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REMARKS ON FUZZY QUANTITIES
WITH FINITE SUPPORT1

Milan Mareš

The general results concerning the algebraic properties of fuzzy quantities presented,
e. g., in [2, 4, 6] can be rather completed and specifically interpreted if the fuzzy quantities
with finite support are considered. It is possible to show that the algebraic equivalence
relations over such quantities part their class into characteristical subclasses.

1. INTRODUCTION

As shown, e. g., in [2] and [4] the fuzzy numbers and generally fuzzy quantities can
be arithmetically handled but the operations over them do not fulfil some impor-
tant algebraic properties. This lack of algebraic perfectness is not purely technical,
it reflects the lack of determinism and the structure of uncertainty typical for the
fuzziness. The disproportion between the strict determinism of algebra and vague-
ness of fuzzy quantities can be avoided if we replace the crisp equality in algebraic
rules by certain types of equivalence, as shown, e. g., in [2, 3, 4].

Each equivalence means that some type of equivalence classes is considered in-
stead of single elements of the basic set. In our case the classes of equivalent fuzzy
quantities can be especially well specified if only the quantities with finite support
are considered. It enables us to formulate a few results which could not be (up
to now) derived for the general case, and to use them for a starting point to some
conclusions on the nature of fuzziness in quantitative data.

In the whole paper we denote by R the set of all real numbers and by R0 = R−{0}
the set of non-zero reals.

By normal fuzzy quantity we call any fuzzy subset a of R with the membership
function fa : R → [0, 1] such that

sup(fa(x) : x ∈ R) = 1. (1)

If, moreover, the support of fa, i. e. the set

{x ∈ R : fa(x) > 0} (2)
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is finite, we call a the finite-support normal fuzzy quantity (in this paper we mean
by fuzzy quantity always the finite-support normal fuzzy quantity). The set of all
fuzzy quantities will be in this paper denoted by R. It will be useful to denote by
R0 the set of non-zero fuzzy quantities i. e. such

{a ∈ R : fa(0) = 0}. (3)

For a ∈ R condition (1) turns into

max(fa(x) : x ∈ R) = 1, (4)

which means that fa(x) = 1 for at least one x ∈ R.
It will be useful to specify the following symbols of some sets of fuzzy quantities

R+ = {a ∈ R : fa(x) = 0 for x ≤ 0} , R− = {a ∈ R : fa(x) = 0 for x ≥ 0} ,
(5)

and the fuzzy quantities from the set

R? = R+ ∪ R− ⊂ R0 (6)

are called polarized.

2. ARITHMETICAL OPERATIONS

Fuzzy quantities represent vague numerical data and, consequently, they should be
processed by the usual arithmetical operations or by their close analogy.

Due to the referred literature (and to some other works) we define the addition
and multiplication of fuzzy quantities, with respect to the finiteness of their supports,
in the following way.

Let a, b ∈ R be fuzzy quantities with membership functions fa, fb, respectively.
By a⊕ b we denote the fuzzy quantity with membership function fa⊕b such that

fa⊕b(x) = max
y∈R

(min(fa(y), fb(x− y))) = max
z∈R

(min(fa(x− z), fb(z))) , x ∈ R.

(7)
If a, b ∈ R0 ⊂ R then we denote by a ¯ b the fuzzy quantity with membership
function fa¯b, where

fa¯b(x) = max
y∈R0

(min(fa(y), fb(x/y))) = max
z∈R0

(min(fa(x/z), fb(z))) , x ∈ R. (8)

Remark 1. The finiteness of the supports of a and b and relations (7), resp. (8),
imply that also a⊕ b and a¯ b have finite supports.

Remark 2. If a, b ∈ R0 then (8) implies that also a¯ b ∈ R0, i. e. fa¯b(0) = 0.

Fuzzy quantities a⊕ b and a¯ b are called the sum and the product of a and b,
respectively.

As shown in [6] the definition of product a¯b can be extended to fuzzy quantities
from R ⊃ R0, where fa¯b(x) is given by (8) for x 6= 0, and

fa¯b(0) = max (fa(0), fb(0)) . (9)
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This extension is coherent with the original definition of a ¯ b for a, b ∈ R0 and
preserves all its useful properties.

