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CONTINUOUS–TIME PERIODIC SYSTEMS
IN H2 AND H∞
Part II: State Feedback Problems

Patrizio Colaneri

This paper deals with some state-feedback H2/H∞ control problems for continuous time
periodic systems. The derivation of the theoretical results underlying such problems has
been presented in the first part of the paper. Here, the parametrization and optimization
problems in H2, H∞ and mixed H2/H∞ are introduced and solved.

1. STATE–FEEDBACK PROBLEMS

In the paper, we consider the periodic system described by

ẋ = A(t)x + B1(t)w + B2(t)u (1)
z1 = C1(t)x + D1(t)u (2)
z2 = C2(t)x + D2(t)u (3)

where
A(·), B1(·), B2(·), C1(·), D1(·), C2(·), D2(·)

are T -periodic piecewise continuous function matrices. The signal u(t) is the control
input, w(t) is an input disturbance and z1(t), z2(t) are controlled output variables.

The paper benefits from the development of the theory of H∞ control for shift-
invariant systems. In this regard, specially important is the celebrated paper [1], the
additional parametrization results given in [2], the parametrization of memoryless
state-feedback controllers via LMI and the mixed H2/H∞ control results in [3].
The application of the above theory to periodic systems is far from being trivial,
since it requires, besides non standard results on the differential periodic Riccati
equations, an appropriate extension of the mathematical machinery concerning sys-
tem theoretical aspects such as spectral properties, Youla–Kučera parametrization,
small gain results, H2 and H∞ norm, BIBO stability of feedback systems and so
on so forth. All these arguments are collected and studied in the first part of the
paper [4].

The present paper deals with the following state-feedback problems
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(1) Find a necessary and sufficient condition for the existence of a T -periodic causal
controller fed by (x,w) and yielding u such that the H∞ norm (defined in [4])
from w to z1 is less than a prescribed positive attenuation level γ.

(2) Parametrize all stabilizing T -periodic controllers fed by (x,w) and yielding
u such that the H∞ norm from w to z1 is less than a prescribed positive
attenuation level γ.

(3) Parametrize all memoryless T -periodic controllers (u(t) = K(t)x(t)) such that
the H∞ norm from w to z1 is less than (or equal to) a prescribed positive
attenuation level γ.

(4) Find a memoryless T -periodic controller (u(t) = K(t)x(t)) which minimizes
the H2 norm (defined in [4]) between w and z2.

(5) Find a memoryless T -periodic controller of the kind u(t) = K(t)x(t) which
minimizes the H2 norm between w and z2 while keeping the H∞ norm from
w to z1 less than or equal to a prescribed positive attenuation level γ.

Section 2 contains two theorems concerning the parametrization of stabilizing mem-
oryless state-feedback controllers (Theorem 2.1) and the optimal H2 control prob-
lem (Theorem 2.2). The H∞ full-information control problem (Theorem 3.1), the
parametrization of H∞ performant controllers (Theorem 3.2) and the parametriza-
tion of memoryless state-feedback controllers via differential LMI (Theorem 4.1)
are the object of Section 3. Finally, in Section 4, the so-called convex and post-
optimization procedures for the mixed H2/H∞ control problem (Theorems 5.1, 5.2)
are described.

2. H2 CONTROL

Here we limit our attention to the control law

u(t) = K(t) x(t)

where K(·) is a T -periodic control gain to be designed.
The aim of this section is twofold. First we want to characterize the set of all
stabilizing periodic gains, and, in addition, tackle the so-called H2 control problem.
Let us begin with the first problem. As is well known a T -periodic gain K(·) is
stabilizing if and only if there exists a periodic positive definite solution P (·) of the
differential Lyapunov inequality

Ṗ (t)− (A(t) + B2(t)K(t))P (t)− P (t) (A(t) + B2(t)K(t))′ > 0.

Now consider the new differential inequality in two unknows P (·) and W (·)
−Ṗ (t) + A(t)P (t) + B2(t)W (t)′ + P (t)A(t)′ + B2(t)P (t) < 0. (4)

The following theorem, whose proof is trivial, characterizes the set of all stabilizing
gains in terms of a suitable convex set.
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Theorem 2.1. The set of all T -periodic pairs (P (·), W (·)), with P (·) positive
definite, satisfying (4) is convex. Any stabilizing T -periodic gain K(·) can be written
as K(t) = W (t)′P (t)−1.

Let us now move the the H2 problem for system (1), (3) and denote by T (z2, w, K)
the input-output operator between the input w and the output z2 once the control
law is applied to the system. The H2 optimal control problem consists in finding a
periodic K(·) in such a way that

(i) the closed-loop system is stable

(ii) the H2 norm of T (z2, w, K) is minimized.

The proof of the theorem below is based on the periodic Lyapunov equation (eq.
(13) in [4]) by exploiting the monotonicity property of periodic Riccati equations
and the theorem of the existence of the unique stabilizing periodic solution, see [5].

Theorem 2.2. Assume that (A(·), B2(·)) is stabilizable, D2(t) is full column rank
for each t and that the periodic system (A,B2, C2, D2) does not have invariant zeros
in the unit circle. Then the optimal solution of the H2 problem is

Ko(t) = −(D′
2(t)D2(t))−1(B′

2Q̄2(t) + D′
2(t)C2(t))

where Q̄2(t) is the unique stabilizing periodic positive semidefinite solution of the
periodic Riccati equation

−Q̇(t) = A′(t)Q(t) + Q(t)A(t) + C ′2(t) C2(t)
−(B′

2Q(t) + D′
2(t) C2(t))′(D′

2(t)D2(t))−1 (B′
2Q̄(t) + D′

2(t)C2(t)).

Notice that, under the given assumption, the Riccati equation may well ad-
mit more than one positive semidefinite periodic solutions. The uniqueness of
such a solution is ensured if the stronger assumption is made that the system
(A(·), B2(·), C2(·), D2(·)) does not have invariant zeros outside the open unit disk.

3. H∞ CONTROL

Let us now be given a positive scalar γ. The so-called full-information control
problem for system (1), (2) consists in finding

(i) a necessary and sufficient condition for the existence of a T -periodic causal
controller K : (x,w) −→ u, such that the closed-loop system is stable and
the H∞ norm of T (z1, w, K) is less than γ;

(ii) the family to which all such controllers belong.

The derivation of the main result will be made under the following assumptions,
which are standard in the literature of H∞ control.
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A1) C1(t)′D1(t) = 0, ∀ t.

