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THE INVARIANT POLYNOMIAL ASSIGNMENT
PROBLEM FOR LINEAR PERIODIC
DISCRETE–TIME SYSTEMS1

Leopoldo Jetto and Sauro Longhi

This paper considers the problem of assigning the closed loop invariant polynomials of
a feedback control system, where the plant is a linear, discrete-time, periodic system. By
a matrix algebraic approach, necessary and sufficient conditions for problem solvability are
established and a parameterization of all periodic output controllers assigning the desired
invariant polynomials is given.

1. INTRODUCTION

Various classes of processes, such as periodically time-varying networks and filters
(for example switched-capacitors circuits and multirate digital filters), chemical pro-
cesses, multirate sampled-data systems, can be modeled through a linear periodic
system (see, e. g., [2, 13] and references therein). Moreover, the study of linear peri-
odic systems can be helpful even for the stabilization and control of time-invariant
linear systems through a periodic controller [1, 8, 18, 19, 21, 27], and for the stabi-
lization and control of a class of bilinear systems [10, 11, 12].

In the discrete-time case, a control theory is developing with the help of algebraic
and geometric techniques and contributions on several control problem have been
given, including eigenvalue assignment, state and output dead-beat control, distur-
bance decoupling, model matching, adaptive control, robust control and optimal
H2/H∞ control (see, e. g., [3, 5, 7, 13, 15, 17, 22, 25, 26]).

The aim of this paper is to analyze the invariant polynomial assignment problem
for the class of discrete-time linear periodic systems. This problem generalizes the
characteristic polynomial assignment, which, for the same class of systems, was
solved by a geometric approach in [5, 15, 17, 22]. For time-invariant plants, the
invariant polynomial assignment was considered in [19, 20, 23, 27].

The paper is organized in the following way. In Section 2 preliminary definitions
and results are given. The problem considered in this paper is formally stated in
Section 3, and conditions for its solvability are constructively established in Section 4.
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2. PRELIMINARY RESULTS

Consider the ω-periodic discrete-time system Σ described by

x(k + 1) = A(k) x(k) + B(k) u(k), (1)
y(k) = C(k)x(t), (2)

where k ∈ Z, x(k) ∈ Rn is the state, u(k) ∈ Rp is the input, y(k) ∈ Rq is the output
and A(·), B(·), C(·) are periodic matrices of period ω (briefly, ω-periodic). Denote
also by Φ(k, k0), k ≥ k0, the transition matrix associated with A(·).

It is well-known that, for any initial time k0 ∈ Z, the output response of system
Σ for k ≥ k0, to given initial state x(k0) and control function u(·), can be obtained
through the time-invariant associated system of Σ at time k0, denoted by Σa(k0)
[24]. Σa(k) is represented by

xk(h + 1) = Ekxk(h) + Jkuk(h) (3)
yk(h) = Lkxk(h) + Mkuk(h) (4)

where Ek := Φ(ω+k, k), Jk := [(Jk)1 · · · (Jk)ω], (Jk)i := Φ(ω+k, i+k) B(i−1+k),
i = 1, · · · , ω, Lk := [(Lk)′1 · · · (Lk)′ω]′, (Lk)i := C(i − 1 + k) Φ(i − 1 + k, k),
i = 1, · · · , ω, Mk := [(Mk)ij ∈ Rq×p, i, j = 1, · · · , ω], with (Mk)ij := C(i − 1 +
k) Φ(i− 1 + k, j + k)B(j − 1 + k), if i > j, and (Mk)ij := 0, if i ≤ j.

In fact, if xk(0) = x(k) and uk(h) := [u′(hω + k) u′(hω + k + 1) · · · u′(hω + k +
ω−1)]′ for all h ∈ Z+, then xk(h) = x(k+hω) and yk(h) = [y′(hω+k) y′(hω+k+1)
· · · y′(hω+k+ω−1)]′ for all h ∈ Z+. The notion of associated system at time k allows
one to analyze structural and stability properties and pole-zero-structures of periodic
systems [2, 4, 14]. For example, the subspace of reachable (unobservable) states of
system Σ at time k is readily seen to coincide with that of system Σa(k) if it is
expressed in terms of matrices Ek,Jk,Lk and Mk [14]. Obviously, Σa(k+ω) = Σa(k)
for all integer k. A simple test for the reachability (observability) of system Σ at time
k was also introduced in [16] making use of the following block-diagonal matrices:

Ak := blockdiag{A(k), A(k + 1), · · · , A(ω − 1 + k)}, (5)
Bk := blockdiag{B(k), B(k + 1), · · · , B(ω − 1 + k)}, (6)
Ck := blockdiag{C(k), C(k + 1), · · · , C(ω − 1 + k)}, (7)

Rk(λ) :=
[

0 I(ω−1)n

λIn 0

]
, λ ∈ C, (8)

where In denotes the identity matrix of dimension n.

Lemma 2.1. [16] System Σ is reachable (observable) at time k if and only if the
following matrix [Ak −Rk(λ) Bk

]
(
[A′k −R′k(λ) B′k

]′)

has full row-rank (column-rank) for all λ ∈ C, or equivalently for all the eigenvalues
of Ek.
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The notions of invariant zero, transmission zero and pole of the ω-periodic system
Σ at time k are defined with reference to the following ωq × ωp matrix

Wk(d) = Lkd(In − dEk)−1Jk + Mk, (9)

where d := z−1 is the backward shift operator. The rational matrix Wk(d) is the
transfer matrix of the associated system of Σ at time k and is called the associated
transfer matrix of Σ at time k. A complete analysis of pole-zero structure of system Σ
is reported in [14] and [16] making use of the associated transfer matrix characterized
with the forward shift operator z. The following result, that follows from Lemma 2.1
in [14], shows the dependence of Wk(d) with respect to the initial time k.

Lemma 2.2. For any integer k it holds that:

Wk+1(d) =
[

0 Iq(ω−1)

d−1Iq 0

]
Wk(d)

[
0 dIp

Ip(ω−1) 0

]
. (10)

As a consequence of this result the rank m of Wk(d) is independent of time k
(see, e. g., [14] for a similar result with the forward shift operator z).

The transfer matrix Wk(d) can be factored as

Wk(d) = A−1
k (d)Bk(d) = Bk(d)A

−1

k (d), (11)

where Ak(d) and Bk(d) are relatively left prime (rlp) polynomial matrices and Ak(d)
and Bk(d) are relatively right prime (rrp) polynomial matrices.

Analogously to the time-invariant case [23], the invariant polynomials of In−dEk

are called the invariant polynomials of Σ at time k. As shown in [14, 16], the product
of these polynomials characterizes the stability properties of Σ.

Under the hypothesis of reachability and observability of Σ at time k, the invariant
polynomials of Σ at time k are associate of the invariant polynomials of the Smith
forms of Ak(d) and Ak(d) [23].

Denote by χ(q, p, ω) the class of ωq × ωp rational matrices

W (d)=




W11(d) W12(d) · · · W1ω(d)
W21(d) W22(d) · · · W2ω(d)

...
...

. . .
...

Wω1(d) Wω2(d) · · · Wωω(d)


 , Wij(d)∈Cq×p, i, j =1, · · · , ω, (12)

with Wij(0) = 0, i < j, i, j = 1, . . . , ω. The class χ(q, p, ω) characterizes the transfer
matrices of ω-periodic systems. In fact, the causality of ω-periodic system Σ implies
that the associated transfer matrix of Σ at time k belongs to the class χ(q, p, ω)
for all k ∈ Z [6]. Then, the causality of Σ implies that the roots of the invariant
polynomials of Σ at time k are different from zero for all integers k. This in turn
implies that matrices Ak(0) and Ak(0) are nonsingular. Foregoing considerations
and Lemma 2.2 allow us to prove the following result.
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Lemma 2.3. The invariant polynomials of Σ at time k are independent of k.

Remark 2.1. The choice of the backward shift operator d = z−1 allowed us to
prove the independence of pole structure of Σ of time k. The same result does not
hold if the forward operator z is used [16]. In particular in [14] it is shown that the
structure of null poles may depend on k.

