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Published bi-monthly by the Institute of Information Theory and Automation of the
Academy of Sciences of the Czech Republic, Pod Vodárenskou věž́ı 4, 182 08 Praha 8.
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GENERATED TRIANGULAR NORMS

Erich Peter Klement, Radko Mesiar and Endre Pap

An overview of generated triangular norms and their applications is presented. Several
properties of generated t-norms are investigated by means of the corresponding genera-
tors, including convergence properties. Some applications are given. An exhaustive list of
relevant references is included.

1. INTRODUCTION

Triangular norms were introduced in 1942 by Menger [43] in the framework of prob-
abilistic (statistical) metric spaces. Nowadays axiomatics of triangular norms (t-
norms in short) is due to Schweizer and Sklar [54].

Definition 1. A mapping T : [0, 1]2 → [0, 1] is called a triangular norm if it is
commutative, associative, non-decreasing and 1 is its neutral element, i. e.,

T (x, 1) = T (1, x) = x for all x ∈ [0, 1].

Note that the dual operation S to T , S : [0, 1]2 → [0, 1],

S(x, y) = 1− T (1− x, 1− y),

is called a triangular conorm (t-conorm). It is evident that dual operation to S is
again the starting operation T . Because of this duality, all properties of t-conorms
can be directly derived from the correspondent properties of t-norms. Further,
the structure ([0, 1], T ) with T a t-norm is an Abelian fully ordered semigroup
with neutral element 1 and annihilator 0. Another such structure is, for exam-
ple, ([0,∞], +) with neutral element 0 and annihilator ∞. Hence any decreasing
bijection f : [0, 1] → [0,∞] defines a t-norm Tf via semigroup isomorphism,

Tf (x, y) = f−1(f(x) + f(y)). (1)

The function f is then called an additive generator of Tf . Similarly, we can look
for the relationship of t-norms and the semigroup ([0, 1], ·) where · is the standard
product and then the corresponding isomorphism is called a multiplicative gener-
ator. However, as far as the semigroups ([0,∞],+) and ([0, 1], ·) are isomorphic,
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the concept of additive generators is equivalent with the concept of multiplicative
generators and therefore we will deal in this paper with additive generators only.

We have proposed an approach related to (1) to build up a binary operation on
[0, 1] in [48].

Definition 2. Let f : [0, 1] → [0,∞] be a strictly decreasing mapping with f(1)=0.
Then f is called a conjunctive additive generator and the mapping Tf : [0, 1]2 → [0, 1]
defined by

Tf (x, y) = f (−1)(f(x) + f(y)) (2)

is called a generated conjunctor. Here the mapping f (−1) : [0,∞] → [0, 1] is so called
pseudo-inverse of f , see [27], defined by

f (−1)(u) = sup(x ∈ [0, 1]; f(x) > z). (3)

Note that if a conjunctive additive generator f is continuous and f(0) = ∞ then
f (−1) = f−1 and formulas (1) and (2) are identical.

It is evident that a generated conjunctor Tf is commutative, non-decreasing and 1
is its neutral element, i. e., Tf is a t-norm if and only if it is associative. The problem
of the associativity of Tf (based on the properties of the corresponding conjunctive
additive generator f) is still an open problem!

Definition 3. Let f : [0, 1] → [0,∞] be a conjunctive additive generator. If the
corresponding generated conjunctor Tf is associative, i. e., it is a t-norm, then f will
be called an additive generator (of the t-norm Tf ).

Note that the strongest t-norm TM (i. e., operator min) cannot be generated by
means of additive generators, see [5, 63], while the weakest t-norm TD (the drastic
product vanishing on [0, 1[2) is generated by any conjunctive additive generator such
that for all x, y ∈]0, 1[ the inequality 2f(x) > f(y) holds [25].

Triangular norms are two-place functions and in general their processing may
be rather complicated. Note that there exist even (Borel) non-measurable t-norms,
see [23]. However, if a t-norm is generated by means of an additive generator,
i. e., by means of a one-place function, the situation is much more simpler (and
all such t-norms are measurable). Moreover, the complete information about a
generated t-norm Tf is hidden in its additive generator f . There are some sufficient
conditions and some necessary conditions on f corresponding to the associativity of
Tf , see [21, 27, 61, 65]. We recall one sufficient condition from [27].

