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THE OPTIMAL CONTROL CHART PROCEDURE

Jaroslav Skřivánek

The moving average (MA) chart, the exponentially weighted moving average (EWMA)
chart and the cumulative sum (CUSUM) chart are the most popular schemes for detecting
shifts in a relevant process parameter. Any control chart system of span k is specified by
a partition of the space Rk into three disjoint parts. We call this partition as the control
chart frame of span k. A shift in the process parameter is signalled at time t by having the
vector of the last k sample characteristics fall out of the central part of this frame. The
optimal frame of span k is selected in order to maximize the average run length (ARL) if
shift in the relevant process parameter is on an acceptable level and to minimize it on a
rejectable level. We have proved in this article that the set of all frames of span k with
an appropriate metric is a compact space and that the ARL for continuously distributed
sample characteristics is continuous as a function of the frame. Consequently, there exists
the optimal frame among systems of span k. General attitude to control chart systems is
the common platform for universal control charts with the particular point for each sample
and variable control limits plotted one step ahead.

Keywords: control chart, frame of span k, average run length, probability distribution,
compact metric space

AMS Subject Classification: 49J30, 62F15, 62P30

1. INTRODUCTION

The moving average (MA) chart, the exponentially weighted moving average (EWMA)
chart, the cumulative sum (CUSUM) chart and the chart for arithmetic average
with warning limits (by the ISO 7873 standard) are the most popular schemes for
detecting shift in the process mean. They are described in detail for example in
[8]. Some authors (e. g. [9]) gave simulation results that indicate that MA, EWMA
and CUSUM charts are competitive among themselves. This control charts combine
information from two or more samples in order to improve performance. A presence
of signal at time t depends on more sample characteristics Yt, Yt−1, . . . . There are
also other charts for controlling parameters other than a normal process mean.

The moving average of span k at time t is

Mt =
Yt−k+1 + Yt−k+2 + · · ·+ Yt

k
(1)



502 J. SKŘIVÁNEK

for t = k, k + 1, . . . . Control limits are on constant levels UCL and LCL. A single
point Mt out of control limits at time t in the chart is signal of changes in the
relevant process parameter.

Warning and action limits are plotted on constant levels UWL, LWL, UAL and
LAL in the control charts for arithmetic average with warning limits of span k. A
shift in the process parameter is signalled at time t by having at least k succeeded
points Yt−k+1, Yt−k+2, . . . , Yt in the sequence of sample characteristics (e.g. sample
means) fall outside the warning limits or one point outside the action limits.

There exists a lot of other control chart schemes with numerous modifications and
combinations (see [1], [6], [7]). They play the crucial role in systems of Statistical
Quality Control (see for example [3], [4], [5], [8]). General attitude to control systems
in this text is a platform of universal control charts with one point Yt for each sample
along with variable control limits

UCLt = sup At and LCLt = inf At, (2)

plotted at time t at most one step ahead, where borders of the acceptance region
At ⊂ R for Yt depend on the characteristics Yt−1, Yt−2, . . . before time t.

2. SYSTEMS OF SPAN k

Let Rk be the set of all ordered k-tuples of real numbers with common topology. A
partition S of the space Rk into three disjoint parts C, U and L with the properties

(i) central part C is nonempty and closed,

(ii) upper and lower parts U and L are open, at least one of them is nonempty,

(iii) if (x1, x2, . . . , xj−1, y, xj+1, . . . , xk) ∈ U and y < z (3)
then (x1, x2, . . . , xj−1, z, xj+1, . . . , xk) ∈ U for each j,

(iv) if (x1, x2, . . . , xj−1, y, xj+1, . . . , xk) ∈ L and z < y
then (x1, x2, . . . , xj−1, z, xj+1, . . . , xk) ∈ L for each j,

is called the control chart frame of span k. A shift up in the process parameter
will be signalled at time t by having the random vector (Yt−k+1, Yt−k+2, . . . , Yt) of
sample characteristics fall into the upper part U of the frame, a shift down will be
signalled by having this point fall into the lower part L. The point in the central
part C signifies no signal. The MA chart and the chart for arithmetic average with
warning limits are systems of some span k. Examples of frames for this schemes are
in Figure 1. On the other hand, the EWMA chart and the CUSUM are systems of
unbounded span because the signal is conditioned by information from all samples
preceding the actual time.

Control limits at time t in the universal control chart for a system of span k are

UCLt = sup{y ∈ R; (Yt−k+1, Yt−k+2, . . . , Yt−1, y) ∈ C}
LCLt = inf{y ∈ R; (Yt−k+1, Yt−k+2, . . . , Yt−1, y) ∈ C}.