If x ∈ R then we denote by 〈x〉 the degenerated fuzzy quantity for which

f〈x〉(x) = 1, f〈x〉(y) = 0 if y 6= x. (10)

For a crisp real number r ∈ R the products of degenerated 〈r〉 with fuzzy quantity
gets a simplified form. For a ∈ R and r ∈ R we denote r · a = 〈r〉 ¯ a, where

fr·a(x) = fa(x/r) if r 6= 0, (11)
= f〈0〉(x) if r = 0.

As shown e. g. in the papers referred below, set R is a commutative monoid con-
cerning operation ⊕ i. e.

a⊕ b = b⊕ a, a⊕ (b⊕ c) = (a⊕ b)⊕ c, a⊕ 〈0〉 = a (12)

for a, b, c ∈ R. Analogously, R is a commutative monoid concerning operation ¯,
i. e. for a, b, c ∈ R

a¯ b = b¯ a, a¯ (b¯ c) = (a¯ b)¯ c, a¯ 〈1〉 = a. (13)

For the crisp product of r ∈ R, a, b ∈ R

r · (a⊕ b) = (r · a)⊕ (r · b). (14)

On the other hand, if we denote for a ∈ R, b ∈ R0 the fuzzy quantities −a ∈ R and
1/b ∈ R0 such that

f−a(x) = fa(−x), f1/b(y) = fb(1/y), f1/b(0) = 0, x ∈ R, y ∈ R0 (15)

then the remaining group properties

a⊕ (−a) = 〈0〉 and b¯ (1/b) = 〈1〉, (16)

as well as the complementary distributivity

(r1 + r2) · a = r1 · a⊕ r2 · a, r1, r2 ∈ R, (17)

are not generally fulfilled. The roots of this lack of pleasant algebraic properties
are discussed in [2, 4, 6]. Generally, it is innatural to demand the validity of strict
equations (16) between fuzzy quantities and crisp numbers, especially regarding the
fact that the operations ⊕ and ¯ do increase the fuzziness of the operated quantities.
Evidently also the repetitive addition becomes to be different from multiplication by
the number of repetitions (e. g. a⊕ a 6= 2 · a) if indeterminism enters the process, as
expressed by (17). The distributivity of ⊕ and ¯ is preserved in very special cases
only, as shown in [1].
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3. ALGEBRAIC EQUIVALENCES

The previous paragraph shows even how to avoid some of the discrepancies connected
with the arithmetical processing of fuzzy numbers. It is not rational to implement
crisp numbers, 0 and 1, into the manipulation with fuzzy phenomena. Instead of it
we should include some kind of “fuzzy zero” (in the additive case) or “fuzzy unit”
(in the multiplicative case). It was done in [2] and [4] in the following way.

Let a ∈ R, x ∈ R. We say that a is x-symmetric iff

fa(x + z) = fa(x− z) for all z ∈ R. (18)

By Sx we denote the sets of all x-symmetric fuzzy quantities. S denotes the union

S =
⋃

x∈R

Sx. (19)

If a, b ∈ R then we say that they are additively equivalent, and write a ∼⊕ b iff
there exist s1, s2 ∈ S0 such that

a⊕ s1 = b⊕ s2. (20)

Analogously, if b ∈ R and y ∈ R0 we say that b is y-transversible iff

fb(y · z) = fb(y/z) for z > 0, (21)
= 0 for z ≤ 0.

By Ty we denote the set of all y-transversible fuzzy quantities, and T denotes the
union

T =
⋃

y∈R0

Ty.

It is not difficult to verify that any y-transversible fuzzy quantity belongs to the set
R+ iff y > 0 and to R− iff y < 0 (cf. (5)).

We say that a and b from R are multiplicatively equivalent, in symbols a ∼¯ b,
iff there exist t1, t2 ∈ T1 such that

a¯ t1 = b¯ t2. (22)

Let us remember that

a⊕ (−a) ∼⊕ 〈0〉 for a ∈ R (23)

and
b¯ (1/b) ∼¯ 〈1〉 for b ∈ R?. (24)

It was shown (cf. [2, 4]) that R with the operation ⊕ is a commutative group up to
the equivalence relation ∼⊕, and R? = R+ ∪R− with ¯ forms a commutative group
up to ∼¯.

Remark 3. If a, b ∈ S0 then evidently a ∼⊕ b and a⊕ b ∈ S0.
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Lemma 1. If a, b are fuzzy quantities and a ∈ Sx, b ∈ Sy, x, y ∈ R, then a ∼⊕ b
iff x = y.

