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Editorial Board:
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Pavel Žampa
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Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

Ky b e r n e t i k a . Volume 38 (2002) ISSN 0023-5954, MK ČR E4902.
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KOLMOGOROV COMPLEXITY, PSEUDORANDOM
GENERATORS AND STATISTICAL MODELS TESTING

Jan Šindelář and Pavel Boček

An attempt to formalize heuristic concepts like strings (sequences resp.) “typical” for
a probability measure is stated in the paper. Both generating and testing of such strings
is considered. Kolmogorov complexity theory is used as a tool.

Classes of strings “typical” for a given probability measure are introduced. It is shown
that no pseudorandom generator can produce long strings from the classes. The time
complexity of pseudorandom generators with oracles capable to recognize “typical” strings
is shown to be at least exponential with respect to the length of the output.

Tests proclaiming some strings “typical” are introduced. We show that the problem of
testing strings to be “typical” is undecidable. As a consequence, the problem of correspon-
dence between probability measures and data is undecidable too. If the Lebesgue measure
is considered, then the conditional probability of failure of a test is shown to exceed a
positive lower bound almost surely.

1. INTRODUCTION

The problem of describing single strings (sequences resp.) which are “typical” or
“characteristic” for a given probability measure is an old, important and difficult
one. 1 Various approaches to its solution are summarized in [2]. Probably the first
attempt to solve it formally was done by Von Mises (see [2]). Significant progress in
the solution was achieved by Kolmogorov complexity theory and theory of Martin-
Löf tests.

Kolmogorov complexity theory was originated by Kolmogorov in [3]. 2 Exposition
of the theory could be found e. g. in [1, 6]. Strings (sequences resp.) which are
“characteristic”, or “typical” for a given probability measure are called random (m–
random, asymptotic random) with respect to the measure.

Theory of Martin-Löf tests was initiated by Martin-Löf [7]. Its explanation and
the relationship between Kolmogorov complexity theory and theory of Martin-Löf
tests can be found in [1, 6]. Basic attempt of theory of Martin-Löf tests is to char-
acterize strings and sequences which, with respect to a given probability measure,

1Probability theory and statistics deals with classes of such strings (sequences resp.).
2A similar approach to the program size complexity was initiated independently by Solomonoff

and Chaitin .
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possess all possible properties of stochasticity ([1], p. 313, [7]).
We deal with strings and sequences “characteristic” or “typical” for a probability

measure. To avoid misunderstanding and confusion with classical terminology, we
call such strings (sequences resp.) “typical” instead of random.

The paper is organized as follows.
Auxiliary results on Kolmogorov complexity used in the paper are summarized

in Section 1.
Classes of strings (sequences resp.) which are “typical” for a given probability

measure are introduced in Section 2. It is shown that each class of “typical” strings
constitutes an immune set.

Section 3 is devoted to pseudorandom generators. It is shown that no pseudoran-
dom generator can produce long “typical” strings. Pseudorandom generators with
oracles capable to recognize “typical” strings are then introduced. We prove that
the time complexity of such generators grows at least exponentially with respect
to the length of the output strings. A relationship of these results with applied
Monte–Carlo methods is mentioned.

Section 4 is devoted to testing of strings to be “typical”. We show that this
problem is undecidable. As a consequence, one of the basic problems of applied
statistics, the problem of correspondence between statistical models and data, is
undecidable too. After that, the Lebesgue measure is considered. We introduce the
conditional probability that a string of low Kolmogorov complexity is proclaimed
“typical”. We show that such probabilities are bounded from below by a positive
constant almost surely.

Basic results of the paper concern pseudorandom generators with oracles (Sec-
tion 3) and testing of strings to be “typical” (Section 4).

NOTATION

We shortly describe the notation used in the paper.
The set {0, 1, 2, . . .} of natural numbers is denoted by N , the symbols n, t denote

natural numbers.
The symbol Σ denotes a finite alphabet of cardinality c ≥ 2. The symbol Σ∗

denotes the set of all strings over Σ, l(x) denotes the length of a string x. The
symbol Σn denotes the set of all strings over Σ having the length n.

The set of all (infinite) sequences over Σ is denoted by Σ∞. The symbol Sn

denotes the initial segment of a sequence S having the length n. Consider a set X of
sequences. The symbol SX denotes the set of all initial segments of sequences from
X , i. e. SX = {Sn|S ∈ X & n ∈ N}.

The symbol Ψ denotes a universal Kolmogorov algorithm (see [1], p. 309) with
inputs from the set Σ∗ ×N and with outputs from the set Σ∗.

We consider the σ-algebra of subsets of Σ∞ generated by the set of cylinders. The
symbol P denote a probability measure on Σ∞, while Pn denotes the corresponding
marginal probability measure on Σn. Hence

Pl(x){x} = P{S ∈ Σ∞|Sl(x) = x}
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holds for each string x.
The symbol f denotes a sequence 〈f0, f1, f2, . . .〉 of nonnegative reals.

2. KOLMOGOROV COMPLEXITY AND PROBABILITY MEASURES

Concepts and results on Kolmogorov complexity applied below are summarized in
this section (see [9] for a detailed explanation).

Assume that x is a string. (Conditional) Kolmogorov complexity is defined by

KΨ(x|n) := inf{l(p)|p ∈ Σ∗ & Ψ(p, n) = x}.

