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TRANSITIVE DECOMPOSITION OF FUZZY
PREFERENCE RELATIONS:
THE CASE OF NILPOTENT MINIMUM

Susana D́ıaz, Susana Montes and Bernard De Baets

Transitivity is a fundamental notion in preference modelling. In this work we study this
property in the framework of additive fuzzy preference structures. In particular, we depart
from a large preference relation that is transitive w.r.t. the nilpotent minimum t-norm and
decompose it into an indifference and strict preference relation by means of generators
based on t-norms, i. e. using a Frank t-norm as indifference generator. We identify the
strongest type of transitivity these indifference and strict preference components show,
both in general and for the important class of weakly complete large preference relations.

Keywords: fuzzy relation, indifference, nilpotent minimum, strict preference, transitivity

AMS Subject Classification: 04A72, 06F05, 91B08

1. INTRODUCTION

In the context of preference modelling, the concept of transitivity arises as a natural
property many relations must satisfy. In the classical setting, i. e. when working with
crisp relations, the transitivity of a large preference relation R can be characterized
by the transitivity of the corresponding indifference relation I and strict preference
relation P and two additional relational inequalities involving P and I [18]. In
case the relation R is complete, its transitivity is completely characterized by the
transitivity of P and I only.

The above-mentioned characterization has also been studied in the fuzzy case,
i. e. when working with fuzzy relations. In the well-defined context of additive fuzzy
preference structures [4], a characterization of the transitivity of a large preference
relation R has been obtained when R is strongly complete [6]. Other studies re-
quire less restrictive completeness conditions (such as weak completeness) or no
completeness condition at all [2, 3, 19]. However, in none of these studies a full
characterization has been obtained.
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In this paper, we focus on the propagation of the T -transitivity of a large pref-
erence relation R to the corresponding indifference relation I and strict preference
relation P , when using as indifference generator a Frank t-norm TF

λ . Furthermore,
we restrict ourselves to Fodor’s nilpotent minimum TnM [9], as it is the most famous
member of the class of rotation-invariant t-norms. Rotation-invariant t-norms are
witnessing a growing interest [12, 13, 14] and are of particular importance to fuzzy
preference modelling (see e. g. [8]).

Our paper is organised as follows. In Section 2, we give a brief introduction to
crisp and fuzzy preference modelling. In particular, we explain how additive fuzzy
preference structures can be constructed by means of an indifference generator. Sec-
tion 3 features a brief review of known results on the transitivity of decompositions
of transitive large preference relations. In Section 4, we characterize the strongest
type of transitivity shown by the generated indifference relation. The same is done
in Section 5 for the strict preference relation. This study is repeated in Section 6 for
the case of a weakly complete large preference relation. A summarizing conclusion
is provided.

2. ADDITIVE FUZZY PREFERENCE STRUCTURES

We briefly recall two equivalent relational representations of preferential informa-
tion [18]. On the one hand, one can consider a large preference relation R, i. e. a
reflexive (binary) relation on the set of alternatives A, with the following interpre-
tation:

aRb if and only if a is at least as good as b .

On the other hand, R can be decomposed into disjoint parts: an irreflexive and
asymmetric strict preference component P , a reflexive and symmetric indifference
component I and an irreflexive and symmetric incomparability component J such
that P ∪P t∪I∪J = A2, R = P ∪I and Rc = P t∪J (where ·t denotes the transpose
of a relation and ·c denotes the complement of a relation). These components can
be obtained by considering various intersections: P = R ∩ Rd, I = R ∩ Rt and
J = Rc ∩ Rd (where ·d denotes the dual of a relation, i. e. the complement of its
transpose).

In fuzzy preference modelling, a reflexive fuzzy relation R on A can also be
decomposed into what is called an additive fuzzy preference structure, by means of an
(indifference) generator i, which is defined as a symmetric (commutative) [0, 1]2 →
[0, 1] mapping located between the ÃLukasiewicz t-norm TL (i. e. TL(x, y) = max(x +
y − 1, 0)) and the minimum operator TM, i. e. TL ≤ i ≤ TM. More specifically,
the strict preference relation P , the indifference relation I and the incomparability
relation J are obtained as follows [5].

P (a, b) = p(R(a, b), R(b, a)) = R(a, b)− i(R(a, b), R(b, a))
I(a, b) = i(R(a, b), R(b, a))
J(a, b) = j(R(a, b), R(b, a)) = i(R(a, b), R(b, a))− (R(a, b) + R(b, a)− 1) .
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An additive fuzzy preference structure (AFPS) (P, I, J) on A is then characterized
as a triplet of fuzzy relations on A such that I is reflexive and symmetric and

P (a, b) + P (b, a) + I(a, b) + J(a, b) = 1 ,

whence the adjective ‘additive’. The corresponding large preference relation R is
then given by R(a, b) = P (a, b) + I(a, b).