A2) D1(t)′D1(t) = I, ∀ t.

A3) The pair (A(·), B2(·)) is stabilizable.

A4) The pair (A(·), C2(·)) is detectable.

Consider first the H2 periodic Riccati equation:

−Π̇(t) = A(t)′Π(t) + Π(t)A(t)−Π(t)B2(t)B2(t)′Π(t) + C1(t)′C1(t) (5)

and let Π(·) be the unique stabilizing semidefinite T -periodic solution (whose exis-
tence is ensured by assumptions A3, A4). Now, let a new variable v be defined as
follows:

v(t) = u(t) + B2(t)′Π(t)x(t).

The output z1 can be rewritten as

z1(t) = Rop(τ)B1(t)w(t) + Uop(τ)v(t) (6)

where R and U are the following T -periodic stable systems:

R = (A−B2B
′
2Π, I, C1 −D1B

′
2Π, 0) (7)

U = (A−B2B
′
2Π, B2, C1 −D1B

′
2Π, D1). (8)

Define also a T -periodic matrix D+(·) such that D+(t)′D1(t) = 0, ∀ t and
D+(t) D+(t)′ = I, ∀ t, and consider the T -periodic stable system

U+ = (A−B2B
′
2Π,−Π−1C ′1D+, C1 −D1B

′
2Π, D+).

Hereafter, the symbol Aop(τ) denotes the input-output operator associated with a
periodic system A, with zero initial condition at t = τ . The following lemma is now
in order.

Lemma 3.1. Systems U and U+ are inner at t = τ and Uop(τ)∼U+op(τ) = 0.

P r o o f . Let x1, x2, x3 and x4 be the state variables of U , U∼, U+ and U∼+ ,
respectively. Simple computations show that

(i) U1op(τ) = Uop(τ)∼Uop(τ) is such that U1 = (−A′−ΠB2B
′
2, 0, B′

2, I) (with state
variable x5 = x2 −Πx1). Hence U1op(τ) = I.

(ii) U2op(τ) = U+op(τ)∼Uop(τ) is such that U2 = (A− B2B
′
2Π, 0,−D′

+C1, 0) (with
state variable x6 = Π−1x4 − x1). Hence U2op(τ) = 0.

(iii) U3op(τ) = U+op(τ)∼U+op(τ) is such that U3 = (A + Π−1C ′1C1, 0, D′
+C1, I)

(with state variable x7 = x3 −Π−1x4). Hence U3op(τ) = I. 2
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To state the main theorem, we need to introduce the class Ξ of all T -periodic causal
controllers K fed by x and w and yielding u such that the resulting closed-loop
system is stable and satisfies ‖T (z1, w,K)‖∞ < γ.

Fig. 2. Parametrization of the set ΞR ⊆ Ξ.

Theorem 3.1. Consider system P given by equations (1), (2), let γ > 0 be a given
scalar, and let the assumptions A1 – A4 be fulfilled. Then,

(a) there exists a (full-information) T -periodic controller K such that the closed-
loop system is stable and ‖T (z1, w,K)‖∞ < γ if and only if there exists a
T -periodic positive semidefinite solution of

− Ṗ (t) = A(t)′P (t) + P (t) A(t)
+ P (t) (B1(t)B1(t)′γ−2 −B2(t)B2(t)′) P (t) + C1(t)′C1(t) (9)

i. e. such that A(·) + (B1(·)B1(·)′γ−2 −B2(·)B2(·)′) P (·) is stable.

(b) Suppose that there exists a periodic stabilizing solution of (9) and denote by
ΞR the set of all controllers such that (see Figure 2)

u(t) = −B2(t)′P (t)x(t) +Qop(τ) (w(t)− γ−2B1(t)′P (t)x(t)) (10)

where Q is a stable T -periodic system with ‖Q‖∞ < γ. Then,

(b1) The set ΞR is included in the set Ξ, i. e. ΞR ⊆ Ξ.

(b2) If K ∈ Ξ then there exists a controller K̂ ∈ ΞR yielding the same input-output
operator, i. e. T (z1, w,K) = T (z1, w, K̂).

P r o o f . We suppose without loss of generality that γ = 1. This can be done by
suitably scaling matrices B2 and C1 as follows: B2 → B2γ, C1 → C1γ

−1. Conse-
quently, K → Kγ−1.

Point (b) and sufficiency of (a). In this part we first suppose that there exists the
stabilizing T -periodic positive semidefinite solution P (·) of the Riccati equation (9).
We shall prove (i) that the controllers of the proposed family ΞR (see equation (10))



334 P. COLANERI

do the job and (ii) that any controller in Ξ has a counterpart in the family ΞR

yielding the same closed-loop operator.

i) Let r(t) = w(t)−B1(t)′P (t)x(t) and Q be as follows

σ̇ = F̄ (t)σ + Ḡ(t) r (11)
q = H̄(t)σ + Ē(t) r. (12)

Then the overall T -periodic system can be written as:

ṗ = Ãp(t) + B̃(t)w (13)
z = C̃(t) p + D̃(t)w (14)

where

Ã(t) =

[
A(t)−B2(t)B2(t)′P (t)−B2(t)Ē(t)B1(t)′ B2(t)H̄(t)

−Ḡ(t)B1(t)′ F̄ (t)

]

B̃(t) =

[
B1(t) + B2(t)Ē(t)

Ḡ(t)

]

C̃(t) =
[

C1(t)−D1(t)B2(t)′P (t)−D1(t)Ē(t)B1(t)′P (t) D1(t)H̄(t))
]

D̃(t) = D1(t)Ē(t).

We know from the assumption that systemQ = (F̄ , Ḡ, H̄, Ē) is well-posed and stable
with norm less that 1. In particular, F̄ (·) is stable and I − Ē(·)′Ē(·) > 0. In view of
Lemma 2.6 of [4] there exists a T -periodic positive semidefinite stabilizing solution
Γ(·) of:

− Γ̇(t) = F̄ (t)′Γ(t) + Γ(t)F̄ (t) + H̄(t)′H̄(t)

+ (Γ(t)Ḡ(t) + H̄(t)′Ē(t)) (I − Ē(t)′Ē(t))−1(Ḡ(t)′Γ(t) + Ē(t)′H̄(t)).(15)

It is just a matter of cumbersome matrix manipulation to check that

S(t) =

[
P (t) 0

0 Γ(t)

]
(16)

is a T -periodic positive semidefinite stabilizing solution of the periodic Riccati equa-
tion:

− Ṡ(t) = Ã(t)′S(t) + S(t)Ã(t) + C̃(t)′C̃(t)

+ (S(t)B̃(t) + C̃(t)′D̃(t))(I − D̃(t)′D̃(t))−1(D̃(t)′C̃(t) + B̃(t)′S(t)).(17)

Since I − D̃(t)′D̃(t) = I − Ē(t)′Ē(t) > 0, ∀ t, from Lemma 2.6 of [4] it follows that
Ã(·) is stable and the overall system has H∞ norm less than one.