Proposition 1. Let f : [0, 1] → [0,∞] be a conjunctive additive generator with
the range relatively closed under addition, i. e., for all x, y ∈ [0, 1],

f(x) + f(y) ∈ Ran f ∪ [f(0+),∞], (4)

where f(0+) = sup(f(x); x ∈]0, 1]). Then Tf is a t-norm, i. e., f is an additive
generator.
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Evidently, the continuity of f on ]0, 1[ is enough to ensure the validity of (4). Note
that any t-norm Tf generated by means of an additive generator f with the range
relatively closed under addition is Archimedean, see [27, 64], i. e., for all x, y ∈]0, 1[
there is n ∈ N so that x(n) < y, where x(1) = x and for n = 2, 3, . . . , x(n) =
T (x, x(n−1)). This is not more true in the case of a general additive generators.
There are generated t-norms Tf which have non-trivial idempotent elements and
hence are not Archimedean [62, 63].

In the framework of probabilistic metric spaces, fuzzy logic, and several other
domains where t-norms are applied, the corresponding t-norms are required to be
left-continuous (sup-preserving) mappings. An important result concerning the left-
continuity of generated t-norms is due to Viceńık [66].

Proposition 2. Let Tf be a t-norm generated by means of an additive generator f .
Then the following are equivalent:

(i) Tf is left-continuous;

(ii) Tf is continuous;

(iii) f is left-continuous;

(iv) f is continuous.

The importance of the left-continuity for t-norms is the reason why we will deal
throughout this paper only with such t-norms, and consequently (because of Propo-
sition 2) with continuous generated t-norms and continuous additive generators only.
The paper is organized as follows. The next section gives the famous Ling’s repre-
sentation theorem for continuous Archimedean t-norms, recalls the approximation
theorems for continuous t-norms by means of generated t-norms and several con-
vergence results. Section 3 is devoted to the ordering of generated t-norms and the
domination relation. Finite systems of generated t-norms are shown to be bounded
in the class of generated t-norms. Section 4 discusses several applications of gener-
ated t-norms and shows the role of corresponding additive generators. Finally, in
conclusions we discuss some other problems in the domain of generated t-norms and
recall similar results in some related domains.

2. REPRESENTATION THEOREM AND CONVERGENCE OF GENERATED
t–NORMS

One of the basic t-norms is the product t-norm TP . Its additive fenerator fP is
given by fP (x) = − log x. Another typical t-norm is generated by means of linear
additive generators fc given by fc(x) = c(1−x), c ∈]0,∞[. For any such c we obtain
the same t-norm generated by means of fc which is usually called the Lukasiewicz
t-norm with notation TL (also bold product, Giles intersection etc.), TL(x, y) =
max(0, x + y − 1). Both TP and TL are continuous Archimedean t-norms. The
structure of all continuous Archimedean t-norms was first explicitly described by
Ling [36] based on the previous results of Aczél [2] and Mostert and Shields ([51]).
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Theorem 1. A t-norm T is continuous and Archimedean if and only if there is a
continuous additive generator f so that T = Tf .

Therefore, the class of continuous Archimedean t-norms coincides with the class
of (left-)continuous generated t-norms. It is a matter of simple computation that for
a continuous additive generator f it is

Tf (x, y) = f−1(min(f(0), f(x) + f(y))) (5)

and that for two continuous additive generators f and g we have Tf = Tg if and only if
g = cf for some positive multiplicative constant c. Consequently, if we fix the values
of additive generators in some point x0 from ]0, 1[, e. g., we will require that f(0.5) =
0.5, then there is a one-to-one correspondence between continuous Archimedean t-
norms and continuous additive generators (with that prescribed value). Recall that
this is not more true in general case when we admit also non-continuous additive
generators, see e. g. [25, 61, 62].

