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AN APPROXIMATION OF THE PRESSURE
FOR THE TWO-DIMENSIONAL ISING MODEL

Martin Janžura

A sequence of pressure functions corresponding to some one-dimensional models is used to
approximate the pressure function of the two-dimensional Ising model. The rate of convergence is
derived and the method is demonstrated with a numerical study.

1. INTRODUCTION

The two-dimensional Ising model is the simpliest non-trivial Gibbs random field.
Namely, a probability measure µ on the space {0, 1}Z2

is called to agree with the Ising
model if its one-dimensional conditional distributions satisfy the “nearest-neighbor”
property and can be expressed in the following way

µ
(
xt |xZ2\{t}

)
= µ (xt |x∂t) = Πt

(
xt |xZ2\{t}

)

for every t ∈ Zd and a. e. x ∈ {0, 1}T [µ], where

Πt

(
xt |xZ2\{t}

)
=

exp {−xt (h + J1 (xt+u + xt−u}+ J2 (xt+v + xt−v))}
1 + exp {−h− J1 (xt+u + xt−u)− J2 (xt+v + xt−v)}

are called the local characteristics,

∂t =
{
s ∈ Z2; ‖t− s‖ = 1

}
= {u,−u, v,−v} , u = (1, 0), v = (0, 1),

and h, J1, J2 are arbitrary constants.
In general, the system {Πt(·|·)}t∈Z2 depending on the triplet (h, J1, J2) does not

determine the probability measure µ uniquely. The existence, uniqueness, and other
properties of the Ising model are closely related to the function called the pressure
and defined by the limit

lim
V↗Z2

|V |−1 log
∑

xV ∈{0,1}V

exp



−h

∑

t∈V

xt − J1

∑

t∈V ∩(V−u)

xt xt+u − J2

∑

t∈V ∩(V−v)

xt xt+v



 =

= p (h, J1, J2)

where V ↗ Z2 means the expansion ensuring |V |−1 |V ∩ (V − t)| −→ 1 for every
t ∈ Z2. (By |V | we denote the cardinality.)

But, with the exception of the famous Onsager’s result (cf. [3]), concerning a
special case of the problem, no direct way of calculating the pressure p is known.
Therefore various approximative methods, using mostly some kind of expansion, are
applied. Here, we propose a new approximative method based on an approximation
of the pressure of the two-dimensional model by the pressure of some properly chosen
one-dimensional models, for which the transfer matrix method is available (cf. [2]).

As will be seen later, the method works quite well in the “high temperature” area
(i. e. for “small” parameters h, J1, J2) and even in the neighborhood of the critical
point it seems to give satisfactory results.
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2. BASIC LEMMA

For a fixed positive integer R and a real γ let us consider the two-dimensional model
with the state space X = {0, 1}R and the “nearest-neighbor” local characteristics
given by

Π
γ

t

(
xt |xZ2\{t}

)
=

exp
{
−U0

γ (xt)−
∑

s∈∂t

Us
γ (xt, xt+s

}

∑
yt∈X

exp
{
−U0

γ (yt)−
∑

s∈∂t

Us
γ (yt, xt+s)

}

for every xt ∈ X, x∂t ∈ X
∂t

, where

U0
γ (x) = h ·

R∑

i=1

xi + J1

R−1∑

i=1

xi xi+1,

Uu
γ (x, y) = γ · J1 · xR y1, U−u(x, y) = Uu(y, x),

Uv
γ (x, z) = J2 ·

R∑

i=1

xi zi + (1− γ)J1 xR z1, U−v(x, z) = Uv(z, x),

for every x, y, z ∈ X.
Let us denote by GI(γ) the set of translation invariant probability distributions

on X
Z2

with the one-dimensional conditional distributions equal a. s. to the local
characteristics

{
Π

γ

t

}
t∈Z2

.

Finally, we denote by

pγ (h, J1, J2) =

= lim
V↗Z2

|V |−1 log
∑

xV ∈X
V

exp



−

∑

t∈V

U0
γ (xt)−

∑

t∈V ∩(V−u)

Uu
γ (xt, xt+u)−

∑

t∈V ∩(V−v)

Uv
γ (xt, xt+v)





the pressure corresponding to above defined model.

Lemma. Let γ∗ ∈ [0, 1] be the point at which the function

F (γ) = γp1 (h, J1, J2) + (1− γ)p0 (h, J1, J2)− pγ (h, J1, J2)

assumes its maximum. Then there exists

µ∗ ∈ GI(γ∗)

such that

p1 (h, J1, J2)− p0 (h, J1, J2) = J1

[
µ∗

(
xR

0 · x1
u = 1

)− µ∗
(
xR

0 · x1
v = 1

)]

holds.
P r o o f . The statement follows immediately from the equivalence between trans-

lation invariant Gibbs states and tangent functionals to the convex functional p (cf.
[4], Thm. 8.3) and the general subdifferential calculus (cf. e. g. [5], Sec. 5).

