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PERFORMANCE OF HEDGING STRATEGIES

IN INTERVAL MODELS

Berend Roorda, Jacob Engwerda and J.M. Schumacher

For a proper assessment of risks associated with the trading of derivatives, the perfor-
mance of hedging strategies should be evaluated not only in the context of the idealized
model that has served as the basis of strategy development, but also in the context of other
models. In this paper we consider the class of so-called interval models as a possible testing
ground. In the context of such models the fair price of a derivative contract is not uniquely
determined and we characterize the interval of fair prices for European-style options with
convex payoff both in terms of strategies and in terms of martingale measures. We compare
interval models to tree models as a basis for worst-case analysis. It turns out that the added
flexibility of the interval model may have an important effect on the size of the worst-case
loss.

Keywords: uncertain volatility, robustness, option pricing, delta hedging, binomial tree
martingale measure

AMS Subject Classification: 62P05

1. INTRODUCTION

Since the publication of the Black–Scholes formula (Black and Scholes [6]), the theory
of option pricing has gone through extensive developments both in theory and in
applications. Today it is the basis of a multibillion dollar industry which covers
not only stock options but also contracts written on interest rates, exchange rates,
and so on. The theory has implications for the pricing of derivatives, but also for
the way in which the risks associated with these contracts can be hedged by taking
market positions in related assets. In fact the two sides of the theory are linked
together inextricably, since the theoretical price of an option is usually based on
model assumptions that imply that all risk can be eliminated by suitable hedging.
In daily financial practice, hedging is a theme that is at least as important as pricing;
indeed, probably greater losses have been caused by misconstrued hedging schemes
than by incorrect pricing.

Given the size of the derivatives markets, it is imperative that the risks associated
with derivative contracts are properly quantified. The idealized model assumptions
that usually form the basis of hedging constructions are clearly not enough to create a
reliable assessment of risk. Value-at-Risk (VaR) has been introduced by J. P. Morgan
(Risk Magazine [15]) as a way of measuring the sensitivity of the value of portfolios



576 B. ROORDA, J. ENGWERDA AND J.M. SCHUMACHER

to typical changes in asset prices. Although the VaR concept has been criticized on
theoretical grounds (see for instance Artzner et al. [1]) it has become a standard that
is used by regulatory authorities worldwide. For portfolios with a strong emphasis
on derivative contracts, the normality assumptions underlying the VaR methodology
may not be suitable and additional ways of measuring risk are called for to generate
a more complete picture.

Often, stress testing is recommended, in particular by practitioners, as a method
that should supplement other measures to create a full picture of portfolio risk (see
for instance Basle Comittee [3], Laubsch [12], Greenspan [8]). The method evaluates
the performance of given strategies under fairly extreme scenarios. In particular in
situations where worst-case scenarios are not easily identified, stress testing on the
basis of a limited number of selected scenarios may be somewhat arbitrary, however.
It would be more systematic, although also more computationally demanding, to
carry out a comprehensive worst-case search among all scenarios that satisfy certain
limits.

Major concerns associated to worst-case analysis are firstly, as already mentioned,
computational cost, and secondly, the dependence of the results on the restrictions
placed on scenarios. The latter problem cannot be avoided in any worst-case setting;
in the absence of restrictions on scenarios, the analysis will not lead to meaningful
results. To some extent the second problem may be obviated (at the cost of increased
computational complexity) by looking at the results as a function of the imposed
constraints. Among an array of risk management tools that are likely to be used
jointly in practice, worst-case analysis may be valued as a method that is easily
understood also by non-experts. In this paper we consider a fairly simple framework
for worst-case analysis. We derive some theoretical properties and investigate issues
of computational complexity. The model that we use can be described as follows.

In the standard Black–Scholes model, there is one parameter that is not directly
observable, namely the volatility. When the value of this parameter is inferred from
actual option prices, quite a bit of variation is seen both through time and across
various option types. It is therefore natural that uncertainty modeling in the context
of option pricing and hedging has concentrated on the volatility parameter. In
particular, the so-called uncertain volatility model has been considered by a number
of authors (Avellaneda et al. [2], Lyons [13], Wilmott [16]). In this model, volatility is
assumed to range between certain given bounds, and prices and hedges are computed
corresponding to a worst-case scenario.