There are two principal subclasses of continuous Archimedean t-norms distin-
guished by the value of their respective additive generators in the point 0. Namely,
all continuous generated t-norms whose additive generators are unbounded, i. e.,
f(0) = ∞, are isomorphic with the product t-norm TP and they are called strict t-
norms. They are strictly increasing on the half-open square ]0, 1]2, or, equivalently,
they fit the cancellation law (T (x, y) = T (x, z) if and only if x = 0 or y = z).
Continuous generated t-norms with bounded additive generators (f(0) < ∞) are
isomorphic with the Lukasiewicz t-norm TL and they are called nilpotent. Each
element x ∈]0, 1[ is a nilpotent element of such t-norm, i. e., for some n ∈ N we have
x(n) = 0.

The important role of continuous generated t-norms in the framework of continu-
ous t-norms is stressed not only by the general representation theorem for continuous
t-norms [36, 28] showing that each continuous t-norms can be built by means of the
strongest t-norm TM (minimum) and by means of continuous generated t-norms,
but also by the next approximation theorem, which is due to [22, 46, 52].

Theorem 2. Let T be a given continuous t-norm. Then for any ε > 0 there is a
continuous generated t-norm Tε which is ε-close to T , i. e., for all x, y ∈ [0, 1] we
have

|T (x, y)− Tε(x, y)| ≤ ε.

Note that the t-norm Tε in the previous theorem can be chosen either strict or
nilpotent. From the topological point of view, Theorem 2 means that continuous
generated t-norms are dense in the class of continuous t-norms.

Let f be a given continuous additive generator of a t-norm T . For λ ∈]0,∞[, we
can introduce two new functions f(λ), f (λ) : [0, 1] → [0,∞] defined by

f(λ)(x) = (f(x))λ
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and
f (λ)(x) = f(xλ).

It is evident that then both f(λ) and f (λ) are continuous additive generarots and
we denote the corresponding continuous generated t-norms by T(λ) and T (λ), re-
spectively. In [28], we have investigated the limit properties of these t-norms when
parameter λ converges to 0 and ∞, respectively.

Theorem 3. Let T be any continuous generated t-norm. Then

lim
λ→∞

T(λ) = TM (uniformly)

and
lim

λ→0+
Tλ = TD (pointwisely).

It is interesting to see that the limit properties of T(λ) are not dependent on the
t-norm T (what is not true e. g. in the case of generated aggregation operators,
see [32]).

Theorem 4. Let T be a continuous generated t-norm generated by a continuous
additive generator f and let f ′(1−) = limx→1− f(x)/(x− 1) ∈]−∞, 0[. Then

lim
λ→0+

T (λ) = TP (uniformly).

If T is nilpotent then (independently of T )

lim
λ→∞

T (λ) = TD (pointwisely).

The convergence in the class of continuous generated t-norms (which is necessar-
ily uniform) have their counterparts in the convergence in the class of continuous
additive generators (not necessarily uniform!). The next results were first shown
in [21, 22] and then simplified in [28, 47].

Theorem 5. Let T, T1, T2, . . ., be generated continuous t-norms. Then the fol-
lowing are equivalent:

(i) lim
n→∞

Tn = T (pointwisely);

(ii) lim
n→∞

Tn = T (uniformly);

(iii) There is a continuous additive generator f of T and a sequence {fn} of con-
tinuous additive generators generating t-norms Tn, respectively, such that
lim

n→∞
f(x) = f(x) for all x ∈]0, 1].
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Apply, e. g., Theorem 4 to the Lukasiewicz t-norm TL and its additive generator
fL(x) = 1− x. Then the generators f

(λ)
L are defined by

f
(λ)
L (x) = 1− xλ

and the corresponding t-norms T
(λ)
L converge uniformly to the product t-norm TP

for λ → 0+. Now, we can put T = TP and Tn = T
(1/n)
L . Evidently, for all x ∈]0, 1]

we have limn→∞ f
(1/n)
L (x) = 0, i. e., the limit function is not an additive generator.