Most of the studies on additive fuzzy preference structures consider t-norm gen-
erators only [10, 11], meaning that not only the generator i(x, y), but also p(x, 1−y)
and j(1 − x, 1 − y) are t-norms. However, this is exactly the same as requiring
that i is a Frank t-norm [5]. The Frank family is a parametric family of continuous
t-norms, usually denoted as TF

λ with λ ∈ [0,∞]. For λ ∈ ]0, 1[∪ ]1,∞[, it holds that

TF
λ (x, y) = logλ

(
1 +

(λx − 1)(λy − 1)
(λ− 1)

)
,

while TF
0 = TM, TF

1 = TP (the algebraic product) and TF
∞ = TL are obtained

via a limit procedure. Any Frank t-norm TF
λ with λ ∈ ]0,∞[ is a strict t-norm,

which means that it can be written as a transformation of the algebraic product TP

by means of a [0, 1]-automorphism φλ (also called multiplicative generator). More
explicitly, for any x ∈ [0, 1] it holds that φ1(x) = x and

φλ(x) =
λx − 1
λ− 1

,

for any λ ∈ ]0, 1[∪ ]1,∞[, and TF
λ (x, y) = φ−1

λ (φλ(x) ·φλ(y)). An important property
of the Frank t-norm family is the following [11]:

TF
1/λ(x, y) = x− TF

λ (x, 1− y) ,

for any x, y ∈ [0, 1] and any λ ∈ [0,∞].

3. TRANSITIVITY OF LARGE PREFERENCE RELATIONS

A relation Q on A is said to be transitive if

(∀(a, b, c) ∈ A3)((aQb ∧ bQc) ⇒ aQc) .

Transitivity can be stated equivalently as a relational inequality: Q ◦Q ⊆ Q. Using
the latter notation, the characterization of the transitivity of a large preference
relation R can be written as follows [18]:

Proposition 1. For any reflexive relation R with corresponding preference struc-
ture (P, I, J) it holds that

R ◦R ⊆ R ⇔





P ◦ P ⊆ P

I ◦ I ⊆ I

P ◦ I ⊆ P

I ◦ P ⊆ P .
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In case R is complete (i. e. aRb or bRa for any a, b ∈ A), the following simpler
characterization holds. Note that in this case J = ∅.

Proposition 2. For any complete relation R with corresponding preference struc-
ture (P, I, ∅) it holds that

R ◦R ⊆ R ⇔
{

P ◦ P ⊆ P

I ◦ I ⊆ I .

The most popular type of transitivity of fuzzy relations is T -transitivity, with
T a t-norm [15]. For reasons that will become clear further on, we consider here
the more general definition of f -transitivity, with f a conjunctor (i. e. an increasing
[0, 1]2 → [0, 1] mapping that coincides on {0, 1}2 with the Boolean conjunction). A
fuzzy relation Q on A is called f -transitive if it holds that

(∀(a, b, c) ∈ A3)(f(Q(a, b), Q(b, c)) ≤ Q(a, c)) .

Obviously, if f ≥ g, then f -transitivity implies g-transitivity. The sup-f composition
of two fuzzy relations U and V on A is the fuzzy relation U ◦f V on A defined by

U ◦f V (x, z) = sup
y∈A

f(U(x, y), V (y, z)) .

Trivially, f -transitivity can then be expressed equivalently as a relational inequality:
Q ◦f Q ⊆ Q.

As far as we know, the only generalization of Proposition 2 has been obtained in
the case of a strongly complete large preference relation R (i. e. max(R(a, b), R(b, a)) =
1 for any a, b ∈ A). Note that in that case any generator i (not only the Frank t-
norms) leads to the same AFPS and that again J = ∅.

Proposition 3. (See [6].) Consider a strongly complete fuzzy relation R with cor-
responding fuzzy preference structure (P, I, ∅). For any t-norm T ≥ TL it holds
that:

R ◦T R ⊆ R ⇔





P ◦TM
P ⊆ P

I ◦T I ⊆ I

P ◦TL
I ⊆ P

I ◦TL
P ⊆ P .

Note that Proposition 3 really only is a generalization of Proposition 2, due to the
completeness condition, although it formally looks like Proposition 1.