The uncertain volatility model as proposed in the cited references assumes con-
tinuous trading, which is of course an idealization. In this paper we consider a
discrete-time version which we call an interval model . In such a model the relative
price changes of basic assets from one point in time to the next are bounded below
and above, but no further assumptions concerning price movements are made. The
purpose of the present paper is threefold: (i) to add to the knowledge of this model
by proving some theoretical properties; (ii) to investigate in a few computational
experiments whether worst-case analysis in the setting of interval models adds sub-
stantially to what can be inferred from parametric analysis; (iii) to suggest a way of
reducing computational complexity without much loss of impact of the analysis.
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We shall consider the hedging of a European-style derivative (i. e., fixed time of
expiry) on a single underlying asset; in parts of the development below we assume
that the derivative has a convex payoff function, such as is the case for instance for
a call option or a put option. Taking the total costs of hedging and final closure
of the position as a measure of performance, we show that for each given hedge
strategy there is an interval of associated costs corresponding to the set of paths in
an interval model. We investigate first the best obtainable hedging results within
a given interval model both for a short position and for a long position in the
derivative. The intersection of the cost intervals associated to all strategies can
also be interpreted as the set of option premiums that are consistent with arbitrage
pricing, and therefore we refer to it as the fair price interval. We show that, when
the payoff is convex, this interval can in fact be obtained as the intersection of the
cost intervals corresponding to only two strategies that are based on a maximum-
volatility assumption and a minimum-volatility assumption respectively.

The use of interval models as a tool for worst-case analysis is investigated in a
number of test cases. We take standard binomial delta strategies as examples and
compute worst-case costs in a number of cases with misspecified volatility param-
eters, comparing the results to the ones that would have been obtained from an
analysis based on a binomial tree model. It turns out that, even when we consider
hedging of a European product with convex payoff, the additional flexibility in asset
prices offered by the interval model may have an important impact on computed
worst-case costs. The effect appears to derive from the fact that the interval model
provides more freedom for the price of the underlying to enter a worst-case regime.
Our results suggest that the use of an interval specification is particularly crucial
in the first simulation steps; this suggests a way of achieving flexibility at limited
computational cost.

Interval models have been studied before by Kolokoltsov [11] who gave a char-
acterization of the interval of fair prices for European options with a nondecreasing
and convex payoff function in these models. His characterization is in terms of iter-
ated Bellman operators and leads to an explicit expression for the upper bound of
the fair price interval. Here we characterize the interval of fair prices in a different
way, associating both bounds of the fair price interval to particular hedge strategies.
Kolokoltsov also discusses options on several underlyings and the continuous-time
limit of the interval model. These are topics that we do not consider here; we em-
phasize the role of interval models in worst-case analysis. Howe and Rustem [9]
have used interval models as a basis for optimization of portfolio strategies, taking
transaction costs into account. Their examples concern optimization over one or two
time steps. The performance of the resulting strategies over the full lifetime of the
option might be assessed in the way proposed in this paper; for simplicity however
we have chosen to take simple delta strategies as examples.

Interval models have also been studied recently, and independently, by Bernhard
[4,5], from the perspective of robust control and game theory. The same upper bound
on fair prices is derived for options with convex payoff (like in Kolokoltsov [11]),
together with the corresponding optimal hedge. In addition, continuous time limits
are discussed, and, in the second paper, the effect of transaction costs is analysed
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in detail. Results that are obtained here and that are not covered by Bernhard’s
papers include minimum fair prices, the connection with martingale measures, and
the worst-case analysis under non-optimal (delta-)hedging.

The paper is structured as follows. The nonprobabilistic framework that we
use is discussed briefly in general terms in the next section. Section 3 introduces
the interval model and presents some basic results concerning this model. Then in
Section 4 we turn to the use of interval models in worst-case analysis. We consider a
series of test cases in which we vary both strategy parameters and model parameters.
Conclusions follow in Section 5.

2. FRAMEWORK

2.1. Nonprobabilistic asset price models

We work in a discrete-time setting; time points are indicated by tj , j = 0, 1, 2, . . . .
We consider in this section a market with a single underlying asset. There are no
conceptual difficulties, however, in extending the analysis to a situation with multiple
assets. To simplify formulas we assume zero interest rates; this assumption is not
essential.

Our basic framework is nonprobabilistic. An asset price path is a sequence

S = {S0, S1, S2, . . . , SN} (1)

where Sj denotes the price of the underlying asset at time tj , and tN represents the
time horizon, which will be fixed in the discussion below. A model M is a collection
of such sequences of real numbers,

M ⊂ (R+)N+1; (2)

no probability structure is imposed at the outset. A European derivative maturing
at time tN is specified by a payoff function F (·); the value of the derivative at time
tN for a path {S0, . . . , SN} is F (SN ). In this paper we shall consider models in
which asset prices are always positive and so we can look at the payoff function as
a function from (0,∞) to R. We note that if such a function is convex, it is also
continuous.