Continuous–time Periodic Systems in H2 and H∞. Part II: State Feedback Problems 335

(ii) Suppose that there exists a controller K ∈ Ξ, i. e. a controller such than system
(13), (14) is stable with H∞ norm less that one and let

K̂ = (AK , [BK B̄K ], CK , [DK D̄K ]).

By letting r(t) = w(t) − B1(t)′P (t) x(t) and q(t) = u(t) + B2(t)′P (t)x(t) one can
form in correspondence system Q = (F̄ , Ḡ, H̄, Ē) in (11), (12) with

F̄ (t)=
[

AK(t) BK(t) B1(t)′P (t)+B̄K(t)

B2(t) CK(t) A(t)+B1(t) B1(t)′P (t)+B2(t) (DK(t) B1(t)′P (t)+D̄K(t))

]
, (18)

Ḡ(t)=

[
BK(t)

B2(t) DK(t) + B1(t)

]
(19)

H̄(t)=
[

CK(t) DK(t)B1(t)′P (t) + D̄K(t) + B2(t)′P (t)
]

(20)

Ē(t)=DK(t). (21)

This leads to a controller K̂ which belongs to the family ΞR given by equation (10).
We have to prove that system Q = (F̄ , Ḡ, H̄, Ē) in equation (11), (12), (18), (19) is
stable with H∞ norm less than one. From Lemma 2.6 of [4] we know that there
exists a periodic positive semidefinite stabilizing solution of equation (17). Consider
now equation (9) and the quadratic form v(x, t) = x′P (t)x. It is easy to see that
v̇(x(t), t) = −r(t)′r(t) + w(t)′w(t) + q(t)′q(t) − z(t)′z(t). Recalling that x(τ) =
x(∞) = 0 and ‖T (z1, w,K) w‖2 < ‖w‖2, ∀w ∈ L2[τ ∞), w 6= 0, it follows that

‖q‖2 < ‖r‖2, ∀ r ∈ L2[0∞), r 6= 0. (22)

Since there exists the stabilizing solution S(·) of (17), the Hamiltonian matrix

Hc(t) =

[
Ac(t) Bc(t) Bc(t)′

−Cc(t)′Cc(t) −Ac(t)′

]

where

Ac(t) = Ã(t) + B̃(t) (I − D̃(t)′D̃(t))−1D̃(t)′C̃(t)
Bc(t)Bc(t)′ = B̃(t)I − D̃(t)′D̃(t))−1B̃(t)
Cc(t)′Cc(t) = C̃(t)′I − D̃(t)D̃(t)′)−1C̃(t)

does not have unit-modulus characteristic multipliers. Easy but cumbersome matrix
manipulations show that

Z(t)Hc(t)Z(t)−1 + Ż(t)Z(t)−1 =




Fc(t) Gc(t)Gc(t)′ ? 0

−Hc(t)′Hc(t) −Fc(t)′ ? 0

0 0 ? 0

? ? ? ?



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where

Fc(t) = F̄ (t) + Ḡ(t) (I − Ē(t)′Ē(t))−1Ē(t)′H̄(t)
Gc(t) Gc(t)′ = Ḡ(t) (I − Ē(t)′Ē(t))−1Ḡ(t)
Hc(t)′Hc(t) = H̄(t)′(I − Ē(t)Ē(t)′)−1H̄(t)

Z(t) =




I 0 0 0

0 I 0 0

−P (t) 0 I 0

0 0 0 I




and ? denotes the blocks which are irrelevant. It follows that

H̃c(t) =

[
Fc(t) Gc(t) Gc(t)′

−Hc(t)′Hc(t) −Fc(t)′

]

does not have unit-modulud characterstic multiplies. This fact, together with (22)
implies by Lemma 2.5 of [4] that there exists a stabilizing T -periodic solution of
eq. (15). Since the stabilizing solution of (17) is unique and the matrix (16) is a
stabilizing solution, we conclude that S(·) as in (16) is that solution. Since S(t) ≥ 0,
∀ t, it follows that Γ(t) ≥ 0, ∀ t, as well. Lemma 2.6 of [4] concludes the proof of (ii).

Necessity of (a)

Suppose that there exists a stabilizing controller K yielding ‖T (z1, w,K)‖∞ < 1.
We first show that there is no loss of generality in assuming the observability of
the periodic pair (A(·), C1(·)). This is done by resorting to the Kalman canonical
decomposition of a periodic system into its observable and unobservable parts, see
e. g. [6]. Now, let the system state x =

[
x′1 x′2

]′ be decomposed accordingly to
this partition, so that

A(t) =

[
A11(t) 0

A21(t) A22(t)

]
B(t) =

[
B11(t) B12(t)

B21(t) B22(t)

]
, C1(t) =

[
C11(t) 0

]
.

The existing T -periodic controller

K = (Ā, [B̄1 B̄2], C̄, [D̄1 D̄2])

fed by (x,w) and yielding u can be partitioned accordingly, i. e. B̄1(t)=[B̄11(t)B̄12(t)]
and D̄1(t) = [D̄11(t) D̄12(t)]. Hence, by grouping state x2 with the controller
state, a controller K̂ for the observable part of the system is obtained as K̂ =
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(Â, [B̂1 B̂2], C̄, [D̂1 D̂2]) with

Â(t) =

[
A22(t) + B22(t)D̄12(t) B22(t)

B̄12(t) Ā(t)

]

B̂(t) =
[

B̂1(t) B̂2(t)
]

=

[
A21(t) + B22(t)D̄11(t) B21(t) + B22(t)D̄2(t)

B̄11(t) B̄2(t)

]

Ĉ(t) =
[

D̄12(t) C̄(t)
]
, D̂(t) =

[
D̄11(t) D̄2(t)

]
.