For the nilpotent minimum TnM it holds that TnM ≥ TL. Recall that the nilpotent
minimum is the t-norm defined by [9, 16, 17]:

TnM(x, y) =

{
0, if x + y ≤ 1 ,

min(x, y), otherwise .
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The nilpotent minimum is a very important member of the class of rotation-invariant
t-norms (w.r.t. the standard negator N(x) = 1− x) [12, 13, 14] which satisfy

(∀(x, y, z) ∈ [0, 1]3)(T (x, y) ≤ z ⇔ T (y, 1− z) ≤ 1− x) .

According to the above proposition, for any strongly complete reflexive fuzzy relation
R with corresponding preference structure (P, I, ∅), the following equivalence holds:

R ◦TnM
R ⊆ R ⇔





P ◦TM
P ⊆ P

I ◦TnM
I ⊆ I

P ◦TL
I ⊆ P

I ◦TL
P ⊆ P .

In this paper, we focus on the implication from left to right in the above equivalence,
and try to relax the strong completeness condition. Also, we state the transitivity
explicitly and do not make use of the sup-f composition notation.

4. FROM LARGE PREFERENCE TO INDIFFERENCE RELATIONS

In this section, we characterize the transitivity of the indifference relation I generated
from a TnM-transitive large preference relation R. As generators we consider the
members of the Frank t-norm family, i. e.

I(a, b) = TF
λ (R(a, b), R(b, a)) ,

with λ ∈ [0,∞].
For this study, we can partially rely on earlier results [7] that are briefly summa-

rized and adopted to the present context hereafter. Consider a TnM-transitive large
preference relation R and a generator i belonging to the Frank t-norm family, then
it holds that:

(i) in general, the indifference relation I can neither be ‘more’ transitive than
TnM-transitive nor ‘more’ transitive than i-transitive;

(ii) in the following two cases, maximal transitivity of I is achieved:

(a) if i ≤ TnM, then I is i = min(i, TnM)-transitive (this result mainly de-
pends on the fact that a t-norm is bisymmetric);

(b) if i dominates TnM, denoted TnM ¿ i, where f ¿ g means that

(∀(x, y, z, t) ∈ [0, 1]4)(g(f(x, y), f(z, t)) ≥ f(g(x, z), g(y, t))) ,

then I is TnM = min(i, TnM)-transitive.

As a consequence of these general results, as TL ≤ TnM and TnM ¿ TM, given
the TnM-transitivity of R, we conclude that the following are the strongest results
possible:

(i) if i = TL, then I is TL-transitive;
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(ii) if i = TM, then I is TnM-transitive.

However, for i = TF
λ , λ ∈ ]0,∞[, it neither holds that TF

λ ≤ TnM nor TnM ¿ TF
λ

(as even TnM ≤ TF
λ does not hold); hence, we can only apply result (i) above. We

conclude that these results are far from satisfactory, and a tailor-made theorem is
necessary.

Such a theorem will be presented next and involves a family of conjunctors that
are obtained by annihilating the Frank t-norms in the same way as the nilpotent
minimum is obtained from the minimum. More explicitly, for λ ∈ [0,∞], we define

fλ(x, y) =

{
0 , if x + y ≤ 1 ,

TF
λ (x, y) , otherwise .

Note that fλ = min(TF
λ , TnM). Of course, f0 = TnM and f∞ = TL. For λ ∈ ]0,∞[,

the conjunctor fλ is not a t-norm as it is not associative.

Theorem 1. For any reflexive fuzzy relation R with corresponding indifference
relation I generated by means of i = TF

λ , λ ∈ [0,∞], the following implication holds:

R is TnM-transitive ⇒ I is fλ-transitive .

Moreover, this is the strongest result possible.

P r o o f . In view of the definition of fλ, it is sufficient to consider the case
I(a, b) + I(b, c) > 1, whence also R(a, b) + R(b, c) > 1 and R(b, a) + R(c, b) > 1.
Since R is TnM-transitive, it then follows that

I(a, c) = TF
λ (R(a, c), R(c, a))

≥ TF
λ (min(R(a, b), R(b, c)), min(R(c, b), R(b, a)))

≥ TF
λ (TF

λ (R(a, b), R(b, c)), TF
λ (R(c, b), R(b, a)))

= TF
λ (TF

λ (R(a, b), R(b, a)), TF
λ (R(b, c), R(c, b)))

= TF
λ (I(a, b), I(b, c)) = fλ(I(a, b), I(b, c)) .

Moreover, since fλ = min(i, TnM) = min(TF
λ , TnM) and according to the discussion

above, this is clearly the strongest result possible. ut

Note that since fλ is not a t-norm in general, it has proven very useful to generalize
the notion of T -transitivity to f -transitivity, with f a conjunctor, in order to be able
to characterize the maximal transitivity of I.