P r o o f . If a ∈ Sx, b ∈ Sy then by [3] a = 〈x〉 ⊕ s1, b = 〈y〉 ⊕ s2 for s1, s2 ∈ S0.
The equivalence a ∼⊕ b means that there exist s′1, s′2 ∈ S0 such that

〈x〉 ⊕ s1 ⊕ s′1 = 〈y〉 ⊕ s2 ⊕ s′2, (25)

where s1 ⊕ s′1 = s′′1 ∈ S0, s2 ⊕ s′2 = s′′2 ∈ S0. As −s′′2 = s′′2

〈x〉 ⊕ s′′1 ⊕ (−(〈y〉 ⊕ s′′2)) = 〈x− y〉 ⊕ (s′′1 ⊕ s′′2) = 〈x− y〉 ⊕ s

for s = s′′1 ⊕ s′′2 ∈ S0. Equality (25) implies that 〈x − y〉 ⊕ s ∈ S0 which is possible
iff x− y = 0 (cf. [3]). 2

Lemma 2. If a, b are fuzzy quantities and a ∈ Tx, b ∈ Ty, x, y ∈ R0 then a ∼¯ b
iff x = y.

P r o o f . The proof is analogous to the previous one where relevant results from
[4] are used. 2

4. EQUIVALENCE CLASSES

If we limit our considerations to the fuzzy quantities with finite support, some useful
conclusions can be derived. Those ones which concern the additive case were in a
slightly modified form presented in [2] (e. g., Lemmas 9 and 10 or Theorems 8 and
9).

The proofs of the following statements demand to proceed rather less strict type
of fuzzy quantities than the normal ones considered in the other paragraphs. An
arbitrary fuzzy quantity with finite support will be called any fuzzy quantity a with
membership function fa : R → [0, 1] with finite support (2) but generally not
fulfilling the normality assumptions (1) and/or (4).

Lemma 3. Let a be arbitrary fuzzy quantity with finite support, let s ∈ S0 be
0-symmetrical fuzzy quantity, let x0 ∈ R be such that fa(x0) = fa(−x0) = 0, and
let a0 be an arbitrary fuzzy quantity such that

fa0(x) = fa(x) for all x ∈ R, |x| 6= |x0|
fa0(x0) = fa0(−x0) ≥ max (fa(x) : x ∈ R) .

Then for any x ∈ R fa(x) = fa(−x) iff fa0(x) = fa0(−x), and fa⊕s(x) = fa⊕s(−x)
iff fa0⊕s(x) = fa0⊕s(−x).

P r o o f . The validity of the first equivalence is evident. Let us denote

{x1, . . . , xn} = {x ∈ R : fa(x) > 0}. (26)
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Then for any y ∈ R

fa0⊕s(y)=max
x∈R

(min(fa0(x), fs(y−x)))= max
i=0,1...,n

(min(fa0(xi), fs(y−xi))) , (27)

fa0⊕s(−y)=max
x∈R

(min(fa0(x), fs(−y − x)))= (28)

=max
x∈R

(min(fa0(x), fs(y + x))) = max
x∈R

(min(fa0(−x), fs(y−x))) .

Let fa⊕s(y) = fa⊕s(−y) for all y ∈ R, and let us consider the y0 ∈ R for which

fa0⊕s(y0) = fa0(x0) = min (fa0(x0), fs(y0 − x0)) .

Then, as fa0(x0) ≥ fa(x) for all x ∈ R, (27) implies

fa0⊕s(−y0) = max
x

(min(fa0(−x), fs(y0 − x))) =

= min (fa0(−x0), fs(y0 − x0))) = fa0(−x0) = fa0(x0)

and consequently fa0⊕s(y0) = fa0⊕s(−y0). If fa0⊕s(y) 6= fa0(x0) then it is equal
to some of the values of fa⊕s(y) = fa⊕s(−y). If, on the other hand, fa0⊕s(y) =
fa0⊕s(−y) for all y ∈ R then for any y ∈ R either fa⊕s(y) = fa0⊕s(y) = fa0⊕s(−y) =
fa⊕s(−y) or fa⊕s(y) = 0 6= fa0⊕s(y) and then also fa⊕(−y) = 0 as follows from the
previous steps of the proof. 2

Lemma 4. Let a ∈ R be a fuzzy quantity, let s ∈ S0 be 0-symmetric fuzzy quan-
tities and let a⊕ s ∈ S0. Then a ∈ S0 as well.