Such a controller is stabilizing and such that ‖T (z1, w, K̂)‖∞ < 1. If we now show
that there exists the T -periodic stabilizing positive semidefinite solution P1(·) of the
periodic Riccati equation associated with the observable part (A11, [B11 B12],C11) of
system (1), (2), then the T -periodic stabilizing and positive semidefinite solution of
(9) takes on the form

P (t) =

[
P1(t) 0

0 0

]
.

Hence, we can assume that (A(·), C(·)) is observable from the very beginning, and
proceed to prove the existence of the periodic stabilizing positive semidefinite solu-
tions of the periodic Riccati equation (9).

Lemma 3.1 together with expression (6) entail that
[ Uop(τ)∼

U+op(τ)∼

]
z =

[ U∼op(τ)Rop(τ) B1(·)w + v

U+op(τ)∼Rop(τ)B1(·)w

]

with

‖z‖2 =

∥∥∥∥∥

[ Uop(τ)∼

U+op(τ)∼

]
z

∥∥∥∥∥
2

. (23)

On the other hand, the assumption that the H∞ norm is less than one, definition
v(t) = u(t) + B2(t)′P (t)x(t), the fact that x ∈ L2[τ ∞) and x(τ) = 0 imply

1 > sup
w∈L2[τ+∞), ‖w‖2=1

inf
v∈L2[τ+∞

‖z‖2.

Recall now the operator Mop previously introduced and associate it with system
G =

[ G1 G2

]
, where

[ G1op(τ) G2op(τ)
]

= B1(·)′Rop(τ)
[ Uop(τ) U+op(τ)

]

By taking into account equations (23) and (27) in [4] , and defining

v̂(t) = v(t) + Ω+Uop(τ)∼Rop(τ)B1(t) w(t)

we obtain

1 > sup
w∈L2[τ ∞),‖w‖2=1

inf
v̂∈L2[τ+∞)

∥∥∥∥Mop(τ)∼w +
[

v̂
0

]∥∥∥∥
2

.
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But M∼
opw and [v̂′ 0]′ are orthogonal so that

1 > sup
w∈L2[τ +∞), ‖w‖2=1

‖M∼
opw‖2 = ‖M∼

op‖ = ‖Mop‖.

Hence
sup

q̄ 6=0, q̄∈Ψ
‖Mopq̄‖2 < 1 (24)

where

Mopq̄ = Ω+B1(·)′Rop(τ)∼
[ Uop(τ) U+op(τ)

]
[

q̄1

q̄2

]
.

It is easy to see from equations (7), (8) that two possible realizations of

B1(·)′Rop(τ)∼Uop(τ)

and
B1(·)′R̃op(τ)U+op(τ)

respectively, are as follows:

B1(·)′Rop(τ)∼Uop(τ) = (A−B2B
′
2Π,−B2, B

′
1Π, 0)

B1(·)′Rop(τ)∼U+op(τ) = (A−B2B
′
2Π, Π−1C ′1D+, B′

1Π, 0).

Equation (24) in particular implies that

‖B1(·)′Rop(τ)∼U+op(τ)q̄2‖2 < ‖q̄2‖2, ∀ q̄2 ∈ L2[τ +∞)

Moreover, A(·) − B2(·)B2(·)′Π(·) is stable. Hence Lemma 2.6 of [4] ensures the
existence of the stabilizing positive semidefinite solution W (·) of

− Ẇ (t) = (A(t)−B2(t)B2(t)′Π(t))′W (t) + W (t) (A(t)−B2(t) B2(t)′Π(t))

+ W (t)Π(t)−1C1(t)′C1(t)Π(t)−1W (t) + Π(t)B(t)−1B1(t)′Π(t). (25)

We have here used the fact C1(t)′D+(t)D+(t)′C1(t) = C1(t)′C1(t), ∀ t. Notice also
that Π(t)−1 is the controllability Grammian of system B1(·)′Rop(τ)∼

[Uop(τ) U+op(τ)
]
.

The Hamiltonian matrices T1(·) and T2(·) associated with equation (9) and (25), re-
spectively, are related by the matrix

T3(t) =

[ −I Π(t)−1

−Π(t) 0

]
.

Actually, T1(t) = (T3(t) T2(t) + Ṫ3(t))T3(t)−1. Hence equation (9) admits the pos-
itive semidefinite T -periodic stabilizing solution P (t) = (I − Π(t)−1W (t))−1Π(t) =
Π(t) (Π(t)−W (t))−1Π(t) provided that we show that Π(t)−W (t) is positive definite.
This last condition follows from Lemmas 2.8, 2.9 and 2.1 of [4] applied to system G
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given by equations (4),(5) of [4] with Gop(τ) = B1(·)′Rop(τ)∼
[ Uop(τ) U+op(τ)

]
and

F (t) = A(t)−B2(t)B2(t)′Π(t)
G(t) = [−B2(t) Π(t)−1C1(t)′D+(t)]
H(t) = B1(t)′Π(t)
E(t) = [0 0])

Notice however that Lemmas 2.1 and 2.9 of [4] require the reachability of this last
system. As a matter of fact we now finally show that this condition is ensured
by the assumption of observability of the T -periodic pair (A(·), C1(·)). Suppose by
contradiction that G is not reachable. In view of the PBH test (equation (7) of [4])
there exists a nonzero periodic vector δ such that




λI −A(t)′ + B2(t)B2(t)′Π(t)

B2(t)′δ

D+(t)′C1(t)Π(t)−1


 δ =




δ̇

0

0


 , t ≥ τ. (26)

It is easy to recognize from (5) and (26) that µ(t) = Π(t)−1δ(t) is a nonzero periodic
solution of

[
λI + A(t)

C1(t)

]
µ =




µ̇

0

0


 , t ≥ τ.

Hence, the assumed observability of (A(·), C1(·)) is violated (recall the PBH test,
equation (7) of [4].