5. FROM LARGE PREFERENCE TO STRICT PREFERENCE RELATIONS

As for the indifference relation I, in this section we discuss the transitivity of the
strict preference relation P generated from a TnM-transitive large preference rela-
tion R. As generators we consider again the members of the Frank t-norm family,
i. e.

P (a, b) = R(a, b)− TF
λ (R(a, b), R(b, a)) = TF

1/λ(R(a, b), 1−R(b, a)) ,
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with λ ∈ [0,∞]. The following theorem shows that the transitivity of P is in some
sense reciprocal to the transitivity of I obtained in Theorem 1.

Theorem 2. For any reflexive fuzzy relation R with corresponding strict preference
relation P generated by means of i = TF

λ , λ ∈ [0,∞], the following implication holds:

R is TnM-transitive ⇒ P is f1/λ-transitive .

Moreover, this is the strongest result possible.

P r o o f . In view of the definition of f1/λ, it is sufficient to consider the case
P (a, b) + P (b, c) > 1, whence also R(a, b) + R(b, c) > 1. The TnM-transitivity of R
then implies that

TnM(R(a, b), R(b, c)) = min(R(a, b), R(b, c)) ≤ R(a, c) .

Without loss of generality, we can assume that R(a, b) ≤ R(b, c), and hence R(a, b) ≤
R(a, c). We distinguish two cases:

(i) The case R(b, c) + R(c, a) ≤ 1. It holds that

R(c, a) ≤ 1−max(R(a, b), R(b, c)) ≤ 1−max(P (a, b), P (b, c)) .

It then easily follows that

f1/λ(P (a, b), P (b, c)) = TF
1/λ(min(P (a, b), P (b, c)), max(P (a, b), P (b, c)))

≤ TF
1/λ(min(P (a, b), P (b, c)), 1−R(c, a)) .

Since R(a, b) ≤ R(a, c), it surely holds that

R(a, c) ≥ P (a, b) ≥ min(P (a, b), P (b, c)) .

Hence, it follows that

P (a, c) = TF
1/λ(R(a, c), 1−R(c, a))

≥ TF
1/λ(min(P (a, b), P (b, c)), 1−R(c, a))

≥ f1/λ(P (a, b), P (b, c)) .

(ii) The case R(b, c)+R(c, a) > 1. We will first show that the assumption R(c, a) >
R(b, a) leads to a contradiction. The TnM-transitivity of R implies that

R(c, a) > R(b, a) ≥ TnM(R(b, c), R(c, a))
= min(R(b, c), R(c, a)) = R(b, c) ≥ R(a, b) .

Furthermore, since R(a, b) + R(c, a) > R(a, b) + R(b, c) > 1, it holds that

R(c, b) ≥ TnM(R(c, a), R(a, b)) = min(R(c, a), R(a, b)) = R(a, b) ,
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and similarly, since R(c, a) + R(b, c) > R(a, b) + R(b, c) > 1, that R(b, a) ≥
R(b, c). Combining these results then leads to

P (a, b) = TF
1/λ(R(a, b), 1−R(b, a)) ≤ TF

1/λ(R(a, b), 1−R(b, c)) ,

P (b, c) = TF
1/λ(R(b, c), 1−R(c, b)) ≤ TF

1/λ(R(b, c), 1−R(a, b)) .

Since TF
1/λ ≤ TM it follows that

P (a, b) + P (b, c) ≤ min(R(a, b), 1−R(b, c)) + min(R(b, c), 1−R(a, b))
= 2−R(a, b)−R(b, c) ≤ 2− P (a, b)− P (b, c) .

However, this implies that P (a, b) + P (b, c) ≤ 1, a contradiction.

It therefore holds that R(c, a) ≤ R(b, a). Recall that also R(a, b) ≤ R(a, c). It
then holds that

P (a, c) = TF
1/λ(R(a, c), 1−R(c, a)) ≥ TF

1/λ(R(a, b), 1−R(c, a))

≥ TF
1/λ(R(a, b), 1−R(b, a)) = P (a, b)

≥ min(P (a, b), P (b, c)) ≥ f1/λ(P (a, b), P (b, c)) .

Next, consider a conjunctor g such that g(x, y) > f1/λ(x, y) in some point (x, y) ∈
]0, 1[2. Consider the following fuzzy relation R on A = {a, b, c}:

R a b c
a 1 x TnM(x, y)
b 0 1 y
c TM(1− x, 1− y) 0 1

Then R is TnM-transitive, but the strict preference relation P generated by means
of i = Tλ,

P a b c
a 0 x f1/λ(x, y)
b 0 0 y
c TF

1/λ(TM(1− x, 1− y), 1− TnM(x, y)) 0 0

is not g-transitive, since P (a, c) = f1/λ(x, y) < g(x, y) = g(P (a, b), P (b, c)) . ut
Remark 1.