2.2. Hedging strategies

For the purposes of this paper we assume that a particular derivative has been given
once and for all. We consider portfolios consisting of one option owed (short position)
and a quantity γ of the underlying asset held (long position). Positions are closed
at the expiry of the derivative. A strategy is a collection of strategy functions

{g0(S0), g1(S0, S1), . . . , gN−1(S0, . . . , SN−1)}

which at each time j determine the amount of the underlying asset to be held.
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Note that we take strategies to be non-anticipating by definition. Path indepen-
dent strategies take only the current price of the underlying into account and can
therefore be characterized by strategy functions gj(Sj).

For use later on, we mention some examples of strategies:

• the (left-continuous) stop-loss strategy: gj(Sj) = 0 if Sj ≤ X, and gj(Sj) = 1
if Sj > X, where X is a given parameter;

• the delta strategy with parameters F (·), u and d, which is given by strategy
functions ∆j that are defined recursively by

∆N−1(SN−1) =
F (uSN−1)− F (dSN−1)

(u− d)SN−1
(3)

∆j(Sj) = λ∆j+1(uSj) + (1− λ)∆j+1(dSj) (4)

where λ := u(1−d)
u−d .

The parameters that are used in the stop-loss strategy and in the delta strategy are
strategy parameters; they need not coincide with parameters of the interval model. A
strategy g is said to be continuous if the strategy functions are continuous functions
of their arguments. The delta strategy is continuous; the stop-loss strategy is not.

2.3. Fair prices

To a given hedging strategy g := {g0(S0), . . . , gN−1(S0, . . . , SN−1)} and a given price
path S = {S0, . . . , SN} we associate the total cost of hedging and closure defined by

Qg(F,S) := F (SN )−
N−1∑

j=0

gj(S0, . . . , Sj)(Sj+1 − Sj). (5)

The first term represents the cost of closure of a short position in the derivative at
time of expiry, and the second term (appearing with a minus sign) represents the
gains from trading in the underlying according to the hedging strategy. For a given
model M and a given initial price S of the underlying asset, the cost range of a
strategy g is defined as the set of all possible total costs for paths in the model that
start at the given initial price:

Ig(M, F, S) := {Qg(F,S) | S = (S0, . . . , SN ) ∈M, S0 = S}. (6)

Given some inital value S for the underlying asset, a price f for a European
derivative with payoff function F is said to be a fair price within the model M if for
all strategies g there are paths S1 and S2 in M such that

Qg(F,S1) ≤ f ≤ Qg(F,S2). (7)

For any given subset I of R, let co I denote the smallest convex subset of R containing
I. Then the above definition of a fair price may also be expressed as

f ∈ ∩g co Ig(M, F, S) (8)
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where the intersection takes place over all strategies. The right hand side in (8) is
an interval, which possibly may reduce to a single point. We shall refer to this set
as the fair price interval FPI(M, F , S) corresponding to the model M, the payoff
function F (·), and the initial price S. From the definition it follows that

if M1 ⊂M2 then FPI(M1, F , S) ⊂ FPI(M2, F , S). (9)

Intervals of fair prices are discussed by Pliska [14, § 1.5] in a single-period setting and
also appear in a stochastic continuous-time context; see for instance El Karoui and
Quenez [10].

Remark. In the definition above, a price f can be fair even if there exists a
strategy that generates costs that are equal to f along some (but not all) paths and
that are less than f along all other paths. It should be noted, though, that in our
nonprobabilistic setting no positive statement is made concerning the probability
that a path with costs less than f will occur. We believe that, among the various
possible definitions of the notion of a “fair price”, the one proposed above has to
be chosen if one wants to capture both the usual Cox–Ross–Rubinstein price in the
binomial model and the monotonicity property (9).

We now introduce martingale measures. We consider price paths of a fixed length
N + 1 with a given initial value S0 and so the measures that we shall consider can
be thought of as probability measures on the vector space RN . Any such measure
Q will be called a martingale measure for the model M with initial value S0 if it
assigns probability 1 to the paths in the model M with initial value S0 and if the
martingale property holds, that is, EQ(Sj+k | Sj , Sj−1, . . . , S0) = Sj for all j and
k ≥ 0. The set of all martingale measures for a modelM with initial condition S will
be denoted by Q(M, S). The most important property of martingale measures that
we shall need is the fact that the expected gain from any trading strategy under a
martingale measure is zero. From this it follows immediately (see (5) and (6)) that,
for any hedging strategy g applied to a European derivative with payoff function F ,
we have

EQF ∈ co Ig(M, F, S)

for any martingale measure Q ∈ Q(M, S). Consequently, we can write

{EQF | Q ∈ Q(M, S)} ⊂ ∩g co Ig(M, F, S)

where the intersection is taken over all strategies.