Moreover, χ(q, p, ω) characterizes also the class of rational matrices that can be
realized by an ω-periodic system of the form (1), (2). The solution of the mini-
mal realization problem for the periodic case is described by a system reachable
and observable at any time whose matrices have generally time-varying dimensions.
In general, the subspaces of reachable states and/or observable states may have
time-varying dimensions. Therefore, it is natural, in order to consistently solve
the minimal realization problem, to allow for state-space description having time-
varying dimensions. The possibility of computing a “quasi” minimal (reachable and
observable at lest in one time) uniform (fixed-dimension) realization is also available.
Efficient algorithms for the computation of minimal or quasi minimal realization of
a given transfer matrix are introduced in [6] and [9].

Remark 2.2 Note that, given a transfer matrix H(d)=D−1(d)N(d)=N(d)D
−1

(d)
∈ Cqω×pω with D(d) and N(d) rlp polynomial matrices and D(d) and N(d) rrp poly-
nomial matrices and both D(0) and D(0) non singular, then a sufficient condition
for H(d) belong to the class χ(q, p, ω) is that N(0) = 0 and N(0) = 0.

3. CONTROL SYSTEM STRUCTURE AND PROBLEM STATEMENT

Assume that system Σ is minimal (reachable and observable at all times), and con-
sider an ω-periodic minimal controller ΣG for system Σ acting in the feedback control
structure of Figure 1 and described by

xG(k + 1) = AG(k) xG(k) + BG(k) e2(k), (13)
y2(k) = CG(k)xG(k) + DG(k) e2(k), (14)

where xG(k) ∈ RnG(k) is the state, with nG(k + ω) = nG(k), and

e1(k) := u1(k)− y2(k), (15)
e2(k) := u2(k) + y1(k), (16)

with y1(k) = y(k) (the output of Σ), e1(k) = u(k) (the input of Σ) and u1(k) and
u2(k) external inputs.

The ωp× ωq associated transfer matrix of ΣG at time k is expressed by

WG
k (d) = LG

k d(InG(k) − dEG
k )−1JG

k + MG
k , (17)

where matrices LG
k ∈ Rωp×nG(k), EG

k ∈ RnG(k)×nG(k), JG
k ∈ RnG(k)×ωq and MG

k ∈
Rωp×ωq are defined as matrices Lk, Ek, Jk and Mk with matrices A(·), B(·) and
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C(·) substituted by matrices AG(·), BG(·), CG(·) respectively and with (MG
k )ii =

DG(i− 1 + k), i = 1, . . . , ω.

Fig. 1. The feedback control structure.

Causality of system ΣG implies that WG
k (d) belongs to the class χ(p, q, ω).

Let WG
k (d) be factored as

WG
k (d) = P−1

k (d) Qk(d) = Qk(d) P
−1

k (d) (18)

where Pk(d) and Qk(d) are rlp polynomial matrices and P k(d) and Qk(d) are rrp
polynomial matrices. The problem considered in this paper is formally stated as
follows.

Problem 3.1. Given an ω-periodic system Σ reachable and observable at all times,
and m causal polynomials s1(d), s2(d), . . . , sm(d) such that si+1(d) divides si(d),
find a minimally realized ω-periodic controller ΣG described by (13), (14) and acting
in the feedback system of Figure 1, such that the closed loop system Σfb be minimally
realized and its invariant polynomials be associated of si(d), i = 1, 2, . . . , m.

4. PROBLEM SOLUTION

Denote by Σfb the ω-periodic system reported in Figure 1 and described by (1), (2),
(13), (14), (15) and (16) with input u(k) and output y(k) of Σ equal to e1(k) and
y1(k), respectively.

Define:
v(k) :=

[
u′1(k) u′2(k)

]′
, w1(k) :=

[
y′1(k) e′1(k)

]′
, w2(k) :=

[
y′2(k) e′2(k)

]′
, (19)

the ω-periodic feedback system Σfb is described by the following equations:
[

x(k + 1)
xG(k + 1)

]
=

[
A(k)−B(k)DG(k)C(k) −B(k)CG(k)

BG(k)C(k) AG(k)

] [
x(k)

xG(k)

]

+
[
B(k) −B(k)DG(k)

0 BG(k)

]
v(k), (20)

w1(k) =
[

C(k) 0
−DG(k)C(k) −CG(k)

] [
x(k)

xG(k)

]
+

[
0 0
I −DG(k)

]
v(k), (21)

w2(k) =
[
DG(k)C(k) CG(k)

C(k) 0

] [
x(k)

xG(k)

]
+

[
0 DG(k)
0 I

]
v(k). (22)
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Denote with W 1
k (d) and W 2

k (d) the associated transfer matrices at time k of the
ω-periodic feedback system Σfb relating input v(·) with outputs w1(·) and w2(·),
respectively.