(i) Since the Frank t-norm family is strictly increasing with decreasing parameter
values (see e. g. [1]), it follows from Theorem 2 that the transitivity of P
becomes weaker with decreasing λ, while Theorem 1 shows that the transitivity
of I becomes stronger.

(ii) Also note that for λ > 1, the transitivity of P is stronger than that of I, while
for λ < 1, this is just the opposite. For λ = 1, both types obviously coincide.
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6. THE WEAKLY COMPLETE CASE

In the foregoing sections, we have identified the strongest type of transitivity the
strict preference and indifference relations generated from a TnM-transitive large
preference relation R exhibit in general. In Proposition 2, it was already indicated
that in case of a strongly complete large preference relation R, stronger results can be
obtained: P is min-transitive and I is TnM-transitive. In this section, we consider
the more interesting and more general case of a weakly complete large preference
relation R: R(a, b) + R(b, a) ≥ 1 for any a, b ∈ A.

6.1. Indifference relations

Generating the indifference relation I by means of i = TF
λ , we already know that I

is fλ-transitive. The following proposition shows that when restricting our attention
to the class of weakly complete large preference relations, no stronger result can be
obtained.

Theorem 3. For any weakly complete reflexive fuzzy relation R with corresponding
indifference relation I generated by means of i = TF

λ , λ ∈ [0,∞], the following
implication holds:

R is TnM-transitive ⇒ I is fλ-transitive .

Moreover, this is the strongest result possible.

P r o o f . In view of Theorem 1, we only need to show that no stronger result can
be obtained for weakly complete R. Consider a conjunctor g such that g(x, y) >
fλ(x, y) in some point (x, y) ∈ ]0, 1[2. Define the set

B = {(u, v) ∈ [0, 1]2 | u + v > 1} .

Consider the following fuzzy relation R on A = {a, b, c}:

R a b c
a 1 x x · χB(x, y)
b 1 1 χB(x, y) + y · χBc(x, y)
c y · χB(x, y) + χBc(x, y) y · χB(x, y) + χBc(x, y) 1

where χB (resp. χBc) is the characteristic mapping of B (resp. Bc). Then R is
weakly complete and TnM-transitive but the indifference relation I generated by
means of i = Tλ,

I a b c
a 1 x fλ(x, y)
b x 1 y
c fλ(x, y) y 1

is not g-transitive since I(a, c) = fλ(x, y) < g(x, y) = g(I(a, b), I(b, c)) . ut
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6.2. Strict preference relations

Generating the strict preference relation P by means of i = TF
λ , we already know

that P is f1/λ-transitive. In this section, we will show that when restricting our
attention to the class of weakly complete large preference relations, stronger results
can be obtained, except in the case λ = ∞.

Theorem 4. For any weakly complete reflexive fuzzy relation R with corresponding
strict preference relation P generated by means of i = TF

∞ = TL, the following
implication holds:

R is TnM-transitive ⇒ P is TnM-transitive .

Moreover, this is the strongest result possible.

P r o o f . In view of Theorem 2 (f0 = TnM), we only need to show that no
stronger result can be obtained for weakly complete R. Consider a conjunctor g
such that g(x, y) > TnM(x, y) in some point (x, y) ∈ ]0, 1[2. Consider the following
fuzzy relation R on A = {a, b, c}:

R a b c
a 1 x TnM(x, y)
b 1− x 1 y
c 1− TnM(x, y) 1− y 1

Then R is weakly complete and TnM-transitive but the strict preference relation P
generated by means of i = TL,

P a b c
a 0 x TnM(x, y)
b 1− x 0 y
c 1− TnM(x, y) 1− y 0

is not g-transitive, since P (a, c) = TnM(x, y) < g(x, y) = g(P (a, b), P (b, c)) . ut

Next we prove an inequality involved in the proof of Theorem 5.

Lemma 1. Consider λ ∈ ]0,∞[. For the multiplicative generator φλ of the Frank
t-norm TF

λ it holds that

φ−1
λ

(√
φλ(x) φλ(1− y)

)
+ φ−1

λ

(√
φλ(1− x) φλ(y)

)
≤ 1

for any (x, y) ∈ [0, 1]2.
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P r o o f . For λ = 1 it holds that φ1(x) = x and we have to prove that
√

x(1− y) +
√

(1− x)y ≤ 1 .

