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DISCRETE–TIME MARKOV CONTROL PROCESSES
WITH DISCOUNTED UNBOUNDED COSTS:
OPTIMALITY CRITERIA

Onésimo Hernández–Lerma and Myriam Muñoz de Ozak

We consider discrete–time Markov control processes with Borel state and control spaces, un-
bounded costs per stage, and not necessarily compact control constraint sets. The basic control
problem we are concerned with is to minimize the infinite–horizon, expected total discounted cost.
Under easily verifiable assumptions, we provide characterizations of the optimal cost function and
optimal policies, including all previously known optimality criteria, such as Bellman’s Principle of
Optimality, and the martingale and discrepancy function criteria. The convergence of value itera-
tion, policy iteration and other approximation procedures is also discussed, together with criteria
for asymptotic optimality.

1. INTRODUCTION

This paper deals with discrete–time Markov control processes (or MCPs for short)
with Borel state and control spaces. The basic optimal control problem (formalized
in § 3) is to minimize the total expected discounted cost. Given that the cost–per–
stage function is unbounded , and that the control constraint sets are not necessarily
compact, the main questions we are concerned with are:

1. If V ∗ denotes the optimal (i. e., minimum) cost function, what are the conditions
for V ∗ to be a solution to the optimality equation (OE)? (See equations (3.4)

and(4.1).)
2. If v is a function that satisfies the OE, how are v and V ∗ related?
3. How can we “approximate” V ∗?
4. What are the conditions for a control policy to be optimal? In other words, may

we
characterize an optimal control policy?

5. Is it possible to decide when a control policy is “close” to being optimal?

All these questions have been dealt with in the literature, in one form or other,
but usually separately, and under very restrictive conditions (such as conditions
C0, C1 and C2 in § 4), which exclude some important control problems – e. g. the
“linear regulator” problem, which has (quadratic) unbounded costs and an unbounded
control set (see Example 2.5). Thus our main objective in this paper is to study
questions 1 to 5 from a unified viewpoint, under a set of easily verifiable assumptions
that includes – to the best of our knowledge – virtually all the previous works on
MCPs with Borel state and control spaces and unbounded costs–per–stage.

We begin with some preliminaries in §§ 2 and 3: § 2 discusses the basic Markov
control (or decision) model we will be dealing with, and § 3 introduces the corre-
sponding control problem. The main developments are presented in §§ 4 to 7. In
§ 4 we discuss the optimality equation and provide some answers to questions 1 to
4 above. § 5 is mainly concerned with question 3, whereas § 6 is mainly related to
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question 4; the main result in that section (Theorem 6.1) relates several well–known
optimality criteria, including Bellman’s principle of optimality, and a martingale
criterion. Finally, in § 7 an answer to question 5 is given in terms of “asymptotic
optimality”.

Related literature. The stochastic control problem we are interested in is
quite standard – see any of the textbooks in the references –; but the studies on
questions 1 to 5 appear scattered in the literatures on stochastic control, operations
research, and applied probability. Thus there is no “main reference” for §§ 4 to 7
and, therefore, each of these sections is provided with its own set of Comments and
related references.

Notation. Given a Borel space, i. e., a Borel subset of a complete separable
metric space, its Borel sigma–algebra is denoted by B(X), and “measurable” always
means “Borel–measurable”. L(X) stands for the family of l.s.c. (lower semicon-
tinuous) functions on X, bounded from below, and L(X)+ denotes the subclass of
nonnegative functions in L(X).

2. THE CONTROL MODEL

Let (X, A, Q, c) be a Markov control (or decision) model with state space X, control
(or action) set A, transition law Q, and cost–per–stage c satisfying the following
conditions. Both X and A are Borel spaces. To each x ∈ X it is associated a
non–empty set A(x) ∈ B(A) whose elements are the feasible control actions when
the system is in the state x. The set

IK := {(x, a) |x ∈ X, a ∈ A(x)} (2.1)

of admissible state–action pairs is assumed to be a Borel subset of X × A. The
transition law Q(B |x, a), where B ∈ B(X) and (x, a) ∈ IK is a stochastic kernel
on X given IK [3], [11]; that is, for each pair (x, a) ∈ IK, Q(· |x, a) is a probability
measure on X, and for each B ∈ B(X), Q(B | ·) is a measurable function on IK.
Finally the cost–per–stage c(x, a) is a measurable function on IK bounded from
below. In fact, without loss of generality, we will assume that c is nonnegative. To
state one of main hypotheses (Assumption 2.1 (a) below) we require the following
definition: A real–valued function v on IK is said to be inf–compact on IK if the set

{a ∈ A(x) | v(x, a) ≤ r} is compact (2.2)

for every x ∈ X and r ∈ IR. (For instance, if the sets A(x) are compact and v(x, a)
is lower semicontinuous (l.s.c.) in a ∈ A(x) for every x ∈ X, then v is inf–compact
on IK. Conversely, if v is inf–compact on IK, then v is l.s.c. in a ∈ A(x) for every
x ∈ X.)

Assumption 2.1. (a) c(x, a) is nonnegative, lower semicontinuous (l.s.c.) and
inf–compact on IK;
(b) The transition law Q is weakly continuous; i. e. for any continuous and bounded

function u on X, the map (x, a) →
∫

X

u(y)Q(dy |x, a) is continuous on IK;

(c) The multifunction (or set–valued map) x → A(x) is lower semicontinuous
(l.s.c); that is, if xn → x in X and a ∈ A(x), then there are an ∈ A(xn) such
that an → a.

In the remainder of this section we will briefly discuss important facts related to
Assumption 2.1.
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Remark 2.2. Let L(X) be the class of all functions on X that are l.s.c. and
bounded from below. A function v belongs to L(X) if and only if there is a sequence
of continuous and bounded functions un on X such that un ↑ v. Using this fact one
can easily verify that Assumption 2.1 (b) is equivalent to: For any v ∈ L(X), the

map (x, a) →
∫

v(y)Q(dy |x, a) is l.s.c. and bounded from below on IK.