P r o o f . Let us denote {x1, . . . , xn} by (26). As s ∈ S0, equalities (27) and (28)
hold. Let us choose the j ∈ {1, . . . , n} for which

fa(xj) = max (fa(xi) : i = 1, . . . , n) , (29)
|xj | ≥ |xi| for all xi such that fa(xi) = fa(xj), (30)
xj ≥ 0. (31)

Such j exists, as the finiteness of support guarantees the fulfilling of (29) and (30)
for at least one j ∈ {1, . . . , n}. If (31) is not fulfilled for some j respecting (29) and
(30) then there exists xj ∈ R such that xj < 0 and fa(−xj) < fa(xj). Let us choose,
then, y0 ∈ R such that

fs(y0 − xj) ≥ fa(xj) and fs(y) < fa(xj) for y > y0 − xj .

It means that

fa⊕s(y0) = min (fa(xj), fs(y0 − xj)) > min (fa(−xj), fs(y0 − xj)) = fa⊕s(−y0)

which inequality contradicts the symmetry assumption on a⊕ s.
Having chosen j ∈ {1, . . . , n} and xj ∈ R which fulfill (29), (30), (31), we choose

the y0 ∈ R for which
fs(y0 − xj) ≥ fa(xj),
fs(y) < fa(xj) for y < y0 − xj ,
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then by (27) and (28)

fa⊕s(y0) = max
i=1,...,n

(min(fa(xi), fs(y0 − xi))) ≥ fa(xj , )

fa⊕s(−y0) = max
x∈R

(min(fa(−x), fs(y0 − x))) =

= min (fa(−xj), fs(y0 − xj))) ≤ fa(−xj) ≤ fa(xj).

But the 0-symmetry of a⊕ s means that

fa(xj) ≤ fa⊕s(y0) = fa⊕s(−y0) ≤ fa(−xj) ≤ fa(xj)

and, consequently, fa(−xj) = fa(xj).
Let us construct, now, an arbitrary fuzzy quantity with finite support a1 such

that

fa1(x) = fa(x) for x ∈ R, |x| 6= xj ,

fa1(xj) = fa1(−xj) = 0.

Lemma 3 implies that fa1(x) = fa1(−x) for all x iff fa(x) = fa(−x) for all x and
that fa⊕s(x) = fa⊕s(−x) for all x ∈ R iff fa1⊕s(x) = fa1⊕s(−x) for all x ∈ R. It
means that we may repeat the previous procedure for a1 and, after a finite number
of analogous induction steps, we prove fa(x) = fa(−x) for all x ∈ R. 2

Remark 4. It follows from the proof of Lemma 4 that an analogous statement is
valid for a being arbitrary fuzzy quantity with finite support such that fa⊕s(x) =
fa⊕s(−x) for all x ∈ R. Then fa(x) = fa(−x) for all x ∈ R, as well.

The following statements concerning the additive equivalence can be derived from
the previous lemmas.

Theorem 1. If a, b ∈ R are fuzzy quantities then a ∼⊕ b if and only if a⊕ (−b) ∈
S0.

P r o o f . The statement can be proved similarly to Theorem 8 in [2], using previ-
ous Lemma 4 and definitoric equality (20). 2

Theorem 2. If a ∈ R is a fuzzy quantity then a ∼⊕ 〈0〉 if and only if a ∈ S0.

P r o o f . The statement follows from Theorem 1 immediately. 2
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Theorem 3. Subsets Sx, x ∈ R, form equivalence subclasses of the set of fuzzy
quantities R, according to ∼⊕.

P r o o f . It was shown by Lemma 1 that for x, y ∈ R, a ∈ Sx, b ∈ Sy, the relation
a ∼⊕ b can be true iff x = y. Let us suppose that there exists a ∈ R− S and b ∈ S
such that a ∼⊕ b, and let x ∈ R be such that b ∈ Sx. Then b = 〈x〉 ⊕ s for some
s ∈ S0 and there exist s1, s2 ∈ S0 for which

a⊕ s1 = b⊕ s2 = 〈x〉 ⊕ s⊕ s2.