Remark 3.1. Notice that the family Ξ of H∞ performant periodic controllers can
obviously include non-dynamic periodic controllers such that

u(t) = Ê1(t)w(t) + Ê2(t)x(t)

where Ê1(·) and Ê2(·) are T -periodic matrices. Based on the line of reasoning used
in deriving equations (18),(19) it turns out that a controller in ΞR yielding the same
closed-loop operator can be constructed by defining in (10) system Q of (11),(12)
with

F̄ (t) = (A(t) + B1(t)B1(t)′P (t) + B2(t)Ê1(t)′B1(t)′P (t) + B2(t)Ê2(t)
Ḡ(t) = B1(t) + B2(t)Ê1(t)
H̄(t) = Ê2(t) + B2(t)′P (t) + Ê1(t)B1(t)′P
Ē(t) = Ê1(t)

As a matter of fact, if ξ is the state of this system and x the state of system (1)
it follows that ξ − x is the state of an unreachable T -periodic system with F̄ (·) as
dynamic matrix.
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Theorem 3.2. Consider system P given by equations (1), (2), let γ be a given
positive scalar, and let Assumptions A1 – A4 be fulfilled. Moreover, assume that
there exists the stabilizing periodic positive semidefinite solution P (·) of the periodic
Riccati equation (9). Then, the class Ξ of all periodic stabilizing controllers K such
that ‖T (z1, w,K)‖∞ < γ is shown in Figure 3, where Z1 and Q are any stable
periodic systems and ‖Q‖∞ < γ.

Fig. 3. Parametrization of the set Ξ.

P r o o f . Let
u(t) = −B2(t)′P (t)x(t) + q(t) (27)

and form the closed-loop system Pq as

ẋ = (A(t)−B2(t) B2(t)′P (t))x + B1(t)w + B2(t)q

z = (C1(t)−D1(t) B2(t)′P (t)) x + D1(t)q

y =
[

I
0

]
x +

[
0
I

]
w.

Denote by Pqij , i, j = 1, 2 the corresponding subsystems of Pq, i. e.

Pq11 = (A−B2B
′
2P, B1, C1 −D1B

′
2P, 0)

Pq12 = (A−B2B
′
2P, B2, C1 −D1B

′
2P, D)

Pq21 =
(

A−B2B
′
2P, B1,

[
I
0

]
,

[
0
I

])

Pq22 =
(

A−B2B
′
2P, B2,

[
I
0

]
, 0

)
.



Continuous–time Periodic Systems in H2 and H∞. Part II: State Feedback Problems 341

As shown in Lemma 2.11 of [4], the generic periodic controller (KF : y → q) which
stabilizes Pq22 is given by

KFop(τ) = [Yop(τ)− Sop(τ)Zop(τ)][Xop(τ)−Nop(τ)Zop(τ)]−1

where Z is any stable periodic controller. Now, since Pq22 is stable per se, it is
possible to choose Nop(τ) = Pq22op(τ), Yop(τ) = 0, Zop(τ) = I, and Xop(τ) = I, so
that

KFop(τ) = −Zop(τ) (I − Pq22op(τ)Zop(τ))−1. (28)

Plugging this controller in the system, it results:

z(t) = [(Pq11op(τ)− Pq12op(τ)Zop(τ)Pq21op(τ)) w] (t). (29)

On the other hand, all the possible periodic input-output stable operators P(K)op(τ)
with ‖P(K)‖∞ < γ are such that

z(t) = [Pq11op(τ)w] (t)+[Pq12op(τ)Vop(τ)Qop(τ) (I−γ−2B′
1PEop(τ)B1) w] (t) (30)

where
E = (A−B2B

′
2P, I, I, 0)

and
Vop(τ) = (I + γ−2Qop(τ)B1(·)′P (·) Eop(τ)B2(·))−1.

By comparing (29) with (30) it follows

Pq12op(τ)
[Zop(τ)Pq21op(τ) + Vop(τ)Qop(τ) (I − γ−2B1(·)′PEop(τ)B1(·))

]
= 0.

Since D1(t)′D1(t) = I, ∀ t, Pq12op(τ) is left-invertible, so that

−Zop(τ)Pq21op(τ) = Vop(τ)Qop(τ) (I − γ−2B1(·)′P (·)Eop(τ)B1(·)).

Moreover, since

Pq21op(τ) =

[ Eop(τ)B1(·)
I

]
(31)

it is readily seen that

I − γ−2B1(·)′P (·) Eop(τ)B1(·) =
[ −γ−2B1(·)′P (·) I

]Pq21op(τ)

so that
(Zop(τ) + Vop(τ)Qop(τ)

[ −γ−2B1(·)′P (·) I
]) Pq21op(τ) = 0. (32)

Assume for the moment that V is stable (this condition will be proved later on).
Hence, a particular solution of equation (32) is

Z̄op(τ) = Vop(τ)Qop(τ)
[

γ−2B1(·)′P (·) −I
]
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whereas the general solution is given by

Zop(τ) = Z̄op(τ) + Ẑop(τ)

where Ẑ is any stable T -periodic system solution of the homogeneous equation

Ẑop(τ)Pq21op(τ) = 0.

Since V is stable with stable inverse (recall that Q is stable and P is stabilizing so
that V−1 is stable as well), without any loss of generality we can write

Ẑop(τ) =
[ Vop(τ)Z1op(τ) Z2op(τ)

]

with Z1 and Z2 stable. Recalling now equation (31) it follows that

Z2op(τ) = −Vop(τ)Z1op(τ) Eop(τ)B1

so that
Ẑop(τ) = Vop(τ)Z1op(τ)

[
I −Eop(τ)B1(·)

]
.

Hence,

Zop(τ)=Vop(τ)
[Z1op(τ)+γ−2Qop(τ)B1(·)′P (·) −Qop(τ)−Z1op(τ) Eop(τ)B1(·)

]

with Z1 and Q stable and ‖Q‖∞ < γ. Putting this last expression of Z into (28)
and recalling (27) it follows that the family Ξ of all periodic stabilizing performant
controllers is represented by the generic controller (KF : y → u)

KFop(τ)=
[ −B2(·)′P (·) 0

]
(I −Z1op(τ)Eop(τ)B2(·))−1 ×

×[−Z1op(τ)− γ−2Qop(τ) B1(·)′P (·) Qop(τ) + Z1op(τ) Eop(τ)B1(·)
]
(33)

with Z1 and Q stable and ‖Q‖∞ < γ. By inspection, this controller corresponds to
the block scheme of Figure 3.
Finally, we only miss to show that V is a stable periodic system, where

Vop(τ) = (I + γ−2Qop(τ)B1(·)′P (·)Eop(τ)B2(·))−1.