Example 2.3. Consider a stochastic control system of the form

xt+1 = F (xt, at, ξt) , t = 0, 1, . . . , (2.3)

where {ξt} is a sequence of independent and identically distributed (i. i. d) random
vectors with valued in a Borel space S. In (2.3), xt ∈ X and at ∈ A(xt) denote the
state of the system and the control variable at time t, respectively, and F is a given
measurable function from IK × S to X. Denoting by µ the common distribution of
the disturbances ξt, the transition law of the system can be written as

Q (B |x, a) =
∫

S

IB [F (x, a, s)] µ(ds), B ∈ B(X),

where IB denotes the indicator function of B. It is then clear that if (x, a) →
F (x, a, s) is continuous on IK for every s ∈ S, then Assumption 2.1 (b) holds.

Example 2.4. Assumption 2.1 (c) holds if, e. g., IK is convex (cf. [17, Lemma
3.2]). In turn, the latter convexity condition holds in many applied control problems:
inventory/production systems, water resources management, etc.; see [1, 2, 9, 11].

Example 2.5. (The linear regulator problem.) Instead of (2.3), consider the
stochastic linear system

xt+1 = γxt + βat + ξt, (2.4)

with X = S = IRn, A ≡ A(·) = IRm; γ and β are matrices of appropriate
dimensions. By the Examples 2.3 and 2.4, it is clear that the Assumptions 2.1 (b)
and (c) are satisfied in this case. Moreover, the quadratic cost c(x, a) = x′px +
a′qa (where “prime” denotes transpose) satisfies Assumption 2.1 (a) if p and q are
nonnegative and positive definite, respectively. For other specific control systems
satisfying Assumptions 2.1, see e. g., the references in Example 2.4.

Definition 2.6. IF denotes the family of measurable functions f from X to A such
f(x) ∈ A(x) for all x ∈ X.

The following lemma summarizes some important facts to be used in later sec-
tions.

Lemma 2.7. (a) If Assumption 2.1 (c) holds and v is inf–compact (cf. (2.2)), l.s.c.
and bounded from below on IK, then the function v∗(x) := infa∈A(x)v(x, a)
belongs to L(X) and, furthermore, there is a function f ∈ IF such that

v∗(x) = v (x, f(x)) ∀x ∈ X.

(b) If the Assumptions 2.1 (a), (b) and (c) hold, and u ∈ L(X) is nonnegative, then
the (nonnegative) function

u∗(x) := inf
a∈A(x)

[
c(x, a) +

∫

X

u(y)Q(dy |x, a)
]

belongs to L(X), and there exists f ∈ IF such that

u∗(x) = c (x, f(x)) +
∫

u(y)Q (dy |x, f(x)) ∀x ∈ X.
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(c) For each n = 0, 1, . . . , let vn be a l.s.c. function, bounded from below and
inf–compact on IK. If vn ↑ v0, then

lim
n→∞

inf
a∈A(x)

vn(x, a) = inf
a∈A(x)

v0(x, a) ∀x ∈ X.

P r o o f . Part (a) is Lemma 3.2 (f) in [17].
(b) By Remark 2.2 and Assumption 2.1 (a), if u ∈ L(X) is nonnegative, then

v(x, a) := c(x, a) +
∫

u(y)Q(dy |x, a)

is nonnegative, l.s.c. and inf–compact on IK. (Note that u ≥ 0 im-
plies that {a ∈ A(x) | v(x, a) ≤ r} is a closed subset of the compact set
{a ∈ A(x) | c(x, a) ≤ r}.) Thus (b) follows from part (a).

(c) Let us define, for x ∈ X,

l(x) := lim
n→∞

inf
a∈A(x)

vn(x, a), and v∗0(x) := inf
a∈A(x)

v0(x, a).

Clearly, l(x) ≤ v∗0(x). To prove the reverse inequality, fix an arbitrary x ∈ X, and
for each n ≥ 0, let (cf. (2.2))

An := {a ∈ A(x) | vn(x, a) ≤ v∗0(x)} .

The inf–compactness hypothesis, together with vn ↑ v0, implies that the An are
compact sets such that An ↓ A0. On the other hand, by part (a), for each n ≥
1, there is an ∈ An such that vn(x, an) = inf

a∈A(x)
vn(x, a). Thus there exists a

subsequence {ani} of {an} and a0 ∈ A0 such that ani → a0. Now, using again that
vn is monotone increasing, we have

vni (x, ani) ≥ vn (x, ani) ∀ ni ≥ n,

for any given n ≥ 1. Letting i → ∞, the lower semicontinuity assumption yields

l(x) ≥ vn(x, a0).

This implies l(x) ≥ v0(x, a0) = v∗0(x), for vn ↑ v0. Since x ∈ X was arbitrary, this
completes the proof. 2

Comments. It is worth noting that the main difference between our present
assumptions and those in the previous literature lies in the inf–compactness in
Assumption 2.1 (a) and the l.s.c. in Assumption 2.1 (c). Inf–compactness, allows
non–compact constraint sets A(x), but still it allows to use “compactness–like” ar-
guments, as in the proof of Lemma 2.7 (c). Assumption 2.1 (c), on the other hand, is
used to show that “minimal” functions, such as v∗ and u∗ in Lemma 2.7, are lower
semicontinuous; without such an assumption, we can only ensure that v∗ and u∗ are
measurable (cf. [17, Lemma 3.2], [27, Corollary 4.3]).

3. THE CONTROL PROBLEM

Let xt and at denote, respectively, the state of the system and the control action
applied at time t = 0, 1, . . . . A rule to choose the control action at at each time t
is called a control policy and is formally defined as follows.

A control policy π is a sequence {πt} such that for each t = 0, 1, . . . , πt(· |ht) is a
conditional probability on B(A), given the history ht := (x0, a0, . . . , xt−1, at−1, xt),
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that satisfies the constraint πt (A(xt) |ht) = 1. The class of all policies is denoted
by

∏
.