First observe that x(1− y) ≤
(

1−
√

(1− x)y
)2

is equivalent to

(1− x + y)2 ≥
(

2
√

(1− x)y
)2

.

A simple verification shows that

(1− x + y)2 −
(

2
√

(1− x)y
)2

= (1− (x + y))2 ≥ 0 ,

which completes the proof for λ = 1.
Now let λ ∈ ]0, 1[∪ ]1,∞[. The inequality is trivially fulfilled when at least one

of x and y is either 0 or 1. We therefore consider (x, y) ∈ ]0, 1[2. Using the explicit
expression of φλ, the desired inequality is equivalent to hy(x) ≤ hy(1− y), where hy

is the function on [0, 1] defined by

hy(x) =
|λ− 1|
λ− 1

+
√

(λy − 1)(λ1−x − 1) +
√

(λx − 1)(λ1−y − 1)

+
|λ− 1|
λ− 1

√
(λy − 1)(λ1−x − 1)(λx − 1)(λ1−y − 1) .

We first compute the derivative of hy on ]0, 1[:

h′y(x) =
ln λ

2

[
− λ1−x(λy − 1)√

(λy − 1)(λ1−x − 1)
+

λx(λ1−y − 1)√
(λ1−y − 1)(λx − 1)

+
|λ− 1|
λ− 1

(λ1−y − 1)(λy − 1)(λ1−x − λx)√
(λ1−y − 1)(λx − 1)(λy − 1)(λ1−x − 1)

]

=
ln λ

2

[
λx(λ1−y − 1)√

(λ1−y − 1)(λx − 1)

(
1−

√
λy − 1

λ1−x − 1

)

+
λ1−x(λy − 1)√

(λy − 1)(λ1−x − 1)




√
λ1−y − 1
λx − 1

− 1





 .

We distinguish two cases:

(i) The case x + y ≥ 1. It holds that

1−
√

λy − 1
λ1−x − 1

≤ 0 and

√
λ1−y − 1
λx − 1

− 1 ≤ 0 ,

and therefore h′y(x) ≤ 0 for any x ∈ [1 − y, 1[, i. e. hy is decreasing on this
interval and hy(1− y) ≥ hy(x).
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(ii) The case x + y ≤ 1. It holds that

1−
√

λy − 1
λ1−x − 1

≥ 0 and

√
λ1−y − 1
λx − 1

− 1 ≥ 0 ,

and therefore h′y(x) ≥ 0 for any x ∈ ]0, 1 − y], i. e. hy is increasing on this
interval and hy(x) ≤ hy(1− y).

This completes the proof. ut

This lemma will be invoked in the following theorem, which characterizes the
transitivity of P generated from a weakly complete TnM-transitive large preference
relation R by means of a Frank t-norm TF

λ with λ ∈ ]0,∞[. The transitivity of P will
be expressed by means of a t-norm as well: a ϕ-transform of the nilpotent minimum.
For any [0, 1]-automorphism ϕ, the ϕ-nilpotent minimum is the t-norm given by

Tϕ
nM(x, y) =

{
0, if ϕ(x) + ϕ(y) ≤ 1 ,

min(x, y), otherwise .

Theorem 5. For any weakly complete reflexive fuzzy relation R with corresponding
strict preference relation P generated by means of i = TF

λ , λ ∈ ]0,∞[, the following
implication holds:

R is TnM-transitive ⇒ P is T
ϕ1/λ

nM -transitive ,

with ϕλ defined by ϕλ(x) = φ−1
λ

(√
φλ(x)

)
. Moreover, this is the strongest result

possible.

Before proving this theorem, we first notice that ϕλ, as composition of three
[0, 1]-automorphisms, is itself a [0, 1]-automorphism. It therefore makes sense to
consider the ϕλ-nilpotent minimum. The automorphism ϕλ, λ ∈ ]0, 1[∪ ]1,∞[, is
given explicitly by

ϕλ(x) = logλ

(√
λx − 1
λ− 1

(λ− 1) + 1

)
.

For λ = 1, we obtain ϕ1(x) =
√

x. Note that it holds that limλ→1 ϕλ = ϕ1. In that
case, the t-norm Tϕ1

nM reads

Tϕ1
nM(x, y) =

{
0 , if

√
x +

√
y ≤ 1 ,

min(x, y) , otherwise .