(4)
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Fig. 1. Frames of span 2.

You can see comparison of the classical and the universal control chart for the MA
scheme of span 2 in Figure 2. Little triangles indicate the time moments with signal
(the 7th sample).

Let λ0 be the standard Lebesgue measure on Rk, x = (x1, x2, . . . , xk) be an
element of Rk and Xk be the set of all frames of span k. Let λ be a normalized
measure on Rk with the same zero sets like λ0. For example

λ(A) = λ0

({(Φ(x1), Φ(x2), . . . , Φ(xk)) ∈ (0; 1)k; x ∈ A})

for any Lebesgue measurable A ⊂ Rk and Φ(x) = 1√
2π

x∫
−∞

e−
t2
2 dt. Let the symbol

.− represents the symmetric difference operation.

Lemma 1. Let S(i) = (U (i), C(i),L(i)) ∈ Xk for i ∈ {1, 2}. Then ρk : X 2
k → R,

ρk(S(1),S(2)) = λ(U (1) .−U (2)) + λ(L(1) .−L(2)), is a metric on Xk.

P r o o f . We have to prove that

(i) ρk(S(1),S(2)) = 0 if and only if S(1) = S(2),

(ii) ρk(S(1),S(2)) = ρk(S(2),S(1)),

(iii) ρk(S(1),S(2)) + ρk(S(2),S(3)) ≥ ρk(S(1),S(3))

for every S(1), S(2) and S(3) ∈ Xk.

(i): Obviously ρk(S(1),S(2)) = 0 if frames S(1) and S(2) are identical. If S(1) 6=
S(2) then at least one of the sets U (1) − U (2), U (2) − U (1), L(1) − L(2), L(2) − L(1)

is nonempty. Let it be U (1) − U (2). At the other cases we proceed alike. As U (1) is
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Fig. 2. One-sided MA chart and its universal form.

open, for arbitrary t = (t1, t2, . . . , tk) ∈ U (1) − U (2) there exists such real number
ε > 0 that the ε-neighbourhood Oε(t) of t is a subset of U (1). Put

D = {x ∈ Oε(t); (∀i ∈ {1, . . . , k})(xi ≤ ti)}.

By the item (iii) of (2.) is D ∩U (2) = ∅. As λ(D) > 0 and D ⊂ U (1) −U (2), we have

0 < λ(U (1) − U (2)) ≤ ρk(S(1),S(2)).

(ii): The symmetric difference is commutative.

(iii): For arbitrary three sets A1, A2 and A3 is

(A1
.−A2) ∪ (A2

.−A3) ⊃ A1
.−A3.

Hence

λ(A1
.−A2) + λ(A2

.−A3) ≥ λ((A1
.−A2) ∪ (A2

.−A3)) ≥ λ(A1
.−A3). 2

Lemma 2. The metric space (Xk, ρk) is complete.

P r o o f . Put S(n) = (U (n), C(n),L(n). Let (S(n))∞n=1 be Cauchy sequence in Xk.
Hence

(∀ε > 0)(∃l ∈ N)(∀i, j ∈ N)(i, j > l ⇒ ρk(S(i),S(j)) < ε),

where N is the set of all natural numbers. We are going to show the limit of
this sequence is the frame S = (U , C,L), where U = int

(⋂∞
i=1

⋃∞
j=i U (j)

)
, L =

int
(⋂∞

i=1

⋃∞
j=i L(j)

)
and C = Rk − (U ∪ L). Here int is the interior operator in the
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standard metric on Rk. Let us now prove the sets
⋂∞

i=1

⋃∞
j=i U (j) ⊃ ⋃∞

i=1

⋂∞
j=i U (j)

differ only in boundary points. As both these sets have property (iii) of (2.), they
consequently differ on a set of measure zero.

Suppose there exists t ∈ ⋂∞
i=1

⋃∞
j=i U (j) − ⋃∞

i=1

⋂∞
j=i U (j), an internal point of⋂∞

i=1

⋃∞
j=i U (j). Then there exists such δ > 0 that

t− δ = (t1 − δ, . . . , tk − δ) ∈
∞⋂

i=1

∞⋃

j=i

U (j) −
∞⋃

i=1

∞⋂

j=i

U (j).

We would like to show that this leads to a contradiction. The set
⋂∞

i=1

⋃∞
j=i U (j)

contains all the points of Rk that are elements of infinitely many upper parts U (j)

while elements of
⋃∞

i=1

⋂∞
j=i U (j) are included in almost all parts U (j). It means that

(∀l ∈ N)(∃m, n ∈ N)
(
m, n > l & t− δ ∈ U (n) & t /∈ U (m)

)
.

