11 a. s.

In view of (5.6) we can see that

Xtr−1,2 /Xtr−1,1 −→ u11 a. s. (13)

Since Xt1

Xt−1,2
= u12 +

Xt−1,1

Xt−1,2
u11 +

et1

Xt−1,2
,
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using (5.7) we obtain
Xtr1 /Xtr−1,2 −→∞ a. s.

In this case the straight line p in Figure 1 approaches the straight line q1. Simi-
larly we can prove that with probability 1 there exists a sequence of straight lines p
converging to q2.
An elementary calculation gives that p intersects q1 at the point

(
u11, u12 +

et1

Xt−1,2

)

and thus no straight line p intersects M .
Consider the linear program LP(n) (5.5) for i = 1. It concerns the problem

max
(
X0

n1 v11 + X0
n2 v12

)

on Mn. Since Mn → M and X0
n1 → µ1, X0

n2 → µ2 a. s. (see [10], Chap. IV.2), the
solutions (u?

11, u
?
12) of LP(n) converge a. s. to a solution of the linear program LP

max (µ1 v11 + µ2 v12) (14)

on M . It is clear that the maximum (5.8) on M is reached at the point (u11, u12).
Thus we have proved that u?

11 → u11, u?
12 → u12 a. s.

If u11 = 0 and/or u12 = 0, the proof is similar. The case i = 2 is quite analogous.
2

6. A SIMULATION STUDY

We simulated the two-dimensional AR(1) process

Xt = UXt−1 + et

with

U =
(

0.7 0.3
0.1 0.5

)
.

The roots of U are λ1 = 0.8, λ2 = 0.4. The white noise et = (et1, et2)
′ was constructed

in such a way that

et1 = `1 ξt1 + `3 ξt3, et2 = `2 ξt2 + `3 ξt3

where `1, `2, `3 were nonnegative constants and ξti were nonnegative i. i. d. variables.

Three distributions of ξti were examined:

(i) exponential distribution Ex (1);

(ii) absolutely normal distribution AN (0, 1); i. e. ξti = |Uti|, where Uti ∼ N(0, 1);

(iii) rectangular distribution R(0, 1) with the density f(x) = 1 for x ∈ (0, 1).

The results of simulations are summarized in Tables 1–5. In each case 100 simula-
tions were performed. The tables contain averages of estimates of the elements of the
matrix U. The empirical standard deviations are introduced in parentheses.
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Table 1 Table 2

n = 20, `1 = `2 = `3 = 1, ξti ∼ Ex (1) n = 20, `1 = `2 = `3 = 1, ξti ∼ AN (0.1)



0.70 0.37
(0.10) (0.22)
0.13 0.50

(0.10) (0.20)







0.71 0.37
(0.15) (0.30)
0.17 0.46

(0.13) (0.26)




Table 3 Table 4

n = 20, `1 = `2 = `3 = 1, ξti ∼ R(0, 1) n = 20, `1 = `2 = 1, `3 = 0, ξti ∼ Ex (1)



0.68 0.44
(0.20) (0.41)
0.19 0.43

(0.15) (0.29)







0.70 0.33
(0.05) (0.10)
0.11 0.51

(0.06) (0.12)




Table 5

n = 50, `1 = `2 = `3 = 1, ξti ∼ Ex (1)



0.71 0.32
(0.07) (0.14)
0.11 0.51

(0.06) (0.12)




A simulation of length n = 50 with `1 = `2 = `3 = 1 and ξti ∼ Ex(1) is depicted in
Figure 2.

Fig. 2.

The estimate of the matrix U for this simulation is
(

0.74 0.26
0.11 0.53

)
.
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The experience from our simulations can be briefly summarized as follows. Tables
1 – 4 show that the estimates are better when the distribution of residuals is nearer
to the exponential one. This is not surprising, since our method was motivated by the
maximum likelihood estimators for exponential distribution. The best results among
Tables 1 – 4 are contained in Table 4. The same quality in the case `1 = `2 = `3 =
1, ξti ∼ Ex(1), is reached only when the length of simulation is enlarged from n = 20
to n = 50 (see Table 5).

Let us remark that the least squares estimates of the elements of the matrix U for
the simulation depicted in Figure 2 are

(
0.53 0.41
0.05 0.48

)
.

(Of course, first of all the average of the both components of the series were sub-
stracted.) The corresponding asymptotic standard deviations are

(
0.14 0.17
0.16 0.19

)
.

In this case the estimates obtained by the new method are better. Also the empirical
standard deviations introduced in Table 5 are smaller than the asymptotic standard
deviations of the least squares estimates.

7. ANALYSIS OF REAL DATA

Anděl [1] presents some hydrological data about the small river Volyňka in Czechoslo-
vakia. The mean hourly discharges of the Volyňka river (in m2/s) and hourly rainfall
in the Volyňka basin were measured for three days. The data are graphically presented
in Figure 3.

Denote Xt1 the discharges and Xt2 the rainfall (t = 1, . . . , 72). The averages are

x1 = (1/72)
72∑

t=1

Xt1 = 31.78, x2 = (1/72)
72∑

t=1

Xt2 = 0.36

and the empirical variances of the components are

s2
1 = 207.59, s2

2 = 0.53.

The least squares estimates of the autoregressive parameters are
(

0.97 1.08
0.00 0.76

)

and their asymptotic standard deviations are
(

0.025 0.498
0.004 0.075

)
.

The residual variance matrix is
(

9.37 0.02
0.02 0.21

)
.
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Fig. 3.

Applying our new method we get the estimate of the matrix U
(

0.87 1.68
0.00 0.00

)
.

The residual variance of the first component is in this case 11.80.

APPENDIX

Theorem 8.1. Let two sequences of events A1, A2, . . . and B1, B2, . . . satisfy the
following conditions:

(i) The events A1, A2, . . . are independent.
(ii) The events Ai and Bi are independent for every i = 1, 2, . . ..
(iii)

∑
P (Ai) = ∞.

(iv) P (Bi) → 1 as i →∞.

Then with probability one infinitely many events Ci = Ai ∩Bi occur.

P r o o f . See [7]. 2

(Received April 25, 1991.)
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Prof. RNDr. Jiř́ı Anděl, DrSc., Univerzita Karlova, matematicko-fyzikálńı
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