It means
a⊕ s1 ⊕ 〈−x〉 = s⊕ s1 ⊕ 〈0〉 = s⊕ s1,

and by Lemma 4 a ⊕ 〈−x〉 ∈ S0. By [3], a ∈ S−x ⊂ S which contradicts the
assumption a ∈ R− S. 2

Remark 5. Evidently, there exist more equivalence classes in R than the sets Sx,
x ∈ R. However, the specific position of symmetry in fuzzy quantities (cf. [5] or [2])
is even more stressed by the previous result.

The transversible fuzzy quantities and operation of multiplication can be pro-
ceeded in a similar way. In the following paragraphs we limit the presentation of the
procedure to the points which essentially differ from the additive case.

Let us remember that the concept of arbitrary fuzzy quantity with finite support
mentioned above keeps unchanged.

Lemma 5. Let a be an arbitrary fuzzy quantity with finite support, let fa(x) = 0
for all x ≤ 0, let t ∈ T1 be a 1-transversible fuzzy quantity, let x0 > 0 be such that
fa(x0) = fa(1/x0) = 0, and let a0 be an arbitrary fuzzy quantity such that

fa0(x) = fa(x) for all x ∈ R, x0 6= x 6= 1/x0,

fa0(x0) = fa0(1/x0) ≥ fa(x) for all x ∈ R.

Then for any x ∈ R0 fa(x) = fa(x/1) iff fa0(x) = fa0(1/x), and fa¯t(x) =
fa¯t(1/x) iff fa0¯t(x) = fa0¯t(1/x).

P r o o f . If we denote the support set of a by {x1, . . . , xn}, like in (26), then for
any y > 0, analogously to (27) and (28),

fa0¯t(y)=max
x>0

(min(fa0(x), ft(y/x)))= max
i=0,1,...,n

(min(fa0(xi, ), ft(y/xi))) ,(32)

fa0¯t(1/y)=max
x>0

(min(fa0(x), ft(1/y · x)))= (33)

=max
x>0

(min(fa0(x), ft(y · x)))=max
x>0

(min(fa0(1/x), ft(y/x))) .

The assumptions of the lemma immediately imply that for y ≤ 0 fa¯t(y) =
fa0¯t(y) = 0 as well as fa0(x) = fa(x) = ft(x) = 0 for all x ≤ 0.

Further procedure of the proof is analogous to Lemma 3. If we choose y0 ∈ R+

such that
fa0¯t(y0) = fa0(x0) ≥ fa(x), x > 0,



Remarks on Fuzzy Quantities With Finite Support 141

then by (32) fa0¯t(1/y0) = fa0(x0) = fa0¯t(y0).
If fa0¯t(y) 6= fa0(x0) then the desired equality follows from the properties of

a¯ t. The first one of the stated equivalences, namely fa0(x) = fa0(1/x) iff fa(x) =
fa(1/x), is evident from the assumptions. 2

Lemma 6. Let a ∈ R0 be a fuzzy quantity, let t ∈ T1 be 1-transversible fuzzy
quantity, and let a¯ t ∈ T1. Then a ∈ T1 as well.

P r o o f . If there exists x0 ≤ 0 such that fa(x0) > 0 then (8) implies that also
fa¯t(y0) > 0 for some y0 ≤ 0, and in such case a ¯ t /∈ T1. Consequently a ∈ R+.
Further steps of the proof are analogous to the proof of Lemma 4. If we accept the
notation {x1, . . . , xn} for the support (26) then xi > 0 for all i = 1, . . . , n and we
may choose j ∈ {1, . . . , n} for which

fa(xj) ≥ fa(xi) for all i = 1, . . . , n, (34)
xj ≥ 1, (35)
if fa(x) = fa(xj) for some x ∈ R then either 1 ≤ x ≤ xj or 1 ≥ x ≥ 1/xj .(36)

Such xj in R does exist, as the finiteness of support guarantees the existence of xj

fulfilling (34). If (35) and (36) are not simultaneously true, i. e. if there exist xj for
which (34) holds, and 0 < xj < 1, fa(x) < fa(xj) for all x ≥ 1/xj > 1 then we may
choose y0 > 0 such that by (32), (33)

ft(y0/xj) ≥ fa(xj) and ft(y) < fa(xj) for y > y0/xj .

But then

fa¯t(y0) = min (fa(yj), ft(y0/xj)) > min (fa(1/xj), fs(y0/xj)) = fa(1/y0)

which is impossible because of the transversibility of t. To the j ∈ {1, . . . , n} and
xj > 0 fulfilling (34), (35), (36) we find y0 > 0 for which

ft(y0/xj) ≥ fa(xj)
ft(y) < fa(xj) for y < y0/xj .