Hence for M = {x ∈ Rk; (∀i ∈ {1, . . . , k})(ti − δ ≤ xi ≤ ti)} is

ρk(S(m),S(n)) ≥ λ(M) > 0,

contradictory to the fact that the sequence (S(n))∞n=1 is Cauchy. So, the sets

∞⋂

i=1

∞⋃

j=i

U (j) ⊃
∞⋃

i=1

∞⋂

j=i

U (j) ⊃ int



∞⋂

i=1

∞⋃

j=i

U (j)




differ only on zero sets. Because it is true for lower parts of frames too, we have

(∀ε > 0)(∃l ∈ N)(∀n ∈ N)
(
n > l ⇒ λ(U (n)′′ − U (n)′) + λ(L(n)′′ − L(n)′) <

ε

2

)
,

where U (n)′ =
⋂∞

j=n U (j) and U (n)′′ =
⋃∞

j=n U (j). Moreover, U (n)′ ⊂ U (n) ⊂ U (n)′′

and U (n)′ ⊂ U ⊂ U (n)′′ almost everywhere and consequently λ(U (n)′′ − U (n)) ≤
λ(U (n)′′ − U (n)′) and λ(U (n)′′ − U) ≤ λ(U (n)′′ − U (n)′). It holds similarly for L’s.
Hence

ρk(S(n),S) ≤ λ(U (n)′′ − U (n)) + λ(U (n)′′ − U)+

+λ(L(n)′′ − L(n)) + λ(L(n)′′ − L) <
ε

2
+

ε

2
= ε. 2

Lemma 3. The metric space (Xk, ρk) is totally bounded.

P r o o f . We try to prove that for every ε > 0 there exists ε-net Aε in the metric
space Xk. It is such finite subset of Xk that for every element S ∈ Xk there exists
such aprε(S) ∈ Aε that ρk(S, aprε(S)) < ε.

Let Cn be a partition of Rk on the nk same cubes in sense of the measure λ.
Let In = {I ⊂ R; (∃l ∈ {1, 2, . . . , n})(I = Φ−1(〈 l−1

n , l
n 〉)}. The measure λ of each

element of the set

Cn = {I1 × I2 × · · · × Ik ⊂ Rk; (I1, I2, . . . , Ik) ∈ I k
n }
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is 1
nk . Put

Aε = {(U , C,L) ∈ Xk; (∃B ⊂ Cn(ε))(C =
⋃

B)}
where 2k

ε +1 ≥ n(ε) > 2k
ε . Really, Aε is sought ε-net. If S(0) = (U (0), C(0),L(0)) ∈ Xk,

let us select for aprε(S(0)) such element of Aε that its central part is

aprε(C(0)) =
⋂
{C ⊂ Rk; C ⊃ C(0)&(U , C,L) ∈ Aε}.

Then U (0) and aprε(U (0)) (similarly L(0) and aprε(L(0))) differ only in interiors at
most k · n(ε)k−1 elements of Cn. Hence

ρk(S(0), aprε(S(0))) ≤ 2k · n(ε)k−1 · 1
n(ε)k

=
2k

n(ε)
< ε. 2

Theorem 1. The metric space (Xk, ρk) is compact.

P r o o f . Immediate consequence of the lemmas 2 and 3 by claims of General
Topology (see for example [2]). 2

3. AVERAGE RUN LENGTH

Let L be the number of succeeded samples with no signal coming from a nonex-
tendible passing section of the process. Average run length (ARL) is the mean
value of the random variable L. The criterion ARL depends on properties of the
process (Yt)∞t=−∞ of sample characteristics and on used control chart system. Set-
tings of control chart procedure are determined economically (see [10], [11] ). They
are usually selected in order to maximize ARL if shift in a relevant process param-
eter is on an acceptable level ∆a (usually zero) and to minimize it on a rejectable
level ∆r. Two acceptable and rejectable levels are distinguished for two-sided asym-
metrical control chart system. Let ∆l

r < ∆l
a ≤ 0 ≤ ∆u

a < ∆u
r be lower rejectable

and acceptable along with upper acceptable and rejectable levels for the process pa-
rameter shift from a target value in two-sided control chart system. There is often
∆l

r = −∆u
r and ∆l

a = −∆u
a in symmetrical systems. The idea is now to show that a

control chart design can be interpreted as a problem to find maximum or minimum
of continuous function on Xk.

Theorem 2. Let ARL be the average run length of a zero-one signal process
(St)∞t=−∞ Then

P (St = 1|St−1 = 0) = 1/ARL.