Actually, consider the periodic system

[ L1

L2

]
, given by

ξ̇ = (A(t)−B2(t) B2(t)′P (t))ξ + B2(t)q

z1 = (C1(t)−D1(t) B2(t)′P (t))ξ

z2 = γ−1B1(t)′P (t)ξ

The input-output operator of L2 is exactly γ−1B1(·)′P (·) Eop(τ)B2(·). Moreover,
consider the periodic Riccati equation (9), equivalently rewritten as follows

−Ṗ (t) = P (t) (A(t)−B2(t) B2(t)′P (t))+(A(t)−B2(t)B2(t)′P (t))′P (t)

+ (C1(t)−D1(t)B2(t)′P (t))′(C1(t)−D1(t) B2(t)′P (t))

+ P (t)B1(t) B1(t)′P (t)γ−2.
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Thanks to Lemma 2.6 of [4] it follows ‖L‖∞<1. From L2op(τ)=γ−1B1(·)′P (·) Eop(τ)
B2(·) and ‖L2‖∞ ≤ ‖L‖∞; it then results ‖γ−1B1(·)′P (·) Eop(τ)B2(·)‖∞ < 1. More-
over, it is ‖ − γ−1Qop(τ)‖∞ < 1. Since E and Q are both stable, Lemma 2.12 of [4]
can be applied to yield the conclusion that the system with input output-operator

(I + γ−2Qop(τ)B1(·)′P (·) Eop(τ) B2(·))−1

is stable as well. 2

Remark 3.2. As obvious, the set ΞR can be recovered from Ξ by selecting Z1 = 0.
It is now interesting to point out further the relationship in the time-domain setting
between the sets Ξ and ΞR. As a matter of fact, if the controller initial state at
t = τ is zero, then, from equation (33) it follows

q(t) = [Z1op(τ) (Eop(τ) B2(·)q + Eop(τ)B1(·) w − x)] (t)+

+[Qop(τ) (w − γ−2B1(·)′P (·)x)] (t).

But, from the system equation ẋ = (A(t)−B2(t) B2(t)′P (t))x + B1(t) w + B2(t)q it
follows that letting Â(t) = A(t)−B2(t)B2(t)′P (t),

x(t) = [Eop(τ)w] (t) + [Eop(τ)q] (t) + ΦÂ(t, τ) x(τ), t ≥ τ

so that

u(t) = −B2(t)′P (t)x(t)+Z1op(τ)ΦÂ(t, τ)x(τ)+[Qop(τ) (w−B1(·)′P (·)x)] (t). (34)

By comparing the control pattern in equation (34) (corresponding to the set Ξ),
with the one given by equation (10) (corresponding to the set ΞR) the conclusion is
drawn that the only difference is played by the possible nonzero system initial state
x(τ).

Remark 3.3. The solution of the full information control problem provided in
Theorem 2.2 is the starting point in order to properly extend to periodic systems
the so called output estimation problem in H∞. As in the time-invariant case, it can
be shown that the solution of this latter problem derives directly from the solution
of the disturbance feedforward problem, which, in turn, is intimately related to the
solution of the former.

4. PARAMETRIZATION OF MEMORYLESS H∞ STATE–FEEDBACK
CONTROLLERS

In this section we want to characterize the set of stabilizing control laws

u(t) = K(t) x(t)
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with K(·) T -periodic, which render the H∞ norm of T (z1, w, K) bounded from above
by a given positive attenuation value γ. Let us denote by Kγ the set of periodic
stabilizing control gains such that Tτ (z1, w,K) ≤ γ and define the square matrix

W (t) =
[

W1(t) W2(t)
W2(t)′ W3(t)

]
(35)

such that, ∀ t

W (t) ≥ 0 (36)
Ẇ1(t) ≥ A(t)W1(t) + W1(t)A′(t)

+ γ−2(W1(t)C ′1(t)C1(t)W1(t) + W2(t)W ′
2(t))

+ B2(t)W ′
2(t) + W2(t)B′

2(t) + B1(t) B′
1(t). (37)

Now, denote by Wγ the set of all periodic pairs (W (·), γ2) satisfying eqs. (35) – (37).

Theorem 4.1. Let assumptions A1 –A4 hold and suppose that B1(t)B′
1(t) >

0,∀ t. Then,

(a) The set Wγ is convex.

(b) Each (W (·), γ2) ∈ Wγ is such that W1(t) > 0, ∀ t.

(c) Kγ = {(W ′
2(·)W1(t)−1) : (W (·), γ2) ∈ Wγ}.

P r o o f . (a) To prove convexity it is sufficient to rewrite inequality (37) in affine
form. Indeed, by using Schur complements and letting Letting

θ(W (t)) = −Ẇ1(t) + A(t)W1(t) + W1(t)A(t)′

+ B2(t)W2(t)′ + W2(t) B2(t)′ + B1(t) B1(t)′

R(t) =
[

C1(t)′C1(t) 0
0 I

]

U =
[

I 0
]

it is easy to see that inequelity (37) can be rewritten as

S(W (t)) =
[

θ(W ) UW (t)R(t)1/2

R(t)1/2W (t)U ′ −γ2I

]
≤ 0.

Hence, since θ(W (·)) is affine, A(W (·) is affine as well so showing convexity of Wγ .
(b) This condition follows from the assumption that B1(t)B1(t))′ is positive definite,
for each t. Indeed, assume, by contradiction, that W1(t) is singular for some time
instant ξ ∈ [0, T ), i. e. W1(ξ)x = 0, x 6= 0, and let y(t) = x′W1(t) x. Since W (·) is
positive semidefinite it must be also W2(ξ)′x = 0. By premultipling inequality (37)
by x′ and postmultipling by x it then follows that ẏ(ξ) ≥ x′B1(ξ)B1(ξ)′x > 0. This,
together with y(ξ) = 0 and y(t) ≥ 0, ∀ t, leads to contradiction.
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(c) This point simply derives from Lemma 2.7 of [4] by comparing the two inequalities
(37) and (26) of [4] and letting W2(t)′ = K(t)W1(t). Actually, such a comparizon
yields W1(t) = P (t). Indeed, if K(·) ∈ Kγ then let

F (t) = A(t) + B2(t)K(t) (38)
G(t) = B1(t) (39)
H(t) = C1(t) + D1(t)K(t) (40)
E(t) = 0. (41)

Notice that the pair (F (·), G(·)) is reachable since G(t)G(t)′ > 0, ∀ t. In view of
Lemma 2.7 in [4] there exists a T -periodic positive semidefinite solution Q(·) of
inequality (26) of [4]. In addition Q(·) is positive definite thanks to the positive
definiteness of B1(t) B1(t)′ = G(t)G(t)′. Now, let

W (t) =
[

Q(t) Q(t) K(t)′

K(t)Q(t) K(t)Q(t)K(t)′

]
.