3. INTERVAL MODELS

3.1. Definition

The relations between the various sets that have been described above can be made
more precise in the context of specific models. In this paper we shall be interested
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in particular in models of the following type. Recall that in our setting models are
just collection of paths. An interval model is a model of the form

Iu,d := {S | Sj+1 ∈ [dSj , uSj ] for j = 0, 1, 2, . . . } (10)

where u and d are given parameters satisfying d < 1 < u. The figure below illustrates
a typical step in a price path of an interval model.

sSj
(

(
(

(
(

(
s Sj+1 = vSj , d ≤ v ≤ u

dSj

uSj

The interval model may be compared to the standard binomial tree model with
parameters u and d (Cox, Ross and Rubinstein [7])

Bu,d := {S | Sj+1 ∈ {dSj , uSj} for j = 0, 1, 2, . . . }. (11)

Binomial models are motivated mainly because they can be used to approximate
continuous-time models by letting the time step tend to zero. In contrast, the
interval model may be taken seriously on its own, even for time steps that are not
small.

3.2. Cost intervals

Our first result states that if asset prices behave according to an interval model, then
the cost range of any strategy is an interval. The term “interval” is understood here
as “convex subset of R”; that is to say, intervals may be closed, open, or half-open,
or may consist of a single point. In the proposition below we assume only continuity
(rather than convexity) of the payoff function.

Proposition. Consider an interval model Iu,d. For any strategy g with respect to
a European derivative with continuous payoff function F (·) and for any initial price
S, the cost range Ig(Iu,d, F, S) is an interval. If the strategy g is continuous, then
the cost interval is closed.

P r o o f . The proof proceeds by induction with respect to the number of periods
N . For N = 1 the cost of a strategy is given by F (S1) − γ0(S1 − S0) for some real
number γ0 = g0(S0), so it depends continuously on S1. Since S1 is restricted to an
interval and since continuous functions map intervals to intervals, Ig must be an
interval.

Next assume that the proposition is true for models with less than N steps, and
consider the total cost range Ig in an N -step model for some fixed strategy g. First
consider the costs of price paths {S0, . . . , SN} with SN = SN−1. It follows from the
induction hypothesis that the cost range of the strategy g over these paths forms an
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interval, I ′ say. Take p ∈ Ig and let {S0, . . . , SN−1, SN} be the corresponding path.
Consider the paths {S0, . . . , SN−1, αSN + (1 − α)SN−1} for 0 ≤ α ≤ 1. Since the
corresponding costs depend continuously on α, they form an interval that contains p
and that also contains at least one point of I ′. Therefore, the set Ig may be written
as a union of intervals that all have at least one point in common with the interval
I ′, and so Ig is itself an interval.

If a strategy is continuous, the cost function associated to it is continuous in the
price paths. Because the set Iu,d ⊂ RN+1 is compact, the cost function then achieves
both its maximum and its minimum value on Iu,d. ¤

An example of a cost interval that is not closed is provided by the stop-loss
strategy as defined above in the case of a two-period model with u = 1.1, d = 0.8,
and S0 = 100, applied to a call option with exercise price X = 80. One readily
computes that the cost interval is [0, 36).

The computation of the cost interval amounts to determining the best and worst case
costs over all price paths in a given interval model, and algorithms can be designed
according to the principles of dynamic programming. We briefly sketch the standard
idea.

Let θj denote a state variable at time tj that summarizes all information over the
strict past t0, . . . , tj−1 that is relevant to a given strategy g. Replacing past prices
by θj in the argument of the strategy functions gj we obtain the state space system

θj+1 = fj(θj , Sj), θ0 fixed

γj = gj(θj , Sj)
(12)

where fj is a state evolution function and γj is the hedge position at tj according to
strategy g. Now determine, for every time instant, value functions V max and V min

that assign to a state (θj , Sj) the worst-case and best-case costs respectively over
all paths starting in Sj at tj that satisfy the restrictions of the given interval model.
Starting at expiry with boundary conditions

V min(N,SN , θN ) = V max(N, SN , θN ) := F (SN ) (13)

we are led to a backward recursive optimization

V min(j, Sj , θj) := min
v∈[d,u]

V min(j + 1, vSj , fj(Sj , θj))− gj(Sj , θj)(v − 1)Sj (14)

(and for V max “min” replaced by “max”). For discontinuous strategies the minima
and maxima above need not exist; taking infima and suprema instead, we actually
compute the closure of the cost interval.