However, also the functions fn = n f
(1/n)
L are continuous additive generators of

Tn, respectively, and limn→∞ fn(x) = − log x for all x ∈ [0, 1]. Recall that above
mentioned t-norms are the t-norms introduced by Schweizer and Sklar [55]. As an
example where the pointwise convergence of additive generators on whole interval
[0, 1] fails (in point 0) though the convergence of corresponding t-norms holds, recall
the family of Frank t-norms [15] in which the strict t-norms converge to a nilpotent t-
norm (namely, to the Lukasiewicz t-norm TL). However, then in point 0 the pointwise
convergence of additive generators is necessarily violated.

3. ORDERING AND DOMINATION OF CONTINUOUS GENERATED
t–NORMS

The partial order in the class of t-norms is inherited from the standard order on the
unit interval. We say that the t-norm T is weaker than the t-norm T ∗, i. e., T ≤ T ∗,
if for all (x, y) ∈ [0, 1]2 we get T (x, y) ≤ T ∗(x, y). Recall that for any t-norm T it
holds TD ≤ T ≤ TM . In the case of comparing continuous generated t-norms, we are
able to exploit their respective additive generators. The next result was first shown
in [55], see also [26, 28, 57].

Theorem 6. Let Ti be a continuous generated t-norm with continuous additive
generator fi, i = 1, 2. Then T1 ≤ T2 if and only if the composite function h =
f1 ◦ f−1

2 : [0, f2(0)] → [0,∞] is subadditive, i. e., for all x, y, x + y ∈ [0, f2(0)] it
holds h(x + y) ≤ h(x) + h(y).

Note that the subadditivity of composite h is equivalent with the superadditivity
of its inverse h−1 = f2 ◦ f−1

1 . As a straightforward corollary of Theorems 3, 5 and 6
we have the next result.

Corollary 1. Let T be a continuous generated t-norm and let T(λ) be defined as
in the previous section, λ ∈]0,∞[. Let T0 = TD and T∞ = TM . Then the family
(T(λ))λ∈[0,∞] is strictly monotone and continuous with respect to the parameter λ.

Recall that several well-known families of t-norms are based on the construction
described in Corollary 1. So, e. g., the Yager family [67] is just ((TL)(λ))λ∈[0,∞], the
Aczél–Alsina family [4] is just ((TP )(λ))λ∈[0,∞], the Dombi family [11] is ((TH)(λ))λ∈[0,∞],
where TH is the Hamacher product [19] generated by additive generator fH(x) =
1− 1/x, TH(x, y) = xy/(x + y − xy) whenever (x, y) 6= (0, 0).
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It is clear that a strict t-norm T can never be weaker than a nilpotent t-norm T ∗

(note that then T (x, y) > 0 whenever x > 0, y > 0, while T ∗(x, y) = 0 for some
x > 0, y > 0). However, strict and nilpotent t-norms may be incomparable. So,
e. g., strict t-norm TP is incomparable with the nilpotent Yager t-norm (TL)(2) = T y

2

with parameter λ = 2. For an infinite system of continuous generated t-norms, there
need not exist an upper and a lower bound in the class of continuous generated t-
norms. By Theorem 3, there are such systems with only upper bound TM (which is
continuous but not Archimedean neither generated) and with the only lower bound
TD (which is Archimedean and generated but not continuous). However, in the case
of finite systems we can always ensure the existence of lower and upper bounds (in
the class of continuous generated t-norms), see [38, 39].

Theorem 7. Let T1, . . . , Tn be a finite system of continuous generated t-norms.
Then there exist continuous generated t-norms T (which is nilpotent) and T ∗ (which
is strict) so that

T ≤ Ti ≤ T ∗ for all i = 1, . . . , n.

Moreover, if all Ti, i = 1, . . . , n, are nilpotent (strict), then also the upper bound
T ∗ can be chosen to be nilpotent (the lower bound T can be chosen to be strict).

Recall that the proof of Theorem 7 in [39] is constructive. However, it need not
give the best upper (lower) bound neither in the case of two comparable t-norms
and hence the problem whether the class of continuous generated t-norms forms a
lattice is still open.

Another important relationship between two t-norms is the domination. Domi-
nation plays a key role in several domains where t-norms are applied, mostly when
we discuss the Cartesian product of structures as Menger spaces, fuzzy equivalences
or equalities, etc.

