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AN INTERPOLATION PROBLEM
FOR MULTIVARIATE STATIONARY SEQUENCES

Lutz Klotz

Let X and Y be stationarily cross-correlated multivariate stationary sequences. Assume
that all values of Y and all but one values of X are known. We determine the best linear
interpolation of the unknown value on the basis of the known values and derive a formula
for the interpolation error matrix. Our assertions generalize a result of Budinský [1].

1. INTRODUCTION

In [1] Budinský studied the following problem. Let X and Y be two univariate sta-
tionarily cross-correlated stationary sequences. Assume that all values of Y and all
but one values of X are known. Find the linear interpolation error of the unknown
value of X on the basis of all known values. In the present paper we generalize
Budinský‘s result to multivariate sequences X and Y . The main tool of our inves-
tigations is the Hellinger-spectral domain of a stationary sequence. H. Salehi first
used Hellinger integrals in the interpolation of multivariate stationary sequences,
see [6] and [7]. His method was developed and completed by Makagon and Weron,
cf. [2, 3], and [8]. Some results of these authors, on which we heavily lean, are
summarized in Section 2. Section 3 is devoted to the solution of the interpolation
problem mentioned above. We obtain a formula for the interpolation error matrix as
well as a recipe for determining the best linear interpolation of the unknown value.
Since our formulas are rather difficult to apply in the general situation, in Section 4
we study some special cases and, using some facts on the Moore–Penrose inverse
of a non-negative Hermitian block matrix, derive more tractable formulas for the
interpolation error matrix.

2. PRELIMINARIES AND NOTATIONS

Let IN, ZZ, and CC be the sets of positive integers, integers, and complex numbers,
resp. For r ∈ IN , the symbol Mr, stands for the space of r × r-matrices with
complex entries. If A ∈ Mr, then A∗, R(A), Ker A, and ρ(A) denote its adjoint,
range, kernel, and rank, resp. Furthermore, A+ is the Moore–Penrose inverse of
A, cf. formulas (1.2) in [4]. If A is regular, its inverse A−1 coincides with A+.
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The symbol I stands for a unit matrix, where its size should become clear from the
context.

Let H be a Hilbert space over CC and Hr the Cartesian product of r copies of
H. We will consider Hr as a left Mr-module, i. e., the generic element u of Hr is
written as a column vector so that for each A ∈Mr the product Au is defined in a
natural way and belongs to Hr. The zero element of Hr is denoted by Or, whereas
the symbol 0 stands for O1 as well as for several zero matrices. For two vectors
u, v of Hr let 〈u, v〉 be their Grammian matrix. Finally, ek denotes the kth unit
vector of CCr, i. e. the vector whose kth entry is 1 and all its other elements are
0, k ∈ {1, . . . , r}.

An r-variate stationary sequence is a map S : ZZ 3 n → sn ∈ Hr such that
〈sm, sn〉 depends only on m − n,m, n ∈ ZZ. By M̃ we denote the time domain of
S, i. e. the closed subspace of Hr spanned by all sn, n ∈ ZZ, with coefficients from
Mr. Recall that M̃ = Mr, where M is the closed linear subspace of H, spanned
by the entries of all sn, n ∈ ZZ.

Let us assume that the spectral measure F of S is absolutely continuous with
respect to the Lebesgue measure σ on the σ-algebra B of Borel sets of [−π, π). Let
f be the spectral density and L2(F ) the spectral domain of S, i. e. the left Hilbert
Mr-module of (equivalence classes of) B-measurable Mr-valued functions Φ such
that

∫ π

−π
Φ(λ)f(λ)Φ(λ)∗σ(dλ) =

∫
ΦfΦ∗dσ exists.

In the following we will omit the integration variable and the domain of integration
[−π, π) in the notation. Furthermore, relations between B-measurable functions are
to be understood as relations that hold σ-a. e., although we will not emphasize this
each time.

Let U be Kolmogorov’s isomorphism between the time domain and the spectral
domain of S, i. e., U is an isometric Mr-linear isomorphism of M̃ onto L2(F ) such
that

Usn = ein·I, n ∈ ZZ.

Let us consider the Hilbert-Mr-module H2(F ) of (equivalence classes of) B-measurable
Mr-valued functions M such that Ker M ⊇ Ker f and

∫
Mf+M∗dσ exists. The

mapping

V : Φ → Φf

establishes an isometric Mr-linear isomorphism of L2(F ) onto H2(F ), cf. [6, Theo-
rem 1] and [3, Theorem 3.3 (b)].

It is not hard to see that

V −1M = Mf+, M ∈ H2(F ). (1)

In [3, Theorem 3.4 and Lemma 3.7] and [8, Lemma 4.5 (b)] it was proved the
following result.
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Lemma 1. A vector u of M̃ is orthogonal to all sn, n ∈ ZZ \ {0}, if and only if
V Uu is equal to a constant Mr-valued function, where its value A has the following
properties: R(A) ⊆ R(f) (2)

and ∫
Af+A∗dσ (3)

exists. The matrix A can be computed by

A = 〈u, s0〉. (4)

Conversely, if A ∈Mr has properties (2) and (3), then there exists a vector u ∈ M̃,
which is orthogonal to all sn, n ∈ ZZ \ {0}, such that V Uu = A σ-a. e.

