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RELATIVE STATIONARY PROBABILITIES

Antońın Otáhal

The paper gives a characterization of extremal relative stationary probabilities, i. e.
extremal probabilities on the set of words of some fixed length whose marginals are invariant
w. r. t. all feasible shifts. It is shown that a probability measure is relative stationary if
and only if it is the projection of a stationary probability and that each extremal relative
stationary probability is the projection of an ergodic probability with a finite support.

INTRODUCTION

Let A be a finite non-empty alphabet. Denote by Wk the set Ak of all words of
length k, i. e. sequences consisting of k letters from A. We consider the σ-algebra
Bk = (exp A)k of all subsets of Wk.

From now on, if not stated otherwise, we suppose that there is given an integer
k ≥ 2.

Further we consider the projections d, h : Wk → Wk−1 defined, for every
(a1, . . . , ak) ∈ Wk, by d (a1, . . . , ak) = (a1, . . . , ak−1) and h (a1, . . . , ak) = (a2, . . . , ak).
A probability P on the measurable space (Wk, Bk) is said to be relative stationary
if Ph−1 = Pd−1; denote by I(Wk) the set of all relative stationary probabilities on
(Wk,Bk).

Let W = AZ denote the set of all sequences indexed by the set Z of all inte-
gers and B =

⊗
k∈Z exp A be the product σ-algebra on W . Obviously, if there is

given a stationary (i. e. shift-invariant) probability on (W, B) then any its projection
onto a “connected segment” Wk of length k represents a relative stationary prob-
ability. The characterization 1.4 of the extremal relative stationary probabilities
and the extension Theorem 2.2, together with the “Choquet-type” representation
of 2.3, imply that this statement can be reversed, i. e. a probability on (Wk,Bk) is
relative stationary if and only if it is the projection of a stationary probability on
(W,B). Theorem 3.1 describes the relation between the extremal relative stationary
probabilities and ergodic probabilities on (W,B) with a finite support.

The problem of finding the extremal relative stationary probabilities can be
viewed on as a special case of a generalized version of the transshipment problem,
cf. [1, 5], where systems of measures with given differences of marginals are studied.
Here the generalization consists in that the considered projections are somewhat
more general than the canonical, coordinate ones. On the other hand, only the
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special case of systems of probability measures with zero differences of marginals
is taken into account. The above-cited references [1, 5] as well as related references
[2, 6, 7, 8] indicate that an alternative way of proving the results of the first section
is possible. Namely, let us call a set D ⊂ Wk a set of relative stationary uniqueness,
shortly an PSU-set, if P = Q whenever P, Q ∈ I(Wk) and supp P ⊂ D, supp Q ⊂ D.
It could be proved that the elementary cycles (introduced in the first section) are
the same as the RSU-sets in the present set-up. Following the ideas of the cited pa-
pers we could further prove that the extremal relative stationary probabilities have
RSU-sets as their supports.

1. EXTREMAL PROBABILITIES

For a pair of words u, v ∈ Wk we say that v is tied to u (write u2v) if h(u) = d(v);
in this case t(u, v) = h(u) = d(v) is the tie of u, v. A sequence S = (w1, . . . , wj) of
words from Wk is a cycle if w12w22 · · ·2wj2w1. The system of all cycles consisting
of j words will be denoted Cj(Wk). For S ∈ Cj(Wk), we define its restriction r(S) =
(t(w1, w2), . . . , t(wj , w1)). The extension e(S) of S ∈ Cj(Wk) is the (uniquely deter-
mined) cycle in Cj(Wk+1) for which r(e(S)) = S. The support |S| of a cycle S is the
set of all the words that S consists of. A cycle S is elementary if in r(S) no tie appears
more than once.

1.1. Lemma.

(i) For any cycle there is a subsequence which is an elementary cycle.

(ii) If S is an elementary cycle, and R is a (nonempty) subcycle of S, then R = S.

P r o o f . (i) Let S = (w1, . . . , wj) ∈ Cj(Wk) be a cycle. For m = 1, . . . , j we put
Tm = {d(w1), . . . , d(wm)} ,M = {m : h(wm) ∈ Tm}. As S is finite, M is nonempty.
Put n = min M, q = max{m : d(wm) = h(wn)}. Then (wq, . . . , wn) is an elementary
cycle.

(ii) Write S = (w1, . . . , wj) and assume that wi ∈ |R| for some i ∈ {1, . . . , j}. Then
S ∩ d−1(h(wi)) = {wi+1}, hence wi+1 ∈ |R|, and repetition of the argument for all
i = 1, . . . , j proves the assertion. 2

1.2. Lemma. For P ∈ I(Wk) the following assertions hold:

(i) If w ∈ supp P then there exists v ∈ supp P such that w2v

(ii) There exist j ≥ 1 and S ∈ Cj(Wk) such that S ⊂ supp P .

P r o o f . (i) As Ph−1(h(w)) > 0 we get, by relative stationarity of P that
Pd−1(h(w)) > 0, hence d−1(h(w)) 6= ∅ and any v ∈ d−1(h(w)) is tied to w.

(ii) Take a w1 ∈ supp P and construct, using (i), elements w2, w3, . . . in supp P such
that wi2wi+1. As supp P is finite, wj+1 = w1 for some j and S = (w1, . . . , wj) ∈
Cj(Wk). 2
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1.3. Lemma. Let P be a probability on (Wk, Bk), S be an elementary cycle on
Wk and supp P ⊂ |S|. Then P ∈ I(Wk) if and only if P is uniform on |S|.