Let IF be the class of functions in Definition 2.6. A sequence {ft} of functions
ft ∈ IF is called a Markov policy . A Markov policy {ft} is said to be a stationary
policy if it is of the form ft = f for all t = 0, 1, . . . for some f ∈ IF; in this case we
identify {ft} with f ∈ IF.

Let (Ω,F) be the measurable space consisting of the sample space Ω := X ×
A × X × A × . . . , and the corresponding product sigma–algebra F . Then for an
arbitrary policy π ∈ ∏

and (initial) state x ∈ X, a standard argument using a
theorem of C. Ionescu Tulcea (see e. g. [18, p.80]) shows the existence of a unique
probability measure Pπ

x on (Ω,F), which is concentrated on the set of all sequences
(x0, a0, x1, a1, . . . ) with (xt, at) ∈ IK for all t = 0, 1, . . . . (IK is defined in (2.1).)
Moreover, Pπ

x satisfies that Pπ
x (x0 = x) = 1, and for every t = 0,1,. . .

Pπ
x (at ∈ C |ht) = πt(C |ht) ∀C ∈ B(A) (3.1)

Pπ
x (xt+1 ∈ B |ht, at) = Q (B |xt, at) ∀B ∈ B(X). (3.2)

(Ω,F , Pπ
x , {xt}) is called a (discrete–time) Markov control process. The expectation

operator with respect to Pπ
x is denoted by Eπ

x .

Remark 3.1. If π = {ft} is a Markov policy, then the state process {xt} is a
Markov process with transition kernel Q (· |x, ft(x)); that is,

Pπ
x (xt+1 ∈ B |x0, . . . , xt) = Pπ

x (xt+1 ∈ B |xt) = Q (B |xt, ft(xt))

for all B ∈ B(X) and t = 0, 1, . . . . In particular, if f ∈ IF is a stationary policy,
then {xt} has a time–homogeneous transition kernel Q (· |x, f(x)).

Remark 3.2. If π = {ft} is a Markov policy, then expressions such as Q (· |x, ft(x))
and c (x, ft(x)) will usually be written as Q (· |x, ft) and c(x, ft), respectively.

Performance criterion. Given π ∈ ∏
and x ∈ X, let

V (π, x) := Eπ
x

∞∑
t=0

αtc(xt, at) (3.3)

be the total expected discounted cost when using the policy π, given the initial state
x0 = x. The number α ∈ (0, 1) in (3.3) is called the discount factor.

The optimal control problem we are concerned with is to find an optimal policy
π∗ ∈ ∏

, i. e., a policy π∗ such that V (π∗, x) = V ∗(x) for all x ∈ X, where

V ∗(x) := inf
π

V (π, x), x ∈ X, (3.4)

is the optimal cost (or value) function.
The main objective of the following sections is to give several characterizations of

an optimal policy, as well as of the optimal cost function V ∗. We will also consider a
concept of asymptotic optimality , which has proved to be very useful in e. g. adaptive
control problems, i. e., problems in which the control model depends on unknown
parameters.
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4. THE OPTIMALITY EQUATION

If the cost per stage c(x, a) is bounded , then the optimal cost function V ∗(x) is the
unique bounded function that satisfies the optimality equation (abbreviated: OE)

V ∗(x) = min
a∈A(x)

[
c(x, a) + α

∫
V ∗(y)Q (dy |x, a)

]
, x ∈ X, (4.1)

and moreover, a policy π∗ is optimal if and only if its cost V (π∗, ·) satisfies (4.1).
These are well–known results that go back to the earlier works in the field (e. g.
[5]). It is also known, on the other hand, that if c(x, a) is unbounded , then the
OE (4.1) may not have a unique solution [1, 2], or an optimal policy may not exist
[19]. Thus it is important to characterize the optimal policies or the solutions to
(4.1) that coincide with V ∗. To do this we will suppose throughout the following that
Assumption 2.1 and Assumption 4.1 (below) hold .

Assumption 4.1. There exists a policy π̂ such that V (π̂, x) < ∞ for each x ∈ X.

For instance, each of the conditions C0, C1, C2 in Definition 4.5 below implies
Assumption 4.1. Another sufficient condition is the following: there exists a policy
π̂ such that the long–run expected “average cost”

lim sup
n→∞

n−1Ebπx

n−1∑
t=0

c (xt, at)

is finite for each x ∈ X; see e. g. [13].
Assumption 4.1, together with (3.4), guarantees that the optimal cost function is

finite–valued: 0 ≤ V ∗(x) < ∞ for each x ∈ X.
To state our next result we introduce some notation: Let L(X)+ be the class

of nonnegative and l.s.c. functions on X, and for each u ∈ L(X)+ define a new
function Tu by

Tu(x) := min
a∈A(x)

[
c(x, a) + α

∫

X

u(y)Q (dy |x, a)
]

. (4.2)

By Lemma 2.7 (b), the operator T defined by (4.2) maps L(X)+ into itself. We also
consider the sequence {vn} of value iteration (VI) functions defined recursively by
v0(·) := 0, and vn := Tvn−1 = Tnv0 for n = 1, 2, . . .. That is, for n ≥ 1 and
x ∈ X,

vn(x) := min
a∈A(x)

[
c(x, a) + α

∫
vn−1(y)Q (dy |x, a)

]
. (4.3)

Note that, by induction and Lemma 2.7 (b) again, vn ∈ L(X)+ for all n ≥ 0. From
elementary Dynamic Programming [2, 3, 9], vn(x) is the optimal cost function for an
n-stage problem (with “terminal cost” v0(·) = 0) given x0 = x; i. e.,

vn(x) = inf
π

Vn(π, x), (4.4)

where

Vn(π, x) := Eπ
x

[
n−1∑
t=0

αt c (xt, at)

]
. (4.5)
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Theorem 4.2. Suppose that Assumptions 2.1 and 4.1 hold. Then:

(a) vn ↑ V ∗; hence

(b) V ∗ is the (pointwise) minimal function in L(X)+ that satisfies the OE (4.1),
or equivalently

V ∗ = TV ∗. (4.6)

(c) There exists a stationary policy f∗ ∈ IF such that f∗(x) ∈ A(x) minimizes the
r.h.s. (right–hand side) of (4.1) for all x ∈ X, i. e. (using the notation in
Remark 3.2)

V ∗(x) = c(x, f∗) + α

∫
V ∗(y)Q (dy |x, f∗) , (4.7)

and f∗ is optimal. Conversely, if f∗ ∈ IF is an optimal stationary policy, then
it satisfies (4.7).