3. AN INTERPOLATION PROBLEM

Let p, q ∈ IN and let X be a p-variate and Y a q-variate stationary sequence such
that S : sn :=

(
xn

yn

)
, n ∈ ZZ, is a (p+ q)-variate stationary sequence. Let M̃0 be the

closed Mp+q-linear hull of all sn, n ∈ ZZ \ {0}, and
(

Op

y0

)
. Denote the vector

(
x0

Oq

)

by x′0. Motivated by a paper of Budinský [1] we study the following interpolation
problem:
Find the orthogonal projection x̂0 of x′0 onto M̃0 and the interpolation error matrix

4 := 〈x′0 − x̂0,x
′
0 − x̂0〉 .

Since M̃0 is of the form M̃0 = Mp+q
0 , whereM0 is the closed subspace ofH spanned

by the entries of all sn, n ∈ ZZ \{0}, and the entries of y0, the problem is equivalent
to determining the orthogonal projections of the entries of x0 onto M0. However,
we find it convenient to study the larger space M̃0 since this allows us to use the
isomorphisms U and V .

First note that the singular part of the spectral measure F of S does not affect
on the interpolation error. So we assume that S has a spectral density f .
Let

x̃0 := x′0 − x̂0.

In the following we have to consider block partitions A :=
(

A11 A12

A21 A22

)
of matrices A

from Mp+q. In all these cases the left upper block A11 is assumed to belong to Mp.

In particular, the block partition f =
(

f11 f12

f∗12 f22

)
of f corresponds to the partition

of S into X and Y and the interpolation error matrix 4 has the form

4 =
(411 0

0 0

)
, (5)

where 411 is non-negative Hermitian and belongs to Mp.
Consider the subset
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L :=
{(

c
Oq

)
∈ CCp+q :

(
c

Oq

)
∈ R(f) and

∫ (
c

Oq

)∗
f+

(
c

Oq

)
dσ exists

}
of CCp+q.

Since
(

c
Oq

)
∈ L if and only if

(
c

Oq

)
∈ R(f) and the CCp-valued function ((f+)11)

1
2 c

is square-integrable, the set L is a subspace of CCp+q. Denote by P the orthogonal
projection in CCp+q onto L.

Let E be the Mp+q-valued function

E(λ) :=
(

I 0
0 0

)
, λ ∈ [−π, π).

Theorem 2. The interpolation error matrix 4 can be calculated by

4 =
(∫

Pf+P dσ

)+

. (6)

The orthogonal projection of x′0 onto M̃0 is equal to

x̂0 = U−1(E −4f+). (7)

P r o o f . Note that x̃0 is of the form
(

u
Oq

)
for some u ∈Mp

0, which implies

〈x̃0, s0〉 = 〈x̃0, x̃0〉 = 4. (8)

Since x̃0 is orthogonal to all sn, n ∈ ZZ \ {0}, from Lemma 1 and (8) we obtain that
V U x̃0 is a constant function whose value is equal to 4. Since V U is an isometry of
M̃ onto H2(F ), it follows

4 = 〈x̃0, x̃0〉 =
∫
4f+ 4 dσ. (9)

Relations (2) and (5) yield R(4) ⊆ R(f). Thus
∫ 4f+ 4 dσ =

∫ 4Pf+P 4 dσ =
4 ∫

Pf+Pdσ4. Comparing this with (9), we get

4 = 4
∫

Pf+Pdσ 4 . (10)

If we can show that the range of the matrix B :=
∫

Pf+P dσ is included in R(4),
the result immediately follows from (10). ButR(B) ⊆ R(P ) ⊆ R(f) and the integral∫

Bf+B dσ = B
∫

Pf+P dσB exists. According to Lemma 1 there exists a vector u

of M̃, which is orthogonal to all sn, n ∈ ZZ\{0}, such that V Uu = B = 〈u, s0〉σ-a. e.

Moreover, since
∫

V Uuf+V U
(

Op

y0

)
dσ =

∫
Bf+f

(
0 0
0 I

)
dσ =

∫
B

(
0 0
0 I

)
dσ = 0,

the vector u even belongs to the orthogonal complement of M̃0. This means that
it has the form u = Dx̃0, for some D ∈ Mp+q. Then B = 〈u, s0〉 = 〈Dx̃0, s0〉 =
D〈x̃0, x̃0〉 = D4, which implies Ker4 ⊆ Ker B and, hence, R(B) ⊆ R(4).
To prove (7) note that U x̂0 = Ux′0 − U x̃0, Ux′0 = E, and V U x̃0 = 4 σ-a. e., thus
U x̃0 = V −14 = 4f+ by (1). 2
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Corollary 3. The range of 4 is equal to the range of P .