3. MAIN RESULT

Now, let us make clear what was the aim of introducing the models with the “ag-
gregated” state space X in the preceding section.
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Directly from the definitions it is easy to see that

p1 (h, J1, J2) = R · p (h, J1, J2)

holds for every triplet (h, J1, J2).
Since for γ = 0 there is no horizontal interaction, i. e. the model consists of

mutually independent columns, we may view the model as a one-dimensional one.
And, considering all xt, t ∈ Z as the corresponding segments of a sequence xZ =
{xs}s∈Z ∈ {0, 1}Z (we put xs = xi

t for s = t ·R + i), we conclude that

p0 (h, J1, J2) = R · pR (h, J1, J2) ,

where

pR (h, J1, J2) =

= lim
n→∞

|2n + 1|−1 log
∑

x[−n,n]∈{0,1}[−n,n]

exp



−h

n∑

j=−n

xj−J1

n−1∑

i=−n

xj xj+1−J2

n−R∑

i=−n

xj xj+R





is the pressure of the one-dimensional model with the state space {0, 1} and the local
characteristics

Π0
t

(
xt |xZ\{t}

)
=

exp {−hxt − J1xt (xt+1 + xt−1)− J2 (xt−R + yt+R)}
1 + exp {−h− J1 (xt+1 + xt−1)− J2 (xt−R + xt+R)} ,

for every t ∈ Z, xt ∈ {0, 1}, xZ\{t} ∈ {0, 1}Z\{t}.
Now, we may formulate the main result on the approximation.

Theorem. For every triplet (h, J1, J2) it holds
∣∣p (h, J1, J2)− pR (h, J1, J2)

∣∣ ≤ (2R)−1 |J1|,

and therefore
p (h, J1, J2) = lim

R→∞
pR (h, J1, J2) .

P r o o f . The statement follows from Lemma and the considerations above if we
realize that the probability measures

νu(x, y) = µ∗
(
xR

0 = x, x1
u = y

)
, x, y ∈ {0, 1},

and
νv(x, y) = µ∗

(
xR

0 = x, x1
v = y

)
, x, y ∈ {0, 1}

have the same marginals, and therefore

|νu(1, 1)− νv(1, 1)| ≤ 1
2
.

2

Remark. The values of pR may be calculated with the aid of the transfer matrix
(for details see e. g. [2], Section I.2.1). Of course, actually we are able to calculate pR

for rather small R only. But the convergence is, in fact, quite fast, and even R = 6
or R = 7, especially in high temperature area (i. e. for rather small interactions),
give nice results.
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4. NUMERICAL STUDY

Now, we try to demonstrate the method with a particular case which has been
chosen in order to make possible a comparison of the obtained results with the
rigorous Onsager’s one.

Therefore, let J1 = J2 = J ≥ 0 and h = −2J .
For R = 4, 5, 6, 7 and some J ∈ [0, 2] the values of pR(−2J, J, J) obtained by the

transfer matrix method (cf. [2], Section I.2.1) are given in the table.

J = 0 J = 0.5 J = 1.0 J = 1.5 J = 2 · log(1 +
√

2) J = 2
R = 4 0.6931 0.9589 1.2579 1.5916 1.7800 1.9568
R = 5 0.6931 0.9590 1.2595 1.6085 1.8213 2.0320
R = 6 0.6931 0.9590 1.2590 1.5999 1.7968 1.9841
R = 7 0.6931 0.9590 1.2591 1.6051 1.8158 2.0297

Here, for the critical point Jc = 2 log
(
1 +

√
2
)

the exact Onsager’s solution gives

p (−2Jc, Jc, Jc) = log
(
1 +

√
2
)

+ log 2/2 + 2 ·G/π
.= 1.8110692

(G = 0.915965594 is the Catalan’s constant).
Trying to make differences between the functions pR for various R’s more evident,

we deal with their deviations

qR(J) = pR(−2J, J, J)− log 2− J/2

from the line log 2 + J/2 (i. e. their common tangent in J = 0) in the following
figure.

Similarly, we denote q (Jc) = p (−2Jc, Jc, Jc)− log 2− Jc/2 .= 0.2365.

5. CONCLUDING REMARK

Approximation of the described type was at first derived in [1] for purpose of ap-
plication in mathematical statistics. But here a completely different proof is used,
which yields a stronger result and deeper insight into the problem.

(Received March 23, 1991.)
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