(d) If π∗ is a policy such that V (π∗, ·) is in L(X)+ and it satisfies the OE and the
condition

lim
n→∞

αnEπ
xV (π∗, xn) = 0 ∀π ∈

∏
and x ∈ X, (4.8)

then V (π∗, ·) = V ∗(·); hence π∗ is optimal.

Before proving Theorem 4.2 let us note the following.

Remark 4.3. (a) If V ∗ is not finite–valued, the convergence in Theorem 4.2 (a)
may not hold; see e. g. [2, p. 233, problem 9].

(b) By part (b) of Theorem 4.2, if π∗ ∈ ∏
is an optimal policy, then V (π∗, ·) =

V ∗(·) satisfies the OE (4.1)=(4.6). However, the converse is not true in general: In
[2, p.215, Example 3] a policy π∗ is given such that V (π∗, ·) satisfies the OE, but
π∗ is not optimal. Such a policy π∗ does not satisfy (4.8), of course.

(c) Observe that (4.8) trivially holds if c(x, a) is bounded , for if 0 ≤ c(x, a) ≤ M
∀ (x, a) ∈ IK, then, from (3.3), 0 ≤ V (π, ·) ≤ M/(1 − α) ∀π. (Other conditions
implying (4.8) are given in Theorem 4.6 below.)

Lemma 4.4. (a) If v ∈ L(X)+ is such that v ≥ Tv, then v ≥ V ∗.

(b) If v is a measurable function on X such that Tv is well defined and is such that
v ≤ Tv and

lim
n→∞

αnEπ
xv (xn) = 0 ∀π, x, (4.9)

then v ≤ V ∗.

P r o o f . (a) Suppose that v ≥ Tv, and (see Lemma 2.7 (b)) let f ∈ IF be a
stationary policy that satisfies

v(x) ≥ c(x, f) + α

∫
v(y)Q (dy |x, f) ∀x.

Iterating this inequality we obtain

v(x) ≥ Ef
x

n−1∑
t=0

αtc(xt, f) + αnEf
xv(xn), ∀n, x,
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where Ef
xv(xn) =

∫
v(y)Qn (dy |x, f) , and Qn (B |x, f) = P f

x (xn ∈ B) denotes

the n-step transition probability of the Markov chain {xt}; see Remarks 3.1 and 3.2.
Therefore, since v is nonnegative,

v(x) ≥ Ef
x

n−1∑
t=0

αtc (xt, f) ∀n, x,

and letting n → ∞, (3.3) and (3.4) yield

v(x) ≥ V (f, x) ≥ V ∗(x) ∀x.

This proves (a).
(b) Let π ∈ ∏

and x ∈ X be arbitrary. Then, from (3.2),

Eπ
x

[
αt+1v(xt+1) |ht, at

]
= αt+1

∫
v(y)Q (dy |xt, at)

= αt

[
c(xt, at) + α

∫
v(y)Q (dy |xt, at) − c (xt, at)

]

≥ αt [v (xt) − c (xt, at)] ,

since, by assumption, Tv ≥ v. Hence

αtc (xt, at) ≥ −Eπ
x

[
αt+1v(xt+1) − αtv(xt) |ht, at

]
.

Thus taking expectations Eπ
x(·) and summing over t = 0, . . . , n − 1, we obtain

n−1∑
t=0

αtEπ
xc (xt, at) ≥ v(x) − αnEπ

xv(xn), ∀n.

Letting n →∞, the latter inequality and (4.9) yield V (π, x) ≥ v(x), which implies
(b), since π and x were arbitrary. 2

Proof of Theorem 4.2. (a) – (b). To begin, note that the operator T in (4.2)
is monotone on L(X)+, i. e., u ≥ v implies Tu ≥ Tv. Hence the VI functions vn

form a nondecreasing sequence in L(X)+ and, therefore, there exists a function u
in L(X)+ such that vn ↑ u. This implies (by the Monotone Convergence Theorem)
that

c(x, a) + α

∫
vn−1(y)Q (dy |x, a) ↑ c(x, a) + α

∫
u(y)Q (dy |x, a) ,

which combined with Lemma 2.7 (c) and (4.2) – (4.3) yields

u = Tu, (4.10)

i. e. u ∈ L(X)+ satisfies the OE (4.1) – (4.6). We will now show that u = V ∗.
Indeed, from (4.10) and Lemma 4.4 (a), u ≥ V ∗. To prove the reverse inequality

observe that, from (4.4) – (4.5),

vn(x) ≤ Vn(π, x) ≤ V (π, x) ∀n, π, x,

and letting n → ∞, we get u(x) ≤ V (π, x) ∀ π, x. This implies u ≤ V ∗. We
have thus shown that u = V ∗ satisfies part (a) and the OE (4.10)=(4.6).

Finally, to complete the proof of (a) – (b), note that u = V ∗ is indeed the
minimal solution to the OE, for if u′ ∈ L(X)+ is such that u′ = Tu′, then Lemma
4.4 (a) yields u′ ≥ V ∗.
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(c) The existence of a stationary policy f∗ ∈ IF satisfying (4.7) follows from
Lemma 2.7 (b). Now iteration of (4.7) shows (as in the proof of Lemma 4.4 (a)) that

V ∗(x) = Ef∗
x

[
n−1∑
t=0

αtc (xt, f
∗)

]
+ αnEf∗

x V ∗(xn)

≥ Ef∗
x

[
n−1∑
t=0

αtc (xt, f
∗)

]
.