P r o o f . It was shown in the proof of Theorem 2 that R(4) ⊆ R(P ). Thus,
if P4 denotes the orthogonal projector onto R(4), we get

∫
Pf+Pdσ = 4+ =

P4 4+ P4 = P4
∫

Pf+P dσP4 =
∫

P4Pf+PP4dσ =
∫

P4f+P4dσ. From this
equality it is easy to conclude that R(P4) = R(P ). 2

4. SPECIAL CASES

Under additional assumptions formula (6) can be brought into a more explicit form.
Because of (5) it is enough to give expressions for 411.

Corollary 4. If the values of f are regular matrices and
∫

(f11 − f12f
−1
22 f∗12)

−1dσ (11)

exists, then

411 =
(∫

(f11 − f12f
−1
22 f∗12)

−1dσ

)−1

. (12)

P r o o f . If the matrix f(λ) is regular, then the left upper block of f(λ)−1 is
equal to (f11(λ) − f12(λ)f22(λ)−1f12(λ)∗)−1 by the well-known Frobenius formula,
λ ∈ [−π, π). Now the result immediately follows from (6). 2

The following corollary generalizes Theorem 1 of [1].

Corollary 5. Let p = 1 and the values of f be regular matrices. Then 411 can
be computed by (12), where the right-hand side of (12) is to be interpreted as 0, if
the integral (11) does not exist.

P r o o f . If (11) exists, the result is a special case of Corollary 4. If (11) does not
exist, the projection P is equal to 0. 2

In the statement and the proof of our next corollary we make use of the following
result on matrices, which can be easily obtained from formula (3.24) in [4]. If A ∈
Mp+q and A is non-negative Hermitian, then ρ(A) = ρ(A22)+ ρ(A11−A12A

+
22A21).

In particular, ρ(A) = ρ(A22) if and only if A11 −A12A
+
22A21 = 0.

Corollary 6. Let p = 1. Then 411 = 0 if one of the following conditions hold:

(i) ρ(f) = ρ(f22) or, equivalently, f11− f12f
+
22f

∗
12 = 0 on a set of positive measure

σ.

(ii) ρ(f) > ρ(f22) σ-a. e. and the integral
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∫
(f11 − f12f

+
22f

∗
12)

−1dσ (13)

does not exist.

If ρ(f) > ρ(f22) σ-a. e. and (13) exists, then 411 is equal to

411 =
(∫

(f11 − f12f
+
22f

∗
12)

−1dσ

)−1

. (14)

P r o o f . It is not hard to see that the condition ρ(f(λ)) = ρ(f22(λ)) is equivalent
to the fact that e1 does not belong toR(f(λ)), λ ∈ [−π, π). So, (i) yields P = 0 and,
hence, 411 = 0. If ρ(f(λ)) > ρ(f22(λ)), we have ρ(f11(λ)−f12(λ)f22(λ)+f12(λ)∗) =
1 = ρ(f11(λ)) and therefore ρ(f(λ)) = ρ(f11(λ)) + ρ(f22(λ)). Under this condition
the left upper block of f(λ)+ is equal to (f11(λ) − f12(λ)f22(λ)+f12(λ)∗)−1, cf.
formula (3.32) in [4]. Thus, from the non-existence of (13) we again conclude P = 0
and the existence of (13) yields (14) because of (6). 2

Corollary 7. Let p = 1. Then 411 = 0 if and only if e1 belongs to R(f) σ-a. e.
and the integral (13) exists.

P r o o f . In the proof of Corollary 6 it was mentioned that e1 belongs to R(f(λ))
if and only if ρ(f(λ)) > ρ(f22(λ)), λ ∈ [−π, π). Hence, Corollary 7 is a consequence
of Corollary 6. 2

Now let us use our results to derive a minimality condition for r-variate stationary
sequences due to Rozanov [5, Theorem 10.2 of Ch. 2].

An r-variate stationary sequence S is called minimal in the sense of Rozanov if
for each k ∈ {1, . . . , r} the kth entry s

(k)
0 of s0 does not belong to the space Hk

spanned by the entries of all sn, n ∈ ZZ \ {0}, and the elements s
(j)
0 , j 6= k.

Corollary 8. An r-variate stationary process S is minimal in the sense of Rozanov
if and only if the values of f are regular matrices and all functions on the principal
diagonal of f−1 are integrable.

P r o o f . From Corollary 7 it follows that s
(k)
0 does not belong to Hk if and only if

ek belongs toR(f) and the kth function on the principal diagonal of f+ is integrable.
But ek ∈ R(f) for all k ∈ {1, . . . , r} if and only if f−1 exists. 2

Remark 9. We conclude with the remark that all results of the present paper can
be extended to a multivariate stationary process on a discrete Abelian group in an
obvious way.

(Received February 8, 1999.)
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