P r o o f . Let L be the length of a passing maximal process section with no signal
(zeros). The mean value of L is ARL =

∑∞
j=1 j · P (L = j). Let An,t be the event

“random time point t is a member of a signalless process section of length n”,
Bt ⊃ An,t be the event “no signal is present at time t” (St = 0) and B̄t be the
complement of this event. The conditional probability P (An,t|Bt) is proportional
only to the probability P (L = n) and to the integer n. Hence

P (An,t|Bt) =
n · P (L = n)∑∞
j=1 j · P (L = j)

and P (Bt|Ai,t−1) =
1
i
.
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By the total probability formula we have

P (Bt|Bt−1) = .

∞∑

i=1

P (Bt|Ai,t−1) · P (Ai,t−1|Bt−1)

=
∞∑

i=1

1
i
· i · P (L = i)

ARL
=

1
ARL

. 2

Let ARL∆(S) be the average run length in a control chart system of span k
with a frame S = (U , C,L) ∈ Xk over a process (Yt)∞t=−∞ of independent sample
characteristics Yt, each of them with the same probability distribution at a relevant
parameter shift of ∆. Evidently

ARL∆(S) =
π1,∆(S)

π1,∆(S)− π2,∆(S)
, (5)

where conditional probabilities

π1,∆(S) = P ((Yt−k, Yt−k+1, . . . , Yt−1) ∈ C|shift = ∆) (6)

and

π2,∆(S) = P ((Yt−k, Yt−k+1, . . . , Yt−1) ∈ C&(Yt−k+1, Yt−k+2, . . . , Yt) ∈ C|shift = ∆)

do not depend on t.

4. OPTIMAL SYSTEM

The next theorem is crucial for existence of the optimal system of span k in a good
deal of design problems.

Theorem 3. Let members of the process (Yt)∞t=−∞ of sample characteristics be
independent and alike continuously distributed. Then π1,∆(S) and π2,∆(S) of 6,
considered as functions of variable S, are uniformly continuous on the metric space
(Xk, ρk).

P r o o f . Let f∆ be the probability density function of Yt at the relevant process
parameter shift of ∆, x̂j = (x1, . . . , xj−1, xj+1, . . . , xk) for each j ∈ {1, 2, . . . , k},

infj(x̂j) = inf{xj ∈ R;x ∈ C},
supj(x̂j) = sup{xj ∈ R;x ∈ C}

and Γ∆,j(x̂j) =
supj(x̂j)∫
infj(x̂j)

f∆(xj) dxj . Then

π1,∆(S) =
∫

C

k∏

i=1

f∆(xi) dx =
∫

Rk−1

Γ∆,j(x̂j) ·
k∏

i=1,i6=j

f∆(xi) dx̂j (7)
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for arbitrary j ∈ {1, 2, . . . , k} and

π2,∆(S) =
∫

(x2,...,xk+1)∈C&x∈C

∏k+1
i=1 f∆(xi) d(x1, x2, . . . , xk+1) =

=
∫

Rk−1

Γ∆,1(x̂k) · Γ∆,k(x̂k) ·
k−1∏
i=1

f∆(xi) dx̂k.
(8)

Suppose ε > 0. Then there exists such bounded measurable set B ⊂ Rk that∫
Rk−B

∏k
i=1 f∆(xi) dx < ε

3 and the function
∏k

i=1 f∆(xi) is bounded on B. Let

a > 0 be such constant that a · λ0(A) ≤ λ(A) for every measurable A ⊂ B. Put
b = sup

x∈B

∏k
i=1 f∆(xi) and δ = εa/(3b). If ρk(S(1),S(2)) < δ for some S(1),S(2) ∈ Xk

then

|π1,∆(S(1))− π1,∆(S(2))| =
∣∣∣∣∣∣

∫

C(1)

k∏

i=1

f∆(xi) dx−
∫

C(2)

k∏

i=1

f∆(xi) dx

∣∣∣∣∣∣
≤

≤
∫

C(1) .− C(2)

k∏

i=1

f∆(xi) dx ≤
∫

U(1) .− U(2)

k∏

i=1

f∆(xi) dx +
∫

L(1) .− L(2)

k∏

i=1

f∆(xi) dx <

<
2ε

3
+

∫

(U(1) .− U(2))∩B

k∏

i=1

f∆(xi) dx +
∫

(L(1) .−L(2))∩B

k∏

i=1

f∆(xi) dx ≤

≤ 2ε

3
+ b ·

[
λ0((U (1) .−U (2)) ∩B) + λ0((L(1) .−L(2)) ∩B)

]
=

=
2ε

3
+

aε

3δ
·
[
λ0((U (1) .−U (2)) ∩B) + λ0((L(1) .−L(2)) ∩B)

]
≤

≤ 2ε

3
+

ε

3δ
·
[
λ((U (1) .−U (2)) ∩B) + λ((L(1) .−L(2)) ∩B)

]
<

2ε

3
+

ε

3δ
· δ = ε.