Letting n → ∞, we obtain V ∗(x) ≥ V (f∗, x), which combined with (3.4) yields
V ∗(·) = V (f∗, ·), i. e., f∗ is optimal. Finally, the converse follows from the fact
that, for any stationary policy f ∈ IF, the cost V (f, ·) satisfies (by the Markov
property; see Remarks 3.1 and 3.2)

V (f, x) = c(x, f) + α

∫

X

V (f, y)Q (dy |x, f) . (4.11)

(d) Apply Lemma 4.4 (b) to v(·) := V (π∗, ·). 2

To close this section, we will show that each of the conditions C0 to C3 defined
next implies (4.8).

Definition 4.5. Ci (i = 1, 2, 3) stands for the following condition:

C0. c(x, a) is bounded (cf. Remark 4.3 (c)).

C1. There exists a number m > 0 and a nonnegative measurable w on X such that,
for all (x, a) ∈ IK,

(i) c(x, a) ≤ mw(x), and (ii)
∫

w(y)Q (dy |x, a) ≤ w(x).

C2. C(x) :=
∞∑

t=0

αtct(x) < ∞ for every x ∈ X, where

ct(x) := sup
a∈A(x)

∫
ct−1(y)Q (dy |x, a) ∀ t = 1, 2, . . . ,

and c0(x) := sup
a∈A(x)

c(x, a).

C3. lim
n→∞

αnEπ
xV (π′, xn) = 0 ∀π, π′ ∈ ∏

, and x ∈ X.

Theorem 4.6. (a) Ci implies Ci+1 for i = 0, 1, 2 and C3 implies (4.8). Hence:
(b) If any of the conditions C0 to C3 hold, then a policy π∗ is optimal if and only

if V (π∗, ·) satisfies the OE.

P r o o f . (a) C0 implies C1. This is obvious: let m > 0 be an upper bound for
c(x, a) and take w(·) = 1.

C1 implies C2. If C1 holds, then a straightforward induction argument shows
that ct(x) ≤ mw(x) for all x ∈ X and t = 0, 1, . . .. Thus

C(x) ≤ mw(x)/(1 − α) < ∞ for each x.

C2 implies C3. Suppose that C2 holds, and let π ∈ ∏
and x ∈ X be arbitrary.

We will first show that
V (π, x) ≤ C(x). (4.12)
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To begin, observe that, from (3.2),

Eπ
x [c0 (xt+1) |ht, at] =

∫
c0(y)Q (dy |xt, at) ≤ c1(xt)

and, therefore, Eπ
xc0 (xt+1) ≤ Eπ

xc1(xt). This kind of argument yields

Eπ
xc0 (xt) ≤ Eπ

xc1 (xt−1) ≤ · · · ≤ Eπ
xct(x0) = ct(x). (4.13)

Thus, since c(xt, at) ≤ c0(xt), we obtain

Eπ
xc (xt, at) ≤ Eπ

xc0(xt) ≤ ct(x) ∀ t.

This inequality, together with (3.3) and the definition of C(x) implies (4.12).
Let us now show that

Eπ
xC (xn) ≤

∞∑
t=n

αt−nct(x) ∀n = 0, 1, . . . . (4.14)

For n = 0, (4.14) follows from the definition of C(x). For n ≥ 1, (3.2) gives

Eπ
x [C(xn) |hn−1, an−1] =

∫
C(y)Q (dy |xn−1, an−1)

=
∞∑

t=0

αt

∫
ct(y)Q (dy |xn−1, an−1)

≤
∞∑

t=0

αtct+1 (xn−1) .

Hence, taking expectation Eπ
x(·),

Eπ
xC(xn) ≤

∞∑
t=0

αtEπ
xct+1 (xn−1) .

However, as in (4.13), Eπ
xct+1 (xn−1) ≤ Eπ

xct+2 (xn−2) ≤ · · · ≤ ct+n(x), so that

Eπ
xC(xn) ≤

∞∑
t=0

αtct+n(x),

and (4.14) follows.
Finally, let π and π′ be two arbitrary policies. Then from (4.12) with π′ instead

of π, and (4.14), we obtain

Eπ
xV (π′, xn) ≤ Eπ

xC(xn) ≤
∞∑

t=n

αt−nct(x).

This in turn yields

αnEπ
xV (π′, xn) ≤

∞∑
t=n

αtct(x) → 0 as n → ∞,

since C(x) is finite. Thus C2 implies C3.
C3 implies (4.8). This is obvious, since π and π′ in C3 are arbitrary. This

completes the proof of part (a).
(b) Follows from (a) and Theorem 4.2 (b), (d). 2
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Comments. 1. Theorems 4.2 (d) and 4.6 (b) extend all previous results relating
an optimal “general” policy π∗ ∈ ∏

(as opposed to an optimal stationary policy;
see Theorem 4.2 (c)) to the OE (4.1), and they also clarify the role of the “growth
condition” (4.8). For finite–state, finite–action MCPs, and dealing only with Markov
policies, another characterization of optimal policies is given in [21]. Related results
appear in [23].

2. As already noted at the beginning of this section (see also Remark 4.3 (c))
Theorem 4.2 is well–known in the bounded cost case (condition C0). The condition
C1 was introduced by Lippman [22] to reduce the unbounded (in the supremum
norm) cost problem to a bounded problem, which is done by defining a weighted
supremum norm, where the “weight” is the function w in C1. Lippman’s approach
has been used and extended by many authors; see e. g. [14, 29] and their references.

3. It is interesting to note that the condition C1 (ii) on w implies that {w(xn)}
is a Pπ

x –super–martingale for any π ∈ ∏
and x ∈ X. That is, for any n = 0, 1, . . . ,

(3.1) – (3.2) and C1 (ii) yield

Eπ
x [w (xn+1) |hn] =

∫

A

∫

X

w(y)Q (dy |xn, an)πn (dan |hn)

≤ w(xn) Pπ
x − a.s.

In Systems Theory, a function w satisfying C1 (ii) is called a Lyapunov func-
tion and its relation to some “stability” and recurrence properties are well–known
[6, 10, 16, 25]. It would be interesting to investigate what kind of information (if any)
C1(ii) gives on the “stability”properties of the controlled process {xt}.