Introducing the lifted representations of inputs and outputs of Σfb:

u1
k(h) := [u′1(k + hω)u′1(k + 1 + hω) · · ·u′1(k + ω − 1 + hω)]′ , (23)

u2
k(h) := [u′2(k + hω)u′2(k + 1 + hω) · · ·u′2(k + ω − 1 + hω)]′ , (24)

vk(h) := [v′(k + hω) v′(k + 1 + hω) · · · v′(k + ω − 1 + hω)]′ , (25)
y1

k(h) := [y′1(k + hω) y′1(k + 1 + hω) · · · y′1(k + ω − 1 + hω)]′ , (26)
e1
k(h) := [e′1(k + hω) e′1(k + 1 + hω) · · · e′1(k + ω − 1 + hω)]′ , (27)

w1
k(h) := [w′1(k + hω)w′1(k + 1 + hω) · · ·w′1(k + ω − 1 + hω)]′ , (28)

y2
k(h) := [y′2(k + hω) y′2(k + 1 + hω) · · · y′2(k + ω − 1 + hω)]′ , (29)

e2
k(h) := [e′2(k + hω) e′2(k + 1 + hω) · · · e′2(k + ω − 1 + hω)]′ , (30)

w2
k(h) := [w′2(k + hω)w′2(k + 1 + hω) · · ·w′2(k + ω − 1 + hω)]′ . (31)

it can be verified the existence of appropriate unimodular matrices Ua and Ub such
that the following relations are satisfied:

[
u1

k(h)
u2

k(h)

]
= Uavk(h), (32)

[
y1

k(h)
e1
k(h)

]
= Ubw

1
k(h), (33)

[
y2

k(h)
e2
k(h)

]
= Uaw2

k(h). (34)

Then, the associated transfer matrices W 1
k (d) and W 2

k (d) of Σfb at time k satisfy
the following relations:

W 1
k (d) = U−1

b

[
W y1u1

k (d) W y1u2
k (d)

W e1u1
k (d) W e1u2

k (d)

]
Ua, (35)

W 2
k (d) = U−1

a

[
W y2u1

k (d) W y2u2
k (d)

W e2u1
k (d) W e2u2

k (d)

]
Ua, (36)

where W
yiuj

k (d) and W
eiuj

k (d) denote the associated transfer matrices at time k of
the ω-periodic feedback system Σfb relating input uj(·), j = 1, 2 with output yi(·),
ei(·) i = 1, 2, respectively.

Denoting as

F 1
k (d) = Pk(d) Ak(d) + Qk(d) Bk(d), (37)

F 2
k (d) = Ak(d)P k(d) + Bk(d)Qk(d), (38)
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and arguing as in [23] it can be shown that

W 1
k (d) = U−1

b

[
Bk(d)
Ak(d)

]
(F 1

k (d))−1
[
Pk(d) −Qk(d)

]
Ua, (39)

W 2
k (d) = U−1

a

[−Qk(d)
P k(d)

]
(F 2

k (d))−1
[
Bk(d) Ak(d)

]
Ua. (40)

We are now in a position to prove the following main theorem.

Theorem 4.1 Problem 3.1 admits a solution if and only if m ≤ min(ωp, ωq).