We have proved that the function π1,∆ is uniformly continuous. Hence by (7) for
each ε > 0 there exists such δ > 0 that∣∣∣∣∣∣

∫

Rk−1

(
Γ(1)

∆,1(x̂k)− Γ(2)
∆,1(x̂k)

) k−1∏

k=1

f∆(xi) dx̂k

∣∣∣∣∣∣
<

ε

2

and ∣∣∣∣∣∣

∫

Rk−1

(
Γ(1)

∆,k(x̂k)− Γ(2)
∆,k(x̂k)

) k−1∏

k=1

f∆(xi) dx̂k

∣∣∣∣∣∣
<

ε

2

if ρk(S(1),S(2)) < δ. But then

|π2,∆(S(1))− π2,∆(S(2))| =
∣∣∣∣∣∣

∫

Rk−1

(
Γ(1)

∆,1(x̂k)Γ(1)
∆,k(x̂k)−
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−Γ(2)
∆,1(x̂k)Γ(2)

∆,k(x̂k)
) k−1∏

k=1

f∆(xi) dx̂k

∣∣∣∣∣ =

∣∣∣∣∣∣

∫

Rk−1

[(
Γ(1)

∆,k(x̂k)− Γ(2)
∆,k(x̂k)

)
· Γ(2)

∆,1(x̂k)+

+
(
Γ(1)

∆,1(x̂k)− Γ(2)
∆,1(x̂k)

)
· Γ(1)

∆,k(x̂k)
] k−1∏

k=1

f∆(xi) dx̂k

∣∣∣∣∣ ≤

≤
∣∣∣∣∣∣

∫

Rk−1

(
Γ(1)

∆,k(x̂k)− Γ(2)
∆,k(x̂k)

) k−1∏

k=1

f∆(xi) dx̂k

∣∣∣∣∣∣
+

+

∣∣∣∣∣∣

∫

Rk−1

(
Γ(1)

∆,1(x̂k)− Γ(2)
∆,1(x̂k)

) k−1∏

k=1

f∆(xi) dx̂k

∣∣∣∣∣∣
<

ε

2
+

ε

2
= ε. 2

We have proved using Theorems 2 and 3 that ARL∆(S), as a function of variable
S, is continuous on Xk. Moreover, ARL∆(S) is decreasing with respect to π1,∆(S)
and increasing with respect to π2,∆(S). Evidently, independence of Yt’s in Theorem
3 can be replaced by the weaker condition, e.g. the process (Yt)∞t=−∞ is strictly
stationary. You can interpret control chart design task as a problem of the extreme
point of a continuous function on a closed subset of the compact space Xk. The most
prevailing problem is to find

max{ARL∆a(S); ARL∆r (S) = lr,S ∈ Xk} (9)

or
min{ARL∆r (S); ARL∆a(S) = la,S ∈ Xk}. (10)

For example, the sample characteristic Yt is the sample mean of quality indicator
with normal distribution. We need to find such control chart frame of span 2 that
ARL is 370 (corresponding to Shewhart diagram with 3σ limits) if no shift in the
process mean is present and such that ARL is minimal if the shift is the 1.5 multiple
of the standard deviation of sample characteristic. There is the optimal solution
here. We have not identified exactly the optimal frame for the task of

min{ARL1.5(S); ARL0(S) = 370&S ∈ X2 is symmetrical}
but we have found approximate boundary of the optimal solution in various func-
tional classes. They are shaped like that in Figure 3. In this case is ARL1.5(Sopt)
approximately 7.238, less than any classical system of span 2. The greater span k
of control chart system the better performance we can expect because of natural
embedding of Xr into Xs for r < s.

5. CONCLUSION

An existence of the optimal frame of a common control chart problem of span k over
a process of continuously distributed sample characteristics has been proved here.
Its delimitation will be chiefly a case of numerical analysis. Moreover, this note offers
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Fig. 3. Optimal system frame of span 2.

an aid for measurement of distance of control chart systems interpreted as points of
a metric space. There are troubles in an exact specification of the criterion ARL
in charts which depend on all previous values. One eventuality is an application of
the optimal solution in the space Xt for every time t. On the other hand, the longer
span we consider the better performance is guaranteed.

(Received April 7, 2003.)
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