4. Condition C2 has also been used by several authors, e. g. [1, 4, 7, 14].
5. Another sufficient condition for (4.8) can be obtained by analogy with related

results for controlled diffusion processes. For instance, Kushner’s [20] Theorem 3
can be restated in our context as follows:

(∗) Suppose that there is a nonnegative measurable function F on IR such that
F (r)/r ↑ ∞ as r → ∞, and

∫
F (u(y)) Q (dy |x, a) ≤ F (u(x)) ∀ (x, a) ∈ IK,

where u(x) := V (π∗, x). Then (4.8) holds.

The proof of (∗) is similar to the proof for diffusions.

5. APPROXIMATIONS

The study of approximations to the optimal cost function V ∗ is important for both
theoretical and computational purposes. For instance, in Theorem 4.2 (a) we have
seen that V ∗ is the limit of the monotone increasing sequence of value iteration
(VI) functions, from which we immediately conclude some properties of V ∗ (see
Theorem 4.2 (b)). It is also worth noting that the VI approximation scheme is
defined recursively and that it amounts to approximate V ∗ by problems with a finite
number of stages (cf. (4.3) – (4.5)). In this section we consider three more types of
approximations to V ∗. The first one is via infinite–horizon problems with bounded
(or “truncated”) costs cn(x, a) ↑ c(x, a), and the second one is a combination of
bounded costs and finite–horizon (VI–like) approximations. These two are monotone
increasing approximations to V ∗. Finally, the third one is the standard Policy
Iteration (PI), which provides decreasing approximations.

Assumptions 2.1 and 4.1 are supposed to hold throughout the following .
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Bounded costs. Let {cn(x, a), n = 0, 1, . . .} be a sequence of nonnegative, bounded
functions on IK such that cn ↑ c and, for each n, Assumption 2.1 (a) holds when c is
replaced by cn. (For instance, the truncated cost cn(x, a) := min {c(x, a), n} satis-
fies Assumption 2.1 (a) if the sets A(x) are compact.) Now, instead of (3.3) – (3.4),
consider the corresponding cost functions

Un(π, x) := Eπ
x

∞∑
t=0

αtcn (xt, at) , and U∗
n(x) := inf

π
Un(π, x). (5.1)

For each n, the optimal cost function U∗
n(x) is the unique bounded function in L(X)+

that satisfies the OE (cf. (4.1)=(4.6))

U∗
n = Tn U∗

n, (5.2)

where, for v ∈ L(X)+,

Tnv(x) := min
a∈A(x)

[
cn(x, a) + α

∫
v(y)Q (dy |x, a)

]
. (5.3)

Recursive bounded costs. The VI equation (4.3) suggests to introduce a se-
quence {un} defined recursively as u0 := 0, and un := Tn un−1 for n ≥ 1; that is,

un(x) = min
a∈A(x)

[
cn(x, a) + α

∫
un−1(y)Q (dy |x, a)

]
. (5.4)

Policy iteration (PI). Let f0 ∈ IF be a stationary policy with a finite–valued
discounted cost V (f0, ·) =: w0(·) ∈ L(X)+. As in (4.11), we may write

w0(x) = c (x, f0) + α

∫
w0(y)Q (dy |x, f0) ∀x ∈ X. (5.5)

Now, with T being the operator defined in (4.2), let f1 ∈ IF be such that

c (x, f1) + α

∫
w0(y)Q (dy |x, f1) = Tw0(x), (5.6)

i. e. (cf. Lemma 2.7 (b)),

c(x, f1) + α

∫
w0(y)Q (dy |x, f1) = min

a∈A(x)

[
c(x, a) + α

∫
w0(y)Q (dy |x, a)

]
.

Write w1(·) := V (f1, ·). In general, given fn ∈ IF, suppose that wn(·) := V (fn, ·)
is in L(X)+, and let fn+1 ∈ IF be such that

c (x, fn+1) + α

∫
wn(y)Q (dy |x, fn+1) = Twn(x)

= min
a∈A(x)

[
c(x, a) + α

∫
wn(y)Q (dy |x, a)

]
. (5.7)

Theorem 5.1. (a) Each of the sequences U∗
n and un is monotone increasing and

converges to V ∗.
(b) There exists a measurable nonnegative function w ≥ V ∗ such that wn ↓ w,

and w satisfies the OE w = Tw. If, moreover, w satisfies

lim
n→∞

αnEπ
xw(xn) = 0 ∀π, x, (5.8)

then w = V ∗.
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P r o o f . (a) Let us first show that U∗
n ↑ V ∗. To begin with, note that, since

cn ↑ c, it is clear from (5.1) that U∗
n is an increasing sequence in L(X)+ and,

therefore, there exists a function u ∈ L(X)+ such that U∗
n ↑ u. Moreover, from

Lemma 2.7 (c), letting n → ∞ in (5.2) we see that u = Tu, i. e., u satisfies the OE.
This implies that u ≥ V ∗, since, by Theorem 4.2 (b), V ∗ is the minimal solution in
L(X)+ to the OE. On the other hand, it is clear from (5.1) that U∗

n ≤ V ∗ for all
n, so that u ≤ V ∗. Thus u = V ∗, i. e. U∗

n ↑ V ∗. Finally, a completely analogous
argument shows that un ↑ V ∗.

(b) Let us now consider the sequence of PI functions wn. We will first show that
this sequence is decreasing. From (5.5),

w0(x) ≥ min
a∈A(x)

[
c(x, a) + α

∫
w0(y)Q (dy |x, a)

]

= Tw0(x),

so that, by (5.6),

w0(x) ≥ c (x, f1) + α

∫
w0(y)Q (dy |x, f1) .

As in the proof of Lemma 4.4 (a), the latter inequality implies

w0(x) ≥ V (f1, x) =: w1(x).

In fact, a similar argument clearly holds for arbitrary n, so that, from (5.7),

wn ≥ Twn ≥ wn+1 ∀n ≥ 0. (5.9)

Hence, by monotonicity, there is a nonnegative measurable function w such that
wn ↓ w. Clearly, w ≥ V ∗, since wn ≥ V ∗ for all n. Now, from [18, Lemma 3.4]
(or [17, Lemma 3.3]) if hn is a sequence of functions on IK such that hn ↓ h, then

lim
n→∞

inf
a∈A(x)

hn(x, a) = inf
a∈A(x)

h(x, a).