Transitive Decomposition of Fuzzy Preference Relations: The Case of Nilpotent Minimum 83

P r o o f . In view of the definition of T
ϕ1/λ

nM , it is sufficient to prove that

min(P (a, b), P (b, c)) ≤ P (a, c)

whenever ϕ1/λ(P (a, b)) + ϕ1/λ(P (b, c)) > 1. By definition of P and taking into
account the weak completeness of R, it follows that

P (a, b) = TF
1/λ(R(a, b), 1−R(b, a))

≤ TF
1/λ(R(a, b), R(a, b)) = φ−1

1/λ

(
φ2

1/λ(R(a, b))
)

,

or equivalently, ϕ1/λ(P (a, b)) ≤ R(a, b). It then also holds that ϕ1/λ(P (b, c)) ≤
R(b, c) and hence

R(a, b) + R(b, c) ≥ ϕ1/λ(P (a, b)) + ϕ1/λ(P (b, c)) > 1 .

Since R is TnM-transitive, it then holds that

TnM(R(a, b), R(b, c)) = min(R(a, b), R(b, c)) ≤ R(a, c) .

Without loss of generality, we can assume that R(a, b) ≤ R(b, c).
Now suppose that R(c, a) > R(b, a), then the weak completeness of R implies

that 1 ≤ R(a, b) + R(b, a) < R(b, c) + R(c, a). Since R is TnM-transitive, it holds
that

TnM(R(b, c), R(c, a)) = min(R(b, c), R(c, a)) = R(b, c) ≤ R(b, a) .

Moreover, the weak completeness of R implies that R(c, a) + R(a, b) > 1, whence
again

TnM(R(c, a), R(a, b)) = min(R(c, a), R(a, b)) = R(a, b) ≤ R(c, b) .

Using these two inequalities, it follows with Lemma 1 that

ϕ1/λ(P (a, b)) + ϕ1/λ(P (b, c))

= φ−1
1/λ

(√
φ1/λ(R(a, b))φ1/λ(1−R(b, a))

)
+ φ−1

1/λ

(√
φ1/λ(R(b, c))φ1/λ(1−R(c, b))

)

≤ φ−1
1/λ

(√
φ1/λ(R(a, b))φ1/λ(1−R(b, c))

)
+ φ−1

1/λ

(√
φ1/λ(R(b, c))φ1/λ(1−R(a, b))

)

≤ 1 .

This is clearly a contradiction. Therefore, it must hold that R(c, a) ≤ R(b, a). But
then we have that

P (a, c) = TF
1/λ(R(a, c), 1−R(c, a)) ≥ TF

1/λ(R(a, b), 1−R(b, a)) = P (a, b) ,

which completes the proof of the implication.
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It remains to be shown that no stronger result can be obtained. Consider a
conjunctor g such that g(x, y) > T

ϕ1/λ

nM (x, y) in some point (x, y) ∈ ]0, 1[2. Suppose
that x ≤ y (the case y ≤ x is completely similar). Define the set

C = {(u, v) ∈ [0, 1]2 | ϕ1/λ(u) + ϕ1/λ(v) > 1} .

Consider the following fuzzy relation R on A = {a, b, c}:
R a b c
a 1 ϕ1/λ(x) ϕ1/λ(x) · χC(x, y)
b 1− ϕ1/λ(x) 1 ϕ1/λ(y)
c 1− ϕ1/λ(x) · χC(x, y) 1− ϕ1/λ(y) 1

where χC is the characteristic mapping of C. Then R is weakly complete and TnM-
transitive but the strict preference relation P generated by means of i = TF

λ ,

P a b c

a 0 x T
ϕ1/λ

nM (x, y)
b 1− 2ϕ1/λ(x) + x 0 y
c (1− 2ϕ1/λ(x) + x)χC(x, y) + χCc(x, y) 1− 2ϕ1/λ(y) + y 0

is not g-transitive, since P (a, c) = T
ϕ1/λ

nM (x, y) < g(x, y) = g(P (a, b), P (b, c)). ut

Remark 2. It is easy to prove that T
ϕ1/λ

nM is greater than f1/λ, the strongest con-
junctor in the general case. As illustration, consider for instance λ = 4, then we
find:

T
ϕ1/4

nM (x, 1/2) =

{
0, if x ≤ log4(11− 4

√
6) ,

min(x, 1/2), otherwise ,

and

f1/4(x, 1/2) =

{
0, if x ≤ 1/2 ,

TF
1/4(x, 1/2), otherwise .

Since log4(11− 4
√

6) = 0.13 < 1/2 and min ≥ TF
1/4 it holds that T

ϕ1/4

nM > f1/4.