P r o o f . Necessity. Under the hypothesis on reachability and observability at
all times of the ω-periodic systems Σ and ΣG, by Lemma 2.1 applied to Σfb it can
be shown that the ω-periodic system Σfb is reachable at all times and observable
through the outputs w1(·) and w2(·) at all times. Then (20) and (21) constitute a
minimal realization of transfer matrix W 1

k (d) and (20) and (22) constitute a mini-
mal realization of transfer matrix W 2

k (d). Moreover, for each time k, the nonunit
invariant polynomials of the (ωp × ωp) polynomial matrix F 1

k (d) are associated of
the nonunit invariant polynomials of the (ωq × ωq) polynomial matrix F 2

k (d) and
both are associated of the nonunit invariant polynomials at time k of the ω-periodic
feedback system Σfb [23]. This implies that the number m of the invariant poly-
nomials at time k of the ω-periodic feedback system Σfb can not be larger than
m ≤ min(ωp, ωq).

Sufficiency. As Ak(d) and Bk(d) are rlp and Ak(d) and Bk(d) are rrp, equa-
tions (37) and (38) can be solved for arbitrary F 1

k (d) and F 2
k (d). Hence, if m ≤

min(ωp, ωq), the si(d), i = 1, . . . ,m can be assigned to Σfb as invariant polynomials
choosing F 1

k (d) and F 2
k (d) as polynomial matrices whose nonunit invariant polyno-

mial are associate (two polynomials are called associate if their ratio is a scalar [23])
of the si(d), i = 1, . . . , m and then to solve (37) or (38) with respect to the pairs
(Pk(d), Qk(d)) or (P k(d), Qk(d)) respectively. Moreover, as the invariant polyno-
mials of Σfb are independent of k, the solutions of (37) and (38) can be found for
arbitrary k.

For an arbitrary integer k, all the solutions Pk(d) and Qk(d) of (37) are given by[
Pk(d) Qk(d)

]
=

[
F 1

k (d) Tk(d)
]
Uk(d) (41)

where Uk(d) is the unimodular matrix given by

Uk(d) =
[

Gk(d) Hk(d)
−Bk(d) Ak(d)

]
,

Gk(d) and Hk(d) are polynomial matrices such that

Gk(d)Ak(d) + Hk(d)Bk(d) = Iωp,

and Tk(d) is an arbitrary polynomial matrix. For the solution (41) be adequate for
Problem 3.1, Tk(d) must be such that
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4a) Pk(d) and Qk(d) are rlp, 4b) P−1
k (d)Qk(d) ∈ χ(p, q, ω).

Analogously, for an arbitrary integer k, all the solutions of (38) are given by
[

P k(d)
Qk(d)

]
= Uk(d)

[
F 2

k (d)
T k(d)

]
, (42)

where Uk(d) is the unimodular matrix given by

Uk(d) =
[

Gk(d) −Bk(d)
Hk(d) Ak(d)

]
,

Gk(d) and Hk(d) are polynomial matrices such that

Ak(d) Gk(d) + Bk(d)Hk(d) = Iωq,

and T k(d) is an arbitrary polynomial matrix. For the solution (42) be adequate to
Problem 3.1, T k(d) must be such that:

4a) P k(d) and Qk(d) are rrp, 4b) Qk(d)P k(d)−1 ∈ χ(p, q, ω).

It remains to show that matrices and Tk(d) and T k(d) such that the pairs (Pk(d),
Qk(d)) and (P k(d), Qk(d)) satisfy properties 4a, 4b and 4a, 4b respectively, can al-
ways be found.

With reference to solutions (42), matrix T k(d) can be found as follows. By the
causality of Σ, Ak(0) is non singular, so that left primeness of Ak(d) and Bk(d)
implies left primeness of Ak(d) and dBk(d). This in turn implies that the equation

Ak(d)P
a

k(d) + dBk(d)Q
a

k(d) = F 2
k (d), (43)

can be solved with respect to P
a

k(d) and Q
a

k(d) for any F 2
k (d). For an arbitrary

integer k the general solution of (43) is
[

P
a

k(d)

Q
a

k(d)

]
= U

a

k(d)

[
F 2

k (d)

T
a

k(d)

]
, (44)

where U
a

k(d) is a unimodular matrix given by

U
a

k(d) =
[

G
a

k(d) −dBk(d)
H

a

k(d) Ak(d)

]