Definition 4. Let T and T ∗ be t-norms. We say that T dominates T ∗, T À T ∗,
if for all x, y, u, v ∈ [0, 1] it holds

T (T ∗(x, y), T ∗(u, v)) ≥ T ∗(T (x, u), T (y, v)).

Again for any t-norm T we have TD ¿ T ¿ TM . Moreover, T À T ∗ implies T ≥
T ∗ but the opposite need not be true, i. e., there are t-norms T and T ∗ such that T ≥
T ∗ but not T À T ∗. Note that the relation of domination is reflexive, antisymmetric,
but it is an open problem whether it is also transitive, i. e., whether À is a partial
order. For more information about the domination we recommend [28, 57], where
also the next result first shown in [60] can be found.

Theorem 8. Let Ti be a strict t-norm with continuous additive generator fi,
i = 1, 2. Then T1 À T2 if and only if the composite function h = f1 ◦ f−1

2 :
[0, f2(0)] → [0,∞] fulfills (for all a, b, c, d ∈ [0, 1])

h−1(h(a + c) + h(b + d)) ≤ h−1(h(a) + h(b)) + h−1(h(c) + h(d)). (6)



370 E.P. KLEMENT, R. MESIAR AND E. PAP

Again as in the case of ordering it can be shown that starting from any strict T ,
the family (T(λ))λ∈[0,∞] is monotone with respect to domination, i. e., Tλ À Tµ if and
only if λ ≥ µ. Recall that the inequality (6) forces the convexity of the composite
function h (which is in any case continuous, strictly increasing, and h(0) = 0).
However, the convexity of a continuous strictly increasing mapping h : [0, u] → [0,∞]
with h(0) = 0 is sufficient for the superadditivity of h but not sufficient for h to
fulfill (6). For interested readers note that several interesting results concerning the
domination of continuous generated t-norms can be found e. g. in [60].

4. APPLICATIONS OF CONTINUOUS GENERATED t–NORMS

To stress the importance of continuous generated t-norms and their corresponding
additive generators, we give now some applications. In the framework of probabil-
ity theory, an important issue is the determination of the joint distribution from
given marginal distributions. Because of the measurability of random variables, it
is enough to determine the joint distribution on the product of intervals by means
of the values of marginal distributions of the underlying intervals. This processing
is done by means of copulas [14, 58], which need not be associative (neither com-
mutative) in general. However, if we require the non-dependence of the result on
the order of marginal distributions we work with (applying the obvious rearranging
of arguments whenever necessary), then the associativity of the applied copula is
necessary. Recall, e. g., the case of independent random variables, when the joint
distribution is constructed from the marginale ones by means of the product, i. e.,
by means of the associative copula TP .

Definition 5. A non-decreasing mapping C : [0, 1]2 → [0, 1] is called a (binary)
copula if 1 is its neutral element and for all x, y, u, v ∈ [0, 1] such that x ≤ u, y ≤ v
it holds

C(x, y) + C(u, v) ≥ C(x, v) + C(u, y). (7)

Note that any copula is continuous (more, it is a Lipschitz function with con-
stant 1) and for any copula C we have TL ≤ C ≤ TM . As mentioned above, a copula
C need not be neither commutative nor associative. However, if C is an associative
copula, then it is automatically also commutative (see e. g. [28, 51, 57]) and hence a
t-norm.

Proposition 3. A copula C is associative if and only if it is a t-norm fulfilling (7).

Coming back to the domination of t-norms, it is evident that each t-norm T
which dominates the weakest copula TL, T À TL, is an associative copula (and
the opposite is not true, i. e., there are associative copulas not dominating TL).
Each associative copula C is constructed from the strongest copula TM by means of
generated copulas, i. e., by means of continuous generated t-norms which fulfill (7).
However, if a t-norm T is generated by means of a continuous additive generator f
then (7) can be rewritten to a more transparent requirement [57].
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Theorem 9. A continuous generated t-norm T is a copula if and only if any
continuous additive generator f of T is convex.