The complexity of the algorithm depends on the number of state variables in the
hedge strategy and the number of underlyings. The number of required operations
is quadratic in NK where N is the number of time steps and K is the number of
grid points in the state space of the θ and S variables. For regular grids, K depends
exponentially on the dimension of θ and S. Variations of the above algorithm such
as using a forward rather than a backward recursion do not fundamentally affect
this complexity. In this paper we consider path-independent hedging strategies for
options on a single underlying.
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3.3. Characterizations of the fair price interval

In this section we characterize the fair price interval for European-style derivatives
with convex payoffs, both in terms of strategies and in terms of martingale measures.

3.3.1. Characterization in terms of strategies

Below we shall be interested in particular in two strategies. The first is the standard
binomial delta strategy for the binomial tree with the same parameters as the given
interval model. We call this the extreme delta strategy because it corresponds to
paths that at each time step exhibit the largest possible jump that is allowed by
the interval model in either the upward or the downward direction. The second
strategy that we shall consider is defined as follows. For a given convex function
F : (0,∞) 7→ R, the subdifferential ∂F (x) of F at x ∈ (0,∞) is defined as the set
of all scalars γ such that F (y) ≥ F (x) + γ(y − x) for all y. The fact that ∂F (x)
is non-empty for all x follows from the assumed convexity of F . The elements of
∂F (x) are called the subgradients of F at x. We call a subgradient strategy for a
European derivative with convex payoff F any strategy g such that g(Sj) ∈ ∂F (Sj).
For instance the stop-loss strategy defined above is a subgradient strategy for the
European call option.

The special role played by the extreme delta and the subgradient strategies is
indicated in the theorem below. In the theorem we place ourselves in the position of
an institution that holds a short position in a certain derivative and that is looking
for a hedging strategy. We shall identify strategies that minimize worst-case costs
and strategies that maximize best-case costs. The first are of course simple to
interpret; the latter strategies are more easily viewed as the opposites of strategies
that maximize worst-case gain for a party holding a long position in the derivative.
The theorem states that, in a situation described by an interval model, an institution
holding a short position in a European option with a convex payoff can minimize
its downward risk by hedging as if maximal volatility is going to occur. On the
other hand, an institution holding a long position will minimize its downward risk
by hedging as if minimal (actually zero) volatility will occur. Part 1 of the theorem
below can also be found in Kolokoltsov [11].

Theorem 1. Consider a frictionless market in which the price paths of an under-
lying asset follow an interval model with parameters u and d, where d < 1 < u; the
initial value S0 of the underlying is given. Let F (·) be the payoff function of a Eu-
ropean derivative, and assume that F is convex. We consider portfolios that consist
of (i) a given short position in the option, and (ii) a position in the underlying asset
that is determined at each time point by a trading strategy.

1. Lowest worst-case costs are generated by the extreme delta hedging strategy.
The corresponding costs, which we denote by fmax, are given by the Cox–Ross–
Rubinstein price of the derivative in the binomial tree model with the same
parameters as the interval model. Worst-case costs are achieved for paths in
this tree model.
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2. Highest best-case costs are generated by any subgradient strategy. The corre-
sponding costs are equal to fmin := F (S0) and are realized along the constant
path.

3. The fair price interval for the derivative is [fmin, fmax].

The p r o o f requires the following two technical lemmas. The first result is given
without proof by Kolokoltsov [11]; we provide a brief argument for completeness.

Lemma 1. Let u and d be such that d < 1 < u. If h : (0,∞) 7→ R is convex, the
function h̃(x) defined for x > 0 by

h̃(x) = min
γ∈R

max
dx≤y≤ux

[h(y)− γ(y − x)] (15)

is convex as well.

P r o o f . Since h(y)− γ(y− x) is convex as a function of y, the maximum in (15)
must be taken at the boundary of the interval [dx, ux], so

h̃(x) = min
γ

max[h(dx) + γ(1− d)x, h(ux)− γ(u− 1)x].

Since the first argument in the “max” operator is increasing in γ and the second is
decreasing, the minimum is achieved when both are equal, that is to say, when γ is
given by

γ =
h(ux)− h(dx)

(u− d)x
.

Therefore we have the following explicit expression for h̃ in terms of h:

h̃(x) =
1− d

u− d
h(ux) +

u− 1
u− d

h(dx). (16)

Since the property of convexity is preserved under scaling and under taking positive
linear combinations, it is seen from the above that the function h̃ is convex. ¤

Lemma 2. Let h(·) be a convex function, and let u and d be such that d < 1 < u.
Then we have

max
γ∈R

min
dx≤y≤ux

[h(y)− γ(y − x)] = h(x). (17)

P r o o f . We obviously have

min
dx≤y≤ux

[h(y)− γ(y − x)] ≤ h(x)

for all γ, since the value at the right hand side is achieved at the left hand side for
y = x. So to complete the proof it suffices to show that there exists γ such that

h(y) ≥ h(x) + γ(y − x)
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for all y. Clearly, any subgradient of h at x can serve as such. ¤

P r o o f o f T h e o r em 1 .