It is simple to verify that the periodic matrix W (·) satisfies all required conditions
since it is positive semidefinite with W1(t) = Q(t) positive definite and such that
inequality (37) is satisfied. Conversely assume that W (·) ∈ Wγ . Then, by letting
K(t) = W2(t)′W1(t)−1, and F (·), G(·), H(·), E(·) as in (38)-(41) it follows that
Q(t) = W1(t) is a positive definite solution of inequality (26) of [4] so that, in view
of Lemma 2.7 of [4] the conclusion that K(·) ∈ Kγ follows. 2

The interest of the theorem above mainly relies on the convexity property of the
set Wγ .
The results relative to the parametrization of periodic stabilizing controllers guaran-
teeing the strict H∞ inequality, namely for ‖T (z1, w,K)‖∞, are still obtained from
Theorem 4.1 by replacing the inequality sign ≥ 0 in equation (37) with the strict
inequality sign >.

5. THE MIXED H2/H∞ CONTROL PROBLEM

In this section we want to address the problem of finding a periodic stabilizing gain
K(·) which minimizes ‖T (z0, w, K)‖2 while keeping ‖T (z1, w, K)‖∞ ≤ γ, i. e.

Jm = min
K
{‖T (z0, w, K)‖2 : ‖T (z1, w, K)‖∞ ≤ γ}. (42)

The exact solution to this problem is not yet available in the literature, even in
the time-invariant case. This fact spurred the research activity in the direction of
finding suboptimal solutions to problem (42). One way consists in exploiting the
convex structure of the set Wγ introduced in the previous section and trying to
replace the nonconvex objective function with a convex (linear) function of W (·).
By doing so, a suboptimal solution is recovered by solving the convex optimization
problem stated in the result below.
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Theorem 5.1. Let assumptions A1 – A4 hold and also the assumptions of Theo-
rem 2.2 be fulfilled. Moreover, let L(t) :=

[
C2(t) D2(t)

]
and assume that W̄ (·)

is the optimal solution of the convex problem

Jsub = min W (·) ∈ Wγtrace
∫ T

0

L(t)W (t)L(t)′ dt.

Then, Ko(t) = W̄2(t)′W̄1(t)−1 minimizes an upper bound of the objective function
of problem (42).

P r o o f . Let K(t) = W2(t)′W1(t)−1 and consider eqs. (38) – (39). Direct com-
parizon of (12) in [4] and (37), this last inequality with W2(t)′ = K(t)W1(t), shows
that W1(t) ≥ P2(t) so that

trace
∫ T

0

L(t)W (t)L(t)′ dt

+ trace
∫ T

0

(C2(t) + D2(t) K(t))W1(t) (C2(t) + D2(t) K(t))′ dt

+ trace
∫ T

0

D2(t) (W3(t)−K(t)W1(t) K(t)′)D2(t)′ dt

≥ trace
∫ T

0

(C2(t)+D2(t) K(t))P2(t) (C2(t) + D2(t)K(t))′ dt=‖T (z2, w, K)‖22. 2

The rest of this section is devoted to present an algorithm (α iteration procedure)
providing a suboptimal solution of the mixed problem which performs better than the
convex optimization procedure described in Theorem 5.1. Let K1(·) be a stabilizing
periodic gain, and α ∈ [0, 2] a scalar parameter. Moreover let

F (t) = A(t) + B2(t)K1(t) (1− α)2

+ (α2 − 2α)B2(t)(D2(t)′D2(t))−1D2(t)′C2(t)

G(t) = B2(t) (D2(t)′D2(t))−1/2(2α− α2)1/2

H(t) = C2(t) + D2(t)K1(t) (1− α)− αD2(t)(D2(t)′D2(t))−1D2(t)′C2(t).

Consider now the standard periodic differential Riccati equation

−Π̇2(t) = F (t)′Π2(t) + Π2(t)F (t) + H(t)′H(t)−Π2(t) G(t)G(t)′Π2(t). (43)

We are in a position to prove the following result.

Theorem 5.2. Consider system (1) – (3) and let Assumptions A1 – A4 hold. More-
over, let K1(·) be any stabilizing T -periodic feedback control gain. Then for any real
α ∈ [0, 2]
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(i) The periodic differential Riccati equation (43) admits the stabilizing T -periodic
positive semidefinite solution Π2(·), ∀α ∈ [0, 2].

(ii) The periodic feedback gain

K2(t) = (1− α) K1(t)− α(D2(t)′D2(t))−1(B2(t)′Π2(t) + D2(t)′C2(t)) (44)

is stabilizing, i. e. A(·) + B2(·) K2(·) is stable.

(iii) The H2 norm due to K2(·) is less than (or equal to) the H2 norm due to K2(·),
i. e.

‖T (z2, w, K2)‖2 ≤ ‖T (z2, w,K1)‖2, ∀α ∈ [0, 2].

(iv) The H2 norm due to K2(·) is monotonically nonincresing for α ∈ [0, 1], and
monotonically nondecreasing for α ∈ [1, 2], i. e.

d
dα
‖T (z2, w,K2)‖2 ≤ 0, ∀α ∈ [0, 1]

d
dα
‖T (z2, w,K2)‖2 ≥ 0, ∀α ∈ [1, 2].

P r o o f . Point (i). Equation (43) is a standard periodic differential Riccati equa-
tion (in the unknown Π2(·)) of the kind encountered in the H2 design context.
The first point to be proven is that the pairs (F (·), G(·)) and (F (·),H(·)) are stabi-
lizable and detectable, respectively. Indeed, let

Â2(t) = A(t) + B2(t) (D2(t)′D2(t))−1D2(t)′C2(t)
Ĉ2(t) = (I −D2(t) (D2(t)′D2(t))−1D2(t)′) C2(t).