In the fuzzy set theory, an important role is played by fuzzy equivalence relations.
The transitivity here is essentially based on some given t-norm T which plays the
role of logical conjunction [6, 8, 18, 20, 68].

Definition 6. Let X be a given (non-empty) universe and let T be a given t-norm.
A fuzzy subset E of the Cartesian product X2, i. e., a mapping E : X2 → [0, 1] is
called a T -fuzzy equivalence if it is reflexive, symmetric and T -transitive, i. e., for all
x, y, z ∈ X we have

E(x, x) = 1,

E(x, y) = E(y, x) and
T (E(x, y), E(y, z)) ≤ E(x, z).

Moreover, if E(x, y) = 1 only if x = y then a T -fuzzy equivalence E is called a
T -fuzzy equality.

It can be easily shown that if a t-norm T is weaker then another t-norm T ∗, T ≤
T ∗, then each T ∗-fuzzy equivalence relation (equality) is also a T -fuzzy equivalence
relation (equality). In the case of the Lukasiewicz t-norm TL, Bezdek and Harris [6]
gave an interesting relationship between TL-fuzzy equivalence relations and pseudo-
metrics on X. We have generalized this result for continuous generated t-norms
in [8].

Theorem 10. Let T be a continuous generated t-norm with a continuous additive
generator f . Let E be a T ∗-fuzzy equivalence relation (equality) on a given universe
X, where T ∗ is an arbitrary t-norm such that T ∗ ≥ T . Then the mapping d : X2 →
[0,∞] given by d = f ◦ E, i. e. d(x, y) = f(E(x, y)) is a pseudo-metric (metric) on
X.

Vice-versa, let d : X2 → [0,∞] be a given pseudo-metric (metric) on X. Then the
mapping E : X2 → [0, 1] given by E = f (−1)◦d, i. e., E(x, y) = f−1(min(f(0), d(x, y)))
is a T∗-fuzzy equivalence relation (equality) for any t-norm T∗ ≤ T .

Recall that T -fuzzy equivalence relations are closely related to fuzzy partitions [9]
and that the additive generators play an important role when defining fuzzy parti-
tions based on generated continuous t-norms [20]. So, e. g., when working on real
line, the shapes of fuzzy points (elements of fuzzy partitions) corresponds to pseudo-
inverses of additive generators of applied general continuous t-norms.

As the last field of this small overview of application of additive generators of
continuous generated t-norms we mention the field of fuzzy arithmetics. The stan-
dard addition of real numbers is extended to the addition of fuzzy quantities (fuzzy
subsets of the real line R) by means of the generalized Zadeh extension principle [69]
based on some t-norm T .
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Definition 7. Let A, B : R → [0, 1] be two given fuzzy quantities and let T be a
given t-norm. Then the T -based sum of A and B is the fuzzy quantity A ⊕T B :
R → [0, 1] defined by

A⊕T B(x) = sup(T (A(u), B(v)) |u + v = x). (8)

The fuzzy arithmetics based on the strongest t-norm TM is exhaustively discussed
in [37]. In general, the processing with formula (8) is rather complicated and time
consuming. However, in the case of generated continuous t-norms and some special
types of fuzzy quantities (related to the respective additive generators), we have
several interesting (and simple) results, see [12, 16, 29, 30, 41, 45]. An exhaustive
overview of fuzzy intervals theory can be found in [13].

Theorem 11. Let T be a continuous generated t-norm and let f be a continuous
additive generator of T . Let A, B : R → [0, 1] be two unimodal continuous fuzzy
intervals, i. e., there are peaks a, b ∈ R so that A(x) = 1 if and only if x = a,
B(y) = 1 if and only if y = b, and the partial mappings A|] − ∞, a], A|[a,∞[,
B|]−∞, b] and B|[b,∞[ are monotone, Then:

(i) if all composite mappings f ◦ A|] − ∞, a], f ◦ A|[a,∞[, f ◦ B|] − ∞, b] and
f ◦B|[b,∞[ are concave then A⊕T B is a unimodal continuous fuzzy interval
with peak a + b and

A⊕T B(x) = max(A(x− b), B(x− a)), x ∈ R;