1. The value function for the problem of minimizing worst-case costs is given by

V (S, j) = min max
Sj=S


F (SN )−

N−1∑

k=j

γk(Sk+1 − Sk)


 (18)

where the minimum is taken over all strategies, and the maximum is taken over all
paths in the given interval model that satisfy Sj = S. The value function satisfies
the recursion

V (S, j − 1) = min
γ

max
dS≤S′≤uS

[V (S′, j)− γ(S′ − S)] (19)

and of course we have
V (S, N) = F (S). (20)

It follows from Lemma 1 that the functions V (·, j) are convex for all j. Therefore
the strategy that minimizes maximal costs is the same as the minmax strategy for
the binomial tree model with parameters u and d, and the corresponding worst-case
paths are the paths of this tree model.

2. The proof is mutatis mutandis the same as above; use Lemma 2 rather than
Lemma 1.

3. This is by definition a consequence of 1 and 2. ¤

In the case of a call option, the stop-loss strategy is best in the worst-case sense
for a party holding a long position, and the corresponding worst-case paths are those
in which the strike level is not crossed. More generally, it can be easily verified that
if we have a piecewise linear payoff function, then the worst-case paths for a party
holding a long position in the derivative and following a subgradient hedge strategy
are those in which the successive values of the underlying are confined to one of the
regions where the payoff function behaves linearly.

3.3.2. Characterization in terms of martingale measures

It is clear that interval models allow many martingale measures. For instance, for
an interval model with parameters u and d, all martingale measures associated to
binomial tree models with parameters u′ and d′ satisfying d ≤ d′ < 1 < u′ ≤ u
are also martingale measures for the interval model. We have already shown that
for interval models the fair price interval is closed. In the following theorem we
show that all fair prices are generated by martingale measures, and we indicate the
measures that generate the extreme points of the fair price interval.
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Theorem 2. Let an interval model Iu,d and an initial asset value S0 be given, and
let Q denote the set of all martingale measures that can be placed on the collection
of paths in Iu,d that start at S0. Consider a European derivative with convex payoff
F (·), and denote the fair price interval for the derivative by [fmin, fmax].

1. We have

{EQ[F (SN )] | Q ∈ Q} = [fmin, fmax].

2. The minimal option price fmin is the expected value of the derivative under the
martingale measure that assigns probability one to the constant path Sj = S0

for all j.

3. The maximal option price fmax is the expected value of the derivative under
the martingale measure that assigns probability one to the collection of paths
in the submodel Bu,d (the binomial tree model with parameters u and d).

P r o o f . Items 2. and 3. are clear from the previous theorem. One part of item 1.
follows easily from the characterization of the consistent price interval as the inter-
section of all cost intervals. Indeed, if Q is a martingale measure, then EQF (SN ) is
in the cost interval Ig for any strategy g, since the expected result from any trading
strategy under the martingale measure is zero. So EQF (SN ) is in the intersection of
all cost intervals. To show that every such premium can be obtained as an expected
value under some martingale measure, let Qα denote the martingale measure asso-
ciated to the binomial tree Bu,d with parameters uα := 1+α(u−1) and dα := 1/uα.
For 0 ≤ α ≤ 1, the measure Qα is also a martingale measure on Iu,d. The expected
option value fα := EQαF (SN ) is continuous in α; moreover fα = fmin for α = 0
and fα = fmax for α = 1. Hence every price f ∈ [fmin, fmax] occurs as an expected
option value under some martingale measure. ¤

For general incomplete markets in a single-period setting, the relation between
martingale measures and fair price intervals is given by Pliska [14, § 1.5]. There may
be many martingale measures along with the one mentioned in item 2. of the theorem
that generate the minimal price; for instance if the option is a call option, then any
martingale measure under which there is zero probability of crossing the strike level
will generate this price. On the other hand the maximal price is generated uniquely
by the measure indicated in item 3., except in the (trivial) case in which the payoff
function F (·) is linear; for instance, if the option is a call option, the measure is
unique until the asset price in a path becomes too high or low for crossing the
exercise level.