G
a

k(d) and H
a

k(d) are polynomial matrices satisfying

Ak(d) G
a

k(d) + dBk(d)H
a

k(d) = Iωq, (45)

and T
a

k(d) is an arbitrary polynomial matrix. The unimodularity of U
a

k(d) im-
plies that if T

a

k(d) is chosen right coprime with F 2
k (d), also P

a

k(d) and Q
a

k(d) are
right coprime. Taking into account that by the causality of Σfb and (43), P

a

k(0)
is nonsingular, one has that also P

a

k(d) and dQ
a

k(d) are right coprime, so that by
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putting Gk(d) = G
a

k(d),Hk(d) = dH
a

k(d), T k(d) = dT
a

k(d) one has that the pair
(P k(d), Qk(d)) given by

P k(d) = P
a

k(d) = Gk(d)F 2
k (d)−Bk(d)T k(d), (46)

Qk(d) = dQ
a

k(d) = Hk(d)F 2
k (d) + Ak(d)T k(d), (47)

defines a class of solutions (42) satisfying 4a and 4b (see Remark 2.2).
By arguing in a similar way, one has that the pair

Pk(d) = F 1
k (d)Gk(d)− Tk(d)Bk(d), (48)

Qk(d) = F 1
k (d)Hk(d) + Tk(d) Ak(d), (49)

where Gk(d) = Ga
k(d), Hk(d) = dHa

k (d) with Ga
k(d) and Ha

k (d) such that

Ga
k(d) Ak(d) + Ha

k (d) dBk(d) = Iωp,

and where Tk(d) = dT a
k (d), T a

k (d) being any polynomial matrix left prime with
F 1

k (d), defines a class of solutions of (37) satisfying 4a and 4b (see Remark 2.2).
Hence, under the assumption m ≤ min(ωp, ωq), the existence of solutions of Problem
3.1 has been constructively established. 2

5. CONCLUSIONS

In this paper the pole placement problem for linear discrete-time periodic systems
has been considered. This problem has been formulated in the more general context
of the invariant polynomial assignment, whence pole placement follows as a par-
ticular case. Necessary and sufficient conditions for problem solvability have been
given in Theorem 3.1. The sufficiency proof of this theorem gives a parameterization
of all controllers solving the problem in terms of causal transfer matrices that are
minimally realizable with a periodic state-space representation. The proof has been
performed in two steps. First, the set of all admissible solutions has been formally
defined, then a procedure to effectively construct an admissible solution has been
provided.

(Received February 14, 1996.)

REFE REN CES

[1] B.D.O. Anderson and J.B. Moore: Decentralized control using time–varying feedback.
In: Control and Dynamic Systems, Vol. 22 (C. T. Leondes, ed.), Academic Press,
London 1985, pp. 85–115.

[2] S. Bittanti: Deterministic and stochastic linear periodic systems. In: Time Series and
Linear Systems (S. Bittanti, ed.), Springer–Verlag, Berlin 1986.

[3] S. Bittanti, P. Colaneri and G. De Nicolao: The difference periodic Riccati equation
for the periodic prediction problem. IEEE Trans. Automat. Control AC–33 (1988),
706.

[4] P. Bolzern, P. Colaneri and R. Scattolini: Zeros of discrete–time linear periodic sys-
tems. IEEE Trans. Automat. Control AC–31 (1986), 1057.



624 L. JETTO AND S. LONGHI

[5] P. Colaneri: Output stabilization via pole–placement of discrete–time linear periodic
systems. IEEE Automat. Control AC–36 (1991), 739.

[6] P. Colaneri and S. Longhi: The realization problem for linear periodic systems. Auto-
matica 31 (1995), 5, 775–779.

[7] M.A. Dahleh, P.G. Voulgaris and L. S. Valavani: Optimal and robust controllers for
periodic and multirate systems. IEEE Trans. Automat. Control AC–37 (1992), 1, 90–
99.

[8] J. H. Davis: Stability conditions derived from spectral theory: discrete systems with
periodic feedback. SIAM J. Control 10 (1972), 1, 1–13.

[9] I. Gohberg, M.A. Kaashoek and L. Lerer: Minimality and realization of discrete time–
varying systems. Oper. Theory: Adv. Appl. 56 (1992), 261–296.

[10] O.M. Grasselli, A. Isidori and F. Nicolò: Output regulation of a class of bilinear
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