(ii) if there is a convex function K : [0, u[→ [0,∞[, u ∈]0,∞], K(0) = 0 so that
there are constants v, w, r, s ∈]0,∞[ such that

A(x) = f (−1)(vK((x− a)/v)) if x ∈ [a, a + uv]

= f (−1)(wK((a− x)/w)) if x ∈ [a− wu, a]

= 0 otherwise,

and

B(x) = f (−1)(rK((x− b)/r)) if x ∈ [b, b + ru]

= f (−1)(sK((b− x)/s)) if x ∈ [b− su, b]

= 0 otherwise,

then

A⊕T B(x) = f−1(tK((x− a− b)/t)) if x ∈ [a + b, a + b + tu]

= f−1(qK((a + b− x)/q)) if x ∈ [a + b− qu, a + b]

= 0 otherwise,

where t = v + r and q = w + s.
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The rather complicated general formulation of Theorem 11 is much simplified
in several special cases. Note only that its direct application to the addition of
triangular (trapezoidal with necessary modification concerning the relevant peaks)
fuzzy numbers results to the preserving of the linear shape of the final output
whenever we work with t-norm T ≤ TL or any of Yager’s t-norm TY

λ . More, it
allows to reduce the computation with fuzzy numbers in mentioned case to the
processing with relevant parameters only. Similarly, the TP based addition of
Gaussian fuzzy numbers can be derived straightforwardly (if Ai = G(µi, σ

2
i ) then

A1 ⊕TP · · · ⊕TP An = G(
∑

µi,
∑

σ2
i ), where A(x) = exp((x − µ)2/σ2) whenever

A = G(µ, σ2)). For more details we recommend [13, 30, 45].

5. CONCLUDING REMARKS

We have given an overview of older and recent results on continuous generated trian-
gular norms and their continuous additive generators, including some applications.
Several problems were not mentioned. So, for examples, the majority of specific re-
quirements on continuous generated t-norms can be rewritten for their additive gen-
erators and hence we get some specific functional equations (or inequalities, etc.).
So, for example, the famous Frank family of t-norms [15] gives the Archimedean
solutions of the functional equation

F (x, y) + G(x, y) = x + y,

where F is some associative copula (i. e., a continuous t-norm) and G is its dual
copula which is supposed to be associative too (and hence a t-conorm).

Several other families already mentioned in this overview have their origine in
the solution of some special functional equations extensively treated in [3]. An in-
teresting problem is the determination of a t-norm when we know its values on some
subset of the unit square. So, e. g., in the case of generated continuous t-norms, if
the values on diagonal are known, we have to solve the Schroeder functional equa-
tion [3] and the relevant solutions are completely described in [50]. An interesting
consequence of results from Section 3 (comparison of t-norms) and results of [50] is
the fact, that two different continuous t-norms coinciding on the diagonal of the unit
equare are always incomparable (what is not true in the case of general t-norms).

Another interesting field of applications of continuous generated t-norms (and
t-conorms) is the field of general measure and integration theory. We recall here,
for example, the characterization of fuzzy σ-algebras based on Frank t-norms and
subsequent characterization of measure on these σ-algebras in [49]. Closely related
are also results concerning so-called g-integral and g-derivatives [40, 53].

The concept of generators has been applied also in several other domains. Recall,
for examples, generated conjunctors for many-valued logic introduced in [48] and
applied in [59]. Interesting and promising is the concept of additive generators of
aggregation operators introduced in [34] and further developed in [35]. Note that
the full characterization of continuous associative generated aggregation operators
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is given in [7]. Several other properties of special generated aggregation operators
are discussed in [31, 32].
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[37] M. Mareš: Computation over Fuzzy Quantities. CRC Press, Boca Raton 1994.
[38] V. Marko and R. Mesiar: A note on a nilpotent lower bound of nilpotent triangular

norms. Fuzzy Sets and Systems 104 (1999), 27–34.
[39] V. Marko and R. Mesiar: Lower and upper bounds of continuous Archimedean t-

norms. Fuzzy Sets and Systems, to appear.
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