All intermediate prices are generated by many different martingale measures, and
unlike the extreme prices, they obviously allow for ‘equivalent martingale measures’,
in the sense that every set of paths in the interval model with positive (Lebesgue)
measure is assigned a positive probability.
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Example. For a simple illustration of the above results, consider a call option in a
one-step interval model. In such a model the choice of a strategy comes down to the
choice of a real number which indicates the position to be taken in the underlying
at time 0. In Figure 1 we show the results of the extreme delta and the stop-loss
strategies for a range of initial values S0. For both strategies we indicate the worst
and the best case under the interval model. Since we have shown that for the call
option the boundary points of the consistent price interval are given by these two
strategies, the consistent price interval can be read off for each value of S0 as the
intersection of the cost intervals of these two strategies.
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[S0 − X]+uS0 − X

(1 − d)S0

Fig. 1. Consistent price intervals in one-step models.

The thick lines correspond to the consistent price interval in the interval model Iu,d, as a

function of the initial price S0. Specifically, the upper bound is fmax = 1−d
u−d

(uS0 −X) and

the lower bound is fmin = [S0 −X]+. The thin lines with discontinuity in S0 = X denote

the worst-case costs for the Stop-loss strategy; the curved line below denotes the best-case

costs under the extreme delta strategy, which are given by (uS0−X)(S0−X)
(u−d)S0

. In addition,

for both strategies a cost interval is shown: for the delta strategy one with an initial price

below X, and for the stop-loss strategy one with an initial price above X.

4. WORST–CASE ANALYSIS

In this section we compare the results obtained from an interval model with those
obtained from a simpler model (the standard binomial model) in a number of test
cases. The derivative that we consider is a European call option. One may of
course in principle envisage many hedging strategies, but we shall restrict ourselves
to delta strategies derived from binomial tree models. Specifically we denote by
∆σ the standard hedge for the binomial tree model with parameters uσ and dσ,
where for each given number σ > 0 the parameters uσ and dσ are chosen such that
dσ = 1/uσ and the price of the option in the tree model with parameters uσ and
dσ is equal to the price in the continuous-time Black–Scholes model with volatility
parameter σ. In this way we have a one-parameter family of strategies that we shall
test.
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The tests will be carried out in an interval model. As always when one is carrying
out worst-case analysis, one has to specify the range of situations that will be con-
sidered; for an interval model this comes down to the choice of the parameters u and
d. The results of the test will depend on this choice; the choice is, however, to some
extent arbitrary. One way out is to carry out tests for a range of parameter values.
In view of the moderate computational demands associated to path-independent
hedging of derivatives on single assets, we will in fact proceed in this manner. We
shall consider interval models with parameters uτ and dτ which are determined by
the single parameter τ in the same way as above. These interval models will be
denoted by Iτ , and the tree models with the same parameters will be denoted by
Bτ .

When looking for worst-case scenarios, one may be tempted to think of paths
with extreme jumps. It turns out however that not always the paths with the largest
possible jumps are the ones that generate the worst costs. This is demonstrated in
the following simple example.

4.1. A non-extreme worst case

Consider an at-the-money European call option with exercise price X = S0 = 100 in
a two-period model. Let uσ = 1.20 and uτ = 1.25; this means that the hedge strategy
is based on σ = 0.16, whereas the actual volatility in the model is τ = 0.19. The
price of the option in the tree model Bσ is fmax = 9.09; in the tree model Bτ the price
is fmax = 11.11. The latter quantity also represents the maximal worst-case costs in
Iτ which are achieved by the extreme delta hedge ∆τ . If however the strategy ∆σ

is applied in the model Iτ , then the worst-case costs are found to be fmax = 13.26.
The corresponding worst-case path is {S0, S1, S2} = {100, 83.3, 104.2}. This is not
an extreme path. If we limit paths to the tree Bτ and we compute the worst-case
costs for the strategy ∆σ in this model, then we find the value fbin = 11.36; there are
two corresponding worst-case paths, namely {100, 125, 100} and {100, 125, 156.25}.

The conclusions from this example may be summarized as follows. The worst-case
costs for the strategy ∆σ in the interval model Iσ are equal to 9.09. A worst-case
analysis in the tree model Bτ suggests that this figure may increase to 11.36 if the
actual volatility turns out to be τ = 0.19 rather than σ = 0.16. However, if the
analysis is carried out in the interval model Iτ rather than in the tree model Bτ it
turns out that actually costs may go up to 13.26. So if the option is sold for 9.09
corresponding to the implied volatility σ = 0.16, the potential loss in an interval
model with volatility parameter τ = 0.19 is almost twice as big as in the binomial
tree model with the same parameter.

4.2. Worst cases in interval models vs. tree models

In a more extensive experiment, we consider the hedging of a European call option
in a ten-period model for several combinations of hedging strategies and interval
models. The following parameter values are used:
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initial price S0 = 100
exercise price X = 100
exercise time T = 1
interest rate r = 0
time step h = 0.1, so N = 10.