Thus applying this result to (5.9), we get w ≥ Tw ≥ w, i. e., w satisfies the OE
w = Tw. Finally, the last statement in part (b), assuming (5.9), follows from
Lemma 4.4 (b). 2

Comments. 1. Each of the conditions C0, C1 and C2 in Definition 4.5 implies
(5.8), in which case w = V ∗. In general, however, w > V ∗. This kind of “abnor-
mal” behavior of upper, decreasing approximations wn (as opposed to the “nicely
behaved” increasing approximations in Theorems 5.1 (a) or 4.2 (a), which do con-
verge to V ∗), has been noted by several authors in related contexts [1, 17, 30].

2. For MCPs satisfying C0, C1 or C2, or with some particular structural property
– e. g. convexity –, many other types of approximations are possible [2, 7 ,11, 12, 14, 15, 17, 28
– 30].

6. OTHER OPTIMALITY CRITERIA

Let us rewrite the OE (4.1) as

min
a∈A(x)

Φ(x, a) = 0. (6.1)

where
Φ(x, a) := c(x, a) + α

∫
V ∗(y)Q (dy |x, a) − V ∗(x) (6.2)
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is the so–called discrepancy function. This name for Φ comes from the fact that

V (π, x) − V ∗(x) ≥ Φ(x, a) (≥ 0) (6.3)

for any policy π = {πt} with initial action π0(x) = a ∈ A(x) when x0 = x. Thus
Φ(x, a) bounds from below the “deviation from optimality” of the policy π (see
[7, §5], or Lemma 6.2 (c) below).

The objective in this section is to present optimality criteria in terms of Φ and
also in terms of the sequence {Mn} defined as

Mn :=
n−1∑
t=0

αtc (xt, at) + αnV ∗(xn) for n = 1, 2, . . . , (6.4)

with M0 := V ∗(x0).
To begin, let us note that if

V n(π, x) := Eπ
x

∞∑
t=n

αt−nc(xt, at) (6.5)

denotes the total expected discounted cost from stage n onward, when using the
policy π and given x0 = x, then from (3.3) and (4.5) we have

V (π, x) = Vn(π, x) + αnV n(π, x). (6.6)

On the other hand, using (6.4) and (6.5) we can also write V (π, x) as

V (π, x) = Eπ
x (Mn) + αn [V n(π, x) − Eπ

xV ∗(xn)] . (6.7)

We now state the main result in this section.

Theorem 6.1. Let π be a policy such that V (π, x) < ∞ for each x ∈ X. Then
the following statements are equivalent:
(a) π is an optimal policy.
(b) V n(π, x) = Eπ

xV ∗ (xn) ∀n, x.

(c) Eπ
x Φ(xn, an) = 0 ∀n, x.

(d) {Mn} is a Pπ
x –martingale ∀x.

To prove this theorem we will use the following result from Schäl [28].

Lemma 6.2. Let π be a policy such that V (π, x) < ∞ for each x ∈ X (one such
policy exists, by Assumption 4.1). Then:

(a) V n(π, x) ≥ Eπ
xV ∗(xn) ∀n.

(b)
∞∑

t=n

αt−nEπ
xΦ(xt, at) = V n(π, x) − Eπ

xV ∗(xn) ∀n, x; in particular (for n =0),

(c) V (π, x) − V ∗(x) =
∞∑

t=0

αtEπ
xΦ(xt, at).

Parts (a) and (b) in Lemma 6.2 correspond to Schäl’s [28] Theorem 2.13 and
Lemma 2.16, respectively. Schäl uses a “Lyapunov condition”, similar to C1 in § 4, to
obtain the growth condition (4.8) (see our Theorem 4.6), from which Lemma 6.2 (b)
is immediately deduced. In our case, the latter conclusion follows from Lemma
6.2 (a), which implies

0 ≤ αnEπ
xV ∗ (xn) ≤ αnV n(π, x) → 0 as n → ∞ (6.8)

where the latter convergence is obtained from (6.6) and the assumption that V (π, x)
is finite.

We also need the following elementary result.
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Lemma 6.3. For any π ∈ ∏
and x ∈ X, {Mn} is a Pπ

x –sub–martingale, i. e.

Eπ
x (Mn+1 |hn) ≥ Mn Pπ

x − a.s. ∀n.

Therefore
Eπ

xMn+1 ≥ Eπ
xMn ≥ · · · ≥ Eπ

xM0 = V ∗(x) ∀n. (6.9)

P r o o f . From (6.2) and (3.2),

Φ (xn, an) = Eπ
x [c (xn, an) + αV ∗ (xn+1) − V ∗(xn) |hn, an] ,

whereas from (6.4),

Mn+1 = Mn + αn [c (xn, an) + αV ∗ (xn+1) − V ∗(xn)] .

Therefore, by the properties of conditional expectations,

Eπ
x (Mn+1 |hn) = Mn + αnEπ

x [Φ (xn, an) |hn] . (6.10)

This implies the desired result, since Φ ≥ 0. 2

Proof of Theorem 6.1. First we show that (a) and (b) are equivalent.
(a) implies (b). Let π be an optimal policy, i. e., V (π, x) = V ∗(x) for all x.

Then, from (6.7) and (6.9),

V ∗(x) = Eπ
x (Mn) + αn [V n(π, x) − Eπ

xV ∗(xn)]
≥ V ∗(x) + αn [V n(π, x) − Eπ

xV ∗(xn)] .