P r o o f . If P is uniform on |S|, then obviously both Ph−1 and Pd−1 are uniform
on |r(S)|, hence P ∈ I(Wk). On the other hand, let P be relative stationary. By
1.2. (ii) there exists a cycle R for which |R| ⊂ supp P and by 1.1. (ii) we get R = S;
consequently |S| = supp P , supp Ph−1 = supp Pd−1 = r(S) and finally the equality
Ph−1 = Pd−1 implies that P is uniform on |S|. 2

Note that I(Wk) is a compact convex set if we consider an embedding of I(Wk)
into Euclidean space.

1.4. Theorem. A probability P on (Wk, Bk) is an extremal point of I(Wk) if and
only if it is uniform on the support of some elementary cycle S on Wk.

P r o o f . Let P be uniform on |S| and P = 1
2 (P1 + P2) where P1, P2 ∈ I(Wk).

Then suppPi ⊂ |S| for i = 1, 2 and P1 = P2 = P according to 1.3. Consequently
P is extremal. On the other hand, suppose that P ∈ I(Wk) is extremal. By 1.2 (ii)
and 1.1. (i) there exists an elementary cycle S such that |S| ⊂ supp P . If it were
|S| 6= supp P , P could be expressed as a nontrivial convex combination of two
probabilities from I(Wk) (one of them being the uniform one on |S|) and P would
not be extremal. Hence S = supp P and according to 1.3 P is uniform on |S|. 2

For an elementary cycle S on Wk we denote by US the uniform probability on
|S|.

1.5. Corollary. For every P ∈ I(Wk) there exist elementary cycles S1, . . . , Sm on
Wk and α1, . . . , αm ≥ 0,

∑m
j=1 α1 = 1 such that

P =
m∑

j=1

αj USj .

P r o o f . With respect to 1.4, the assertion is the same as that of the Krein–
Millman theorem, cf. e. g. [3]. 2

2. EXTENSION OF A RELATIVE STATIONARY PROBABILITY

2.1. Lemma. Let S be an elementary cycle on Wk and P ∈ I(Wk+1). Then
Ph−1 = US if and only if P = Ue(S).

P r o o f . The definition of an elementary cycle immediately yields that US =
Ue(S)h

−1. For the “only if” part of the proof, suppose that Ph−1 = US and express
P =

∑m
j=1 αjUSj according to 1.5; it holds US =

(∑
αj USj

)
h−1 =

∑
αj

(
USj h

−1
)

=∑
αjUr(Sj). The last equality follows from

USj h
−1(w) =

{
1 / ‖Sj‖ for w ∈ r(Sj)

0 otherwise
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and implies r(S1) = · · · = r(Sm) = S because US is extremal. 2

For an elementary cycle S on Wk and m = 0, 1, 2, . . . we denote em(US) = Uem(S)

the probability which is uniform on the elementary cycle em(S) on Wk+m.

2.2. Theorem. Let S be an elementary cycle on Wk. Then the system em(US), m =
0, 1, 2, . . ., determines a projective system of finite-dimensional distributions on (W, B).
If we denote e∞(US) the corresponding projective limit then e∞(US) is the only
stationary probability on (W, B) whose projection onto Wk is US .

P r o o f . Projectivity of the considered system is a straightforward consequence
of 2.1. The assertion of the theorem follows from the Daniell–Kolmogorov theorem.
2

2.3. Corollary. Let P be a relative stationary probability on (Wk, Bk). Then
there exists a stationary probability on (W,B) whose projection onto Wk is P .

P r o o f. According to 1.5 we may write P =
∑m

j=1 αjUSj
; P∞ =

∑m
j=1 αje

∞(USj
)

is a stationary probability on (W,B) and its projection onto Wk is P , cf. 2.2. 2

3. ERGODIC PROBABILITIES WITH FINITE SUPPORT

A shift θ on W = AZ is defined, for x = (xj)∞j=−∞, by (θ(x))j = xj−1. A sequence
x ∈ W is periodic if there exists a positive integer p such that θp(x) = x; the period
of x is the smallest such p. For a periodic x with the period p we define its orbit
O(x) = {θj(x) : j = 0, . . . p− 1}.

3.1. Theorem. Let S be an elementary cycle on Wk. Then e∞(US) is an ergodic
probability with a finite support; conversely, each ergodic probability with a finite
support is of this type.

P r o o f . Clearly P = e∞(US) is stationary. If P were not ergodic we could
write P = 1

2 (P1 + P2) where Pj 6= P , Pj ∈ I(W ) for j = 1, 2. Denoting by P ′j the
projection of Pj onto Wk we would get P ′j 6= US , j = 1, 2, and according to 2.2
US = 1

2 (P ′1 + P ′2) could not be extremal.
On the other hand, let P denote an ergodic probability with a finite support,then

P is uniform on suppP = O(x) for some periodic x (cf. [7], pp. 80–81). Let p be
the period of x and S denote the projection of O(x) onto Wp+1; S is obviously a
cycle and if it were not elementary the period of x would be smaller than p. 2

4. DISCUSSION OF RESULTS

There is not given an explicit description of the systems of all the elementary cycles
on Wk, k = 2, 3, . . . , because of an involved combinatorial nature of such consid-
erations. The results of the second and third sections however indicate that, even
though such description is not known, the characterization of the extremal relative
stationary probabilities can be helpful.
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A straightforward generalization of the paper would consist in finding charac-
terizations of extremal probabilities of projections, on finite subsets, of stationary
random fields indexed by Zd for d = 2, 3, . . .. Here the situation is somewhat more
complicated (e. g. the relative stationarity is not a characterization of such pro-
jections) and some non-trivial extension of the present paper methods would be
required.
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