As our main reference point we take σ∗ = τ∗ = 0.2. We compute the worst-case
costs of hedging strategies ∆σ in the models Iτ , with σ and τ ranging from 0.1 to
0.3 in steps of 0.05. Worst cases are determined as indicated in Section 3.2, where
the one-dimensional optimizations are implemented on a grid for the logarithms of
prices. The results are shown in Figure 2.
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Fig. 2. Worst-case costs for ∆σ in Iτ .

In the left plot each line corresponds to worst-case costs under a fixed strategy ∆σ

for a range of interval models, in the right plot every line denotes the worst-case costs

in a fixed interval model Iτ for a range of hedging strategies. The dotted lines denote

worst-case costs in the binomial trees B0.2 and B0.3; on the left these are not shown.

Because all paths of an interval model with a given volatility parameter are also
contained in interval models with a larger volatility parameter, the worst-case costs
corresponding to a fixed strategy must be nondecreasing as a function of τ ; this
is seen in the left-hand plot. Both plots also show the optimality in a worst case
sense of ∆σ within the model Iσ; for σ∗ = 0.2 this is indicated by dashed lines.
There is a striking asymmetry between over-hedging and under-hedging: the loss
due to under-hedging according to ∆0.1 in the interval model I0.3 is much larger
than the loss due to over-hedging according to ∆0.3 in I0.1. The dotted lines in
the right-hand plot again show that worst-case analysis in a binomial tree setting
may produce results that are quite a bit more optimistic than the results that are
obtained from an interval model, especially when the hedge strategy is based on a
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value of the volatility that is considerably too low. So the risk associated with a too
low specification of volatility is higher when volatility is non-constant than in the
case in which volatility is higher than expected but constant.
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Fig. 3. Worst-case paths for various initial prices.
The upper plot contains worst-case paths in Iτ under ∆σ for τ = 0.3 and σ = 0.1, with
initial price ranging from 70 to 140. The lower plot shows the worst case paths in Bτ .

The question may arise how non-extreme price fluctuations contribute to extreme
costs. In order to discover a pattern we consider several worst-case paths, for a range
of initial prices S0 and all other parameters kept constant. These are compared with
worst-case paths in the binomial tree model in Figure 3. The graphs indicate that
in both models, costs are maximal for paths that cross the exercise level as often as
possible with extreme jumps. They differ however in the levels of the peaks in the
end regime. In the binomial model (with u = 1/d) all prices are of the form ujS0,
where j may be positive or negative, and hence the peak levels are at ujS0 where j
is the smallest integer such that ujS0 > X. Non-extreme jumps allow a change in
the level of peaks, and this extra freedom in interval models may increase the cost
substantially. The simulations suggest that worst-case costs are achieved for upward
peaks at X/uσ or downward peaks at X/dσ; a formal statement in this direction
remains to be proven, however. The graphs clearly suggest that most of the freedom
allowed by interval models is used in the first few time steps. This in turn suggests
that a reduction in computational load of a worst-case search may be achieved by
using an interval model for the first few time steps (or even just for the first one)
and a binomial model thereafter.

A similar effect is apparent when the exercise level X is varied with initial prices
kept fixed. This is illustrated in Figure 4, in which worst-case costs in interval models
and binomial trees are compared for various exercise prices X. There is considerable
variation in the size of the underestimation of worst-case costs by binomial models
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as compared to interval models. Again the irregular pattern for the binomial tree is
explained by the fact that worst-case paths are restrained to fixed grid points ujS0.
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Fig. 4. Worst-case costs for various exercise levels.
The solid line corresponds to worst-case costs in I0.3 under ∆0.1, with X ranging

from 70 to 140 (by unit steps). The dashed line represents worst-case costs in B0.3.

5. CONCLUSIONS

Like the well known binomial tree models, interval models have a certain didactical
value in that they allow certain concepts to be explained in a fairly simple context. In
particular interval models allow a discussion of incomplete markets and consistent
price intervals. They provide an easily understood context in which one can do
worst-case analysis and so they may play a role in risk management in addition to
the standard tools based on sensitivity analysis and VaR computations.

In this paper we have studied hedging strategies for European derivatives with
convex payoff functions in the context of interval models. It turns out that even
for such rather simple derivatives the interval analysis has added value with respect
to an analysis based on constant-volatility models; indeed, worst-case paths may
show a mixture of moderate and extreme price changes. In the case of delta hedging
strategies for standard call options, consideration of a few test cases has suggested
that most of the value added by the interval model derives from the first time step,
so that a good approximation to worst-case costs in an interval model would already
be obtained, at considerably reduced computational cost, by following the interval
model in the first step and the tree model for all following steps. Further analysis
is needed to see whether similar simplifying rules may also be formulated for other
derivatives.
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