In view of the assumption on the zeros of system (A,B2, C2, D2) and the fact that
D2(·) is full column rank, it follows that the pair (Â2(·), Ĉ2(·)) is detectable. Now,
notice that

F (t) = Â2(t) + B2(t) (1− α)S2(t)
H(t) = Ĉ2(t) + D2(t)S2(t)

where S2(t) = (1−α) (K1(t)+(D2(t)′D2(t))−1D2(t)′C2(t)). Now assume by contra-
diction that the pair the pair (F (·),H(·)) is not detectable. This means that there
exists a nonzero periodic solution of

[ −λI + F (t)

H(t)

]
θ =

[
θ̇

0

]
, t ≥ τ

with Re(λ) ≥ 0. The second equation with the definition of Ĉ2(t) and the facts that
Ĉ2(t)′D2(t) and D2(t) is full column rank, implies that

S2(t) x(t) = 0, Ĉ2(t)x(t) = 0, ∀ t.
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Hence
(−λI + F (t)) x(t) = (λI + Â2(t))x(t) = ẋ(t)

which, together with Re(λ) ≥ 0, Ĉ2(t) x(t) = 0, ∀ t and x(·) 6= 0, contradicts the
detectability of (Â2(·), Ĉ2(·)). As for the stabilizability of (F (·), G(·)), it easily fol-
lows from that of (Â2(·), B2(·)), which in turn is equivalent to the stated condition
of stabilizability of (A(·), B2(·)). Therefore we have shown that the pair F (·),H(·))
is detectable and the pair F (·), G(·)) is stabilizable. Hence, the equation (see [7])
admits a stabilizing solution whenever α ∈ [0, 2]. Actually, under the stated assump-
tions, this solution is also the unique positive semidefinite one.

Point (ii) In order to check the stability of A(·) + B2(·)K2(·), with K2(·) given by
eq. (44), consider again eq. (43). It can be rewritten in the following way

− Π̇2(t) = (A(t) + B2(t)K2(t))′Π2(t) + Π2(t) (A(t) + B2(t)K2(t))
+ (C2(t) + D2(t)K2(t))′(C2(t) + D2(t)K2(t)). (45)

Now notice that

A(t) + B2(t) K2(t) = Â2(t) + B2(t)S(t)
C2(t) + D2(t) K2(t) = Ĉ2(t) + D2(t)S(t)

0 = D′
2(t)Ĉ2(t)

where the periodic matrix S(·) is defined as follows

S(t) = [(1− α) (K1(t) + (D2(t)′D2(t))−1D2(t)′C2(t))
− α(D2(t)′D2(t))−1B2(t)′Π2(t)].

Thus, the stated detectability assumption together with the above equations imply
that the pair (A(·)+B2(·)K2(·), C2(·)+D2(·)K2(·)) is detectable as well. This fact
and the existence of a solution Π2(t) ≥ 0 of (45), entails, by an inertia argument
(see [7]) that A(·) + B2(·)K2(·) is stable.

Point (iii). For i = 1, 2 let Qi(t) be the periodic solutions of the differential Lyapunov
equations

− Π̇i(t) = (A(t) + B2(t)Ki(t))′Πi(t) + Πi(A(t) + B2(t)Ki(t))
+ (C2(t) + D2(t)Ki(t))′(C2(t) + D2(t) Ki(t)) (46)

respectively. Of course,

trace
∫ T

0

[B′
1(t)Πi(t)B1(t)] = ‖T (z2, w, Ki)‖22.

By means of standard algebraic manipultions it is possible to conclude that the
difference between the two periodic solutions Π1(t) and Π2(t) of (46) satisfies the
equation

−(Π̇1(t)− Π̇2(t)) = (A(t) + B2(t)K1(t))′(Π1(t)−Π2(t))
+ (Π1(t)−Π2(t)) (A(t) + B2(t)K1(t)) + K̂1(t)′K̂1(t)
− K̂2(t)′K̂2(t)
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where, for i = 1, 2,

K̂i(t) := Ki(t) + (D2(t)′D2(t))−1[B2(t)′Π2(t) + D2(t)′C2(t)] (D2(t)′D2(t))1/2.

Indeed, with this choice the above equation becomes

−(Π̇1(t)− Π̇2(t)) = (A(t) + B2(t)K1(t))′(Π1(t)−Π2(t))
+ (Π1(t)−Π2(t)) (A(t) + B2(t)K1(t))
+ K̂1(t)′K̂1(t)(2α− α2)

which shows that Π1(·) ≥ Π2(·) whenever α ∈ [0, 2].

Point (iv). Notice first that Π2(t) enjoys a symmetric property with respect to α,
i. e. Π2(t) at α is equal to Π2(t) at 2− α. Denoting with Γ2(·) the periodic matrix
which is the derivative of Π2(·) with respect to α it is possible to verify that such a
matrix satisfies the following Lyapunov equation

−Γ̇2(t) = F̂ (t)′Γ2(t) + Γ2(t)F̂ (t)− 2(1− α)K̂1(t)′K̂1(t) (47)

where F̂ (t) = F (t)−G(t)G(t)′Π2(t) is a stable matrix since Π2(t) is the stabilizing
solution of eq. (43). Hence from eq. (47) it follows that Γ2(t) ≤ 0 for α ∈ [0, 1] and
Γ2(t) ≥ 0 for α ∈ [1, 2]. 2

Remark 5.1. The above results can be exploited in the following way. Consider
system (1)-(3) and suppose that K1(·) is a given periodic matrix such that A(·) +
B2(·)K1(·) is stable and ‖T (z1, w;K1)‖∞ < γ (for instance the matrix resulting
from the convex programming problem (42)). Then one one dimensional search in
the interval [0, 2] for α with eq. (43) taken into account, allows to determine the
value of αo corresponding to which the control law u(t) = K2(t)x(t) minimizes the
H2 norm while keeping the H∞ norm not greater than γ. Incidentally, notice that
the choice α = 1 corresponds to the optimal unconstrained H2 control law, see
Theorem 2.2. Obviously αo and the relevant value for the H2 norm depend on the
chosen K1(·). Hence the α procedure consists in finding αo as follows:

αo = argmin{1− α1, α2 − 1}
α1 = max{α| α ∈ [0, 1], ‖T (z1, w; s)‖∞ ≤ γ}
α2 = min{α| α ∈ [1, 2], ‖T (z1, w; s)‖∞ ≤ γ}.

6. CONCLUDING REMARKS

In this paper a number of important state-feedback control problems for continuous-
time periodic systems are tackled. Particular attention is devoted to the parametriza-
tion of memoryless H∞ controllers and to the discussion of a new procedure for the
suboptimal solution of the mixed H2/H∞ control problem. The exposition greatly
exploits the theory of periodic Riccati and Lyapunov equations and does not take
any advantage of the recent developments of the “transfer function” approach for
continuous-time periodic systems.
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