This implies V n(π, x) ≤ Eπ
xV ∗(xn) and, therefore, by Lemma 6.2 (a), we obtain

part (b) in Theorem 6.1. Conversely, (b) implies (a): take n = 0.
The equivalence of (b) and (c) follows from Lemma 6.2 (b).
Finally the equivalence of (c) and (d) follows from (6.10), the properties of con-

ditional expectations, and Φ ≥ 0. 2

Comments. Theorem 6.1 puts together optimality criteria known separately for
several classes of controlled processes. For instance, the implication (a) =⇒ (b) is
the well–known Bellman’s Principle of Optimality ; see, e. g., [2, p. 12], [18, p. 109].
The equivalence of parts (a) and (d) is also well–known [26]; for continuous–time
(e. g. diffusion) processes see, e. g., [8]; for average–cost problems see [24]. We also
note that the discrepancy function Φ in (6.2) is the “discounted–cost analogue” of
Mandl’s [24] discrepancy function ϕ in the average–cost case. On the other hand,
observe that (4.7) can be written as

Φ (x, f∗(x)) = 0 ∀x. (6.11)

In other words, from Theorem 4.2 (c) and equation (6.1), we may restate the equiv-
alence of (a) and (c) in Theorem 6.1 as follows: A stationary policy f∗ is optimal if
and only if it satisfies (6.11).

7. ASYMPTOTIC OPTIMALITY

Sections 4 and 6 present several characterizations of an optimal policy; these results
do not say, however, how one can compute or, at least, “estimate” one such policy.
In this section we briefly discuss the notion of asymptotic optimality, which allows
us to say when a given control policy is “close” to being optimal. The basic ideas
were introduced by Schäl [28] in his analysis of adaptive control problems (see also
[11] Chapter 2).

The following definition, in which Φ(x, a) is the discrepancy function in (6.2), is
motivated by Theorem 6.1 (c) – see also Lemma 6.2 (c) and equation (6.11).
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Definition 7.1. (a) A policy π ∈ ∏
is said to be asymptotically optimal (AO) if,

for each x ∈ X,
Eπ

xΦ(xn, an) → 0 as n → ∞. (7.1)

(b) A Markov policy π = {fn} is called pointwise asymptotically optimal (pointwise
AO) if, for each x ∈ X,

Φ (x, fn(x)) → 0 as n → ∞. (7.2)

Observe that, by Theorem 6.1 (a), (c), if a policy is optimal, then it is AO. On the
other hand, from Lemma 6.2 and equation (6.7) we immediately obtain the following
result.

Theorem 7.2. Let π ∈ ∏
be such that V (π, x) < ∞ for each x. Then the

following statements are equivalent:

(a) π is AO.

(b) lim
n→∞

[V n(π, x) − Eπ
xV ∗(xn)] = 0 for each x.

(c) lim
n→∞

∞∑
t=n

αt−nEπ
xΦ(xt, at) = 0 for each x.

(d) V (π, x) = Eπ
x(Mn) + o(αn) as n → ∞, for each x.

Theorem 7.2 is the “asymptotic version” of Theorem 6.1. Observe also that if
the cost per stage c(x, a) is bounded , then (7.1) (hence each of (a) – (d) in Theorem
7.2) is equivalent to: For each x ∈ X,

Φ (xn, an) → 0 in Pπ
x –probability as n → ∞. (7.3)

This follows from the Dominated Convergence Theorem. In the bounded cost case
again, and if π = {fn} is a Markov policy, then (7.3) holds whenever the convergence
in (7.2) is uniform in x ∈ X.

For pointwise asymptotic optimality we do not have a general result such as
Theorem 7.2, but very often it is easier to verify (7.2) than (7.1). Let us give an
example.

Example 7.3. Let {vn} be the sequence of value iteration (VI) functions in (4.3),
and let π = {fn} be the Markov policy defined as follows: f0 ∈ IF is arbitrary, and
for n = 1, 2, . . . , fn ∈ IF minimizes the r.h.s. of (4.3), i. e.,

vn(x) = c (x, fn) + α

∫
vn−1(y)Q (dy |x, fn) ∀x. (7.4)

(Recall Remark 3.2.) We will show that π is pointwise AO.
From (6.2),

Φ (x, fn(x)) = c(x, fn) + α

∫
V ∗(y)Q (dy |x, fn) − V ∗(x),

so that, from (7.4),

Φ (x, fn(x)) = α

∫
[V ∗(y) − vn−1(y)] Q (dy |x, fn) − [V ∗(x) − vn(x)] .

Thus, since vn ↑ V ∗ (Theorem 4.2 (a)),

Φ (x, fn(x)) ≤ a

∫
[V ∗(y) − vn−1(y)] Q (dy |x, fn) ∀n, x. (7.5)
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On the other hand, from (4.1),

V ∗(x) ≤ c (x, fn) + α

∫
V ∗(y)Q (dy |x, fn) ,

which combined with (7.4) yields

V ∗(x) − vn(x) ≤ α

∫
(V ∗(y) − vn−1(y)) Q (dy |x, fn) . (7.6)

Iterating this inequality we obtain

V ∗(x) − vn(x) ≤ α2

∫
(V ∗(y) − vn−2(y)) Q2 (dy |x; fn, fn−1) ,

where
Q2 (· |x; fn, fn−1) =

∫

X

Q (· | y, fn−1)Q (dy |x, fn) .

In general, further iteration of (7.6) yields (since v0(·) := 0)

V ∗(x) − vn(x) ≤ αn

∫
V ∗(y)Qn (dy |x; fn, fn−1, . . . , f1) (7.7)

= αnEπ
xV ∗(xn) ∀n, x,

where Qn denotes the n-step transition probability of the Markov chain {xn}; see
Remark 3.1. Thus assuming that V (π, x) < ∞ for each x ∈ X, the inequalities
(7.5) – (7.7) yield

Φ (x, fn(x)) ≤ αnEπ
xV ∗(xn) ≤ αnV n(π, x) → 0

by Lemma 6.2 and (6.8). This proves (7.2); that is, the “VI policy” defined by (7.4)
is pointwise AO.

Comments. Asymptotic optimality (AO) has been studied by several authors,
but typically under conditions such as C0, C1 and C2. For applications of AO to sev-
eral adaptive control policies and approximation procedures – including state or dis-
turbance space discretizations, and “rolling horizon” policies – see e. g. [7, 11, 12, 14, 15, 17, 28].
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