The final theorem of this paper concludes our study and shows that when the
strict preference relation is generated by means of the minimum operator, the
strongest result in the weakly complete case is much stronger than in the gen-
eral case (TL-transitivity). In fact, the result obtained here is the strongest type
of transitivity described by a conjunctor: min-transitivity.

Theorem 6. For any weakly complete reflexive fuzzy relation R with corresponding
strict preference relation P generated by means of i = TM, the following implication
holds:

R is TnM-transitive ⇒ P is TM-transitive .

Moreover, this is the strongest result possible.
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P r o o f . Obviously, we only need to consider the case min(P (a, b), P (b, c)) > 0.
In that case, it holds that P (a, b) = R(a, b) − R(b, a) with R(a, b) > R(b, a), and
P (b, c) = R(b, c)−R(c, b) with R(b, c) > R(c, b). Since R is weakly complete, it then
follows that

R(a, b) + R(b, c) > R(b, a) + R(c, b) ≥ 1−R(a, b) + 1−R(b, c) ,

and hence R(a, b) + R(b, c) > 1. Since R is TnM-transitive, it follows that

R(a, c) ≥ TnM(R(a, b), R(b, c)) = min(R(a, b), R(b, c)) .

Without loss of generality, we can assume that R(a, b) ≤ R(b, c) and hence R(a, b) ≤
R(a, c). We now distinguish two cases:

(i) The case R(b, c) + R(c, a) > 1. Since R is TnM-transitive, it holds that

R(b, a) ≥ TnM(R(b, c), R(c, a)) = min(R(b, c), R(c, a)) .

Since R(b, c) ≥ R(a, b) > R(b, a) it must hold that min(R(b, c), R(c, a)) =
R(c, a) and R(b, a) ≥ R(c, a).

(ii) The case R(b, c) + R(c, a) ≤ 1. Since R is weakly complete, it then holds that

R(c, a) ≤ 1−R(b, c) ≤ 1−R(a, b) ≤ R(b, a) .

In both cases, we obtain R(c, a) ≤ R(b, a). Together with R(a, b) ≤ R(a, c) it finally
follows that

min(P (a, b), P (b, c)) ≤ P (a, b) = R(a, b)−R(b, a)
≤ R(a, c)−R(c, a)
= max(R(a, c)−R(c, a), 0) = P (a, c) .

This completes the proof. ut

It would be desirable to be able to combine Theorems 4 – 6 into a single theorem.
We therefore consider the limits of the [0, 1]-automorphisms ϕλ for λ → 0 and
λ →∞. It is easily verified that

lim
λ→0

ϕλ(x) = x

and hence limλ→0 Tϕλ

nM = TnM. On the other hand, it holds that

lim
λ→∞

ϕλ(x) = m(x) =

{
1+x
2 , if x ∈ ]0, 1] ,

0 , if x = 0 .

Although m is clearly not a [0, 1]-automorphism, it holds that

lim
λ→∞

Tϕλ

nM = TM ,
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i. e.

TM(x, y) =

{
0, if m(x) + m(y) ≤ 1 ,

min(x, y), otherwise .

Introducing the notations ϕ0(x) = x and ϕ∞(x) = m(x) (stressing once more that
the latter is not a [0, 1]-automorphism) we can write Tϕ0

nM = TnM and Tϕ∞
nM = TM.

Summarizing Theorems 4 – 6, we can write

Corollary 1. For any weakly complete reflexive fuzzy relation R with corresponding
strict preference relation P generated by means of i = TF

λ , λ ∈ [0,∞], the following
implication holds:

R is TnM-transitive ⇒ P is T
ϕ1/λ

nM -transitive .

Moreover, this is the strongest result possible.

7. CONCLUSION

In this paper, we have studied the propagation of the TnM-transitivity of large pref-
erence relations to indifference and strict preference relations generated by means of
t-norm generators, i. e. by means of Frank t-norms. The strongest types of transi-
tivity that can be assured both in general and in the case of weakly complete large
preference relations have been identified. In particular, we have shown that the
transitivity of the indifference relation is not influenced by the weak completeness
of the large preference relation, while for the transitivity of the strict preference
relation, except for a limit case, there is a considerable improvement. These results
are summarized in Table 1 which contains the conjunctors characterizing the transi-
tivity of the indifference relation I and strict preference relation P generated from a
TnM-transitive large preference relation R by means of i = TF

λ . We hope to extend
these results in the future to a more general class of rotation-invariant t-norms.

Table 1. Transitivity of I and P generated from

a TnM-transitive R by means of i = TF
λ .

General R Weakly Complete R Strongly Complete R

Transitivity
of I

fλ fλ TnM

Transitivity
of P

f1/λ T
ϕ1/λ

nM TM
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