According to (32), (33),

fa¯t(y0) = max
i=1,...,n

(min(fa(xi), ft(y0/xi)) ≥ fa(xj),

fa¯t(1/y0) = max
x>0

(min(fa(1/x), ft(y0/x))) =

= min(fa(1/xj), ft(y0/xj)) ≤ fa(1/xj) ≤ fa(xj).

The 1-transversibility of a¯ t means that

fa(xj) ≤ fa¯t(y0) = fa¯t(1/y0) ≤ fa(1/xj) ≤ fa(xj)

and, consequently, fa(1/xj) = fa(xj).
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Now we may construct an arbitrary fuzzy quantity a1 with finite support, where

fa1(x) = fa(x) for xj 6= x 6= 1/xj ,

fa1(xj) = fa1(1/xj) = 0,

and using Lemma 5 we may proceed for a1 analogously to a. After a finite number
of induction steps the 1-transversibility of a will be proved. 2

Remark 6. A statement analogous to Lemma 6 is valid for a being arbitrary fuzzy
quantity with finite support such that fa¯t(x) = fa¯t(1/x) for all x > 0, as follows
from its proof. Then fa(x) = fa(1/x) for all x > 0.

Theorems analogous to those ones derived for additive case can be obtained for
the multiplicative ones, as well.

Theorem 4. If a, b ∈ R? are fuzzy quantities then a ∼¯ b if and only if a¯(1/b) ∈
T1.

P r o o f . If a ∼¯ b for a, b ∈ R? then there exist t1, t2 ∈ T1 such that a¯t1 = b¯t2
and then

a¯ t1 ¯ (1/b) = b¯ (1/b)¯ t2 ∈ T1,

as b¯ (1/b) = t ∈ T1 and t¯ t2 ∈ T1 as well. Lemma 6 implies that a¯ (1/b) ∈ T1.
Let, on the other hand, a¯ (1/b) = t2 ∈ T1. Then

a¯ (1/b)¯ b = b¯ t2

and, putting (1/b)¯ b = t1 ∈ T1, we obtain the equivalence a ∼¯ b. 2

Theorem 5. If a ∈ R is a fuzzy quantity then a ∼¯ 〈1〉 if and only if a ∈ T1.

P r o o f . The statement follows from Theorem 4. 2

Theorem 6. For any y ∈ R0 the subsets Ty ⊂ R? form equivalence classes accord-
ing to the equivalence relation ∼¯.

P r o o f . For x, y ∈ R0 and a ∈ Tx, b ∈ Ty the equivalence a ∼¯ b can be valid
iff x = y, as shown in Lemma 2. It means that Tx are equivalence classes in T. It
remains to prove that for a ∈ R? − T, b ∈ T the equivalence a ∼¯ b is impossible.
Let a ∼¯ b be valid for such a and b, and let b ∈ Tx, x ∈ R0. Then b = 〈x〉 ¯ t for
some t ∈ T1 and there exist t1, t2 ∈ T1 such that

a¯ t1 = b¯ t2 = 〈x〉 ¯ t¯ t2.

It means that
a¯ t1 ¯ 〈1/x〉 = 〈1〉 ¯ t¯ t2 = t¯ t2 ∈ T1

and, by Lemma 6, a ¯ 〈1/x〉 ∈ T1. It means by Theorem 4 that a ∼¯ 〈1/x〉, i. e.,
a ∈ T1/x which contradicts the assumption a ∈ R? − T. 2
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Remark 7. Evidently, there exist other equivalence classes in R? different from
Tx, x ∈ R0.

As shown above the equivalence structures for normal fuzzy quantities with finite
support are rather more lucid than those ones in more general cases. It simplifies
the elaboration of fuzzy-contaminated data with finitely many possible values in
real applications. In connection with this it could be interesting to compare the
theoretical tools derived here and in other related papers with the uncertainty models
in system theory [8] and other branches (e. g., [7]).

The variety of equivalence structures for additive and multiplicative case offers
also some deeper considerations about the structure of fuzziness and uncertainty in-
cluded into fuzzy quantities and their description, analogous to those ones presented
in [5]. The mutual relations between additive and multiplicative decomposition of
fuzzy quantities could give some information about the essential types of fuzzy un-
certainties.

(Received August 14, 1992.)
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