The number n represents our prior information about the string x. The number of
strings of low Kolmogorov complexity is estimated by

card {x ∈ Σ∗|KΨ(x|n) < f} ≤ cf+1 − 1
c− 1

(1)

(cf. Lemma 1.1. in [9]); here f is a nonnegative real.

Strings from the class

Cstr f := {x ∈ Σ∗|KΨ(x|l(x)) ≥ fl(x)}

are called f -complex strings. If an f -complex string x has the length n, then we have

KΨ(x|n) ≥ fn. (2)

Sequences from the class

Cseq f := {S ∈ Σ∞|∃t ∀n ≥ t : KΨ(Sn|n) ≥ fn}

are called f -complex sequences. Such classes were studied e. g. in [4, 5, 9].
Let S be an f -complex sequence. If n is sufficiently large, then the Kolmogorov

complexity KΨ(Sn|n) of the initial segment Sn is greater than or equal to the lower
bound fn.

Sequences from the set

Cseq f , t := {S ∈ Σ∞|∀n ≥ t : KΨ(Sn|n) ≥ fn}

are called (f , t)-complex sequences. If n ≥ t, then the initial segments of (f , t)-
complex sequences having the length n are f -complex strings. Both sets Cseq f , t

and Cseq f are measurable.
We have

x ∈ SCseq f , t =⇒ x ∈ Cstr f a. s., (3)

as is shown in [9]. “Almost surely” means “up to a finite number of cases”.
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Proposition 1.1. Let P be a probability measure on Σ∞. For each n we define

πn(P ) := max
x∈Σn

Pn{x}. (4)

a. We have
P (Cseq f ,t) > 1− 2 · Σ∞n=t · πn(P ) · cfn . (5)

b. If
Σ∞n=0πn(P ) · cfn < ∞ (6)

takes place, then we have
P (Cseq f ) = 1. (7)

A dependence of the probabilities Pn(Cstr f ∩Σn) of the class of f -complex strings
having the length n as well as of the probabilities P (Cseq f ) of the class of f -complex
sequences on the lower bounds f of Kolmogorov complexity is discussed in [9].

3. ON “TYPICAL” STRINGS AND SEQUENCES

An attempt to formalize heuristic concepts like strings and sequences “typical” for
a given probability measure is stated in the section. Classes of such strings and
sequences are introduced. It is shown that the classes of “typical” strings constitute
immune sets.

3.1. On “typical” strings

Let us think over “typical” strings. The set of strings “typical” for a given probability
measure P is denoted by

Typstr P .

We assume, that
Typstr P ⊆ Σ∗,

because our marginal probability measures operate on subsets Σn of Σ∗.
Of course, we give no definition of the set of “typical” strings! Instead, we shall

introduce a global property relating the set of “typical” strings with the set of f -
complex strings. Our analysis of “typical” strings is based on this property.

The property just mentioned is illustrated on ergodic measures. Consider a coding
of “typical” strings. It is a well-known fact that the “typical” strings having the
length n can be compressed by the coding up to the length approximately equal C0 ·n
(where C0 is a positive constant related with entropy of the probability measure),
but not much shorter. It means that they can be compressed up to the length
greater than or equal to (C0 − ε0) · n, where ε0 is a small positive constant, at least
for large values of n. From the viewpoint of Kolmogorov complexity it means that
the Kolmogorov complexity KΨ(x|n) of long “typical” strings x should be greater
than or equal to (C0 − ε0) · n + C, where C is a constant and n is the length of x.
Take ε positive such that (C0− ε0) ·n+C ≥ ε ·n holds almost surely, put fn = ε ·n.
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We claim that KΨ(x|n) ≥ fn should hold for the “typical” strings x of the length
n, at least for large values of n. It results that long “typical” strings should be
f -complex, i. e. that “typical” strings should be f -complex almost surely.

In general, our property reads:

(∗) there is a sequence f such that almost all “typical” strings are f -complex, i. e.
that

x ∈ Typstr P =⇒ x ∈ Cstr f (8)

holds almost surely 3 .

Our property gives a heuristic upper bound of the set of “typical” strings. In
fact, it states that

Typstr P ⊆ Cstr f ∪X for a finite set X. (9)

Almost all probability measures used in practice are covered by (∗). For instance,
ergodic measures are covered by (∗) with a single sequence f (see Example 1 in [9]
for detailed discussion of the topic).

The set Typstr P is usually immune4, as is shown in

Theorem 2.1. Let (∗) take place, let limn→∞ fn = ∞.
If the set Typstr P is infinite, then it is immune.

P r o o f . Let Typstr P be infinite. Then Cstr f is infinite too. This set is immune,
which is an easy consequence of Theorem (4.3) from [1], pp. 332–333. The set Cstr f \
Typstr P is finite, hence Typstr P is immune. 2

3.2. On “typical” sequences

Let us turn to “typical” sequences. The set of sequences “typical” for a given
probability measure P is denoted by

Typseq P .

We assume that
Typseq P ⊆ Σ∞,

because our probability measures operate on Borel subsets of Σ∞.

We can assume, that there is a lot of “typical” sequences, i. e. that (the set
Typseq P is measurable and)

P (Typseq P ) = 1.

3 Like above, “almost surely” means “up to a finite number of cases”.
4The set of strings is called immune iff it has no infinite recursively enumerable subset ([8],

p. 107). If X is immune and G : N → Σ∗ is a recursive function with infinite range, then G(n) lies
outside the set X for infinitely many n’s.
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In general, we use this condition at some specific places only.
Finally, we consider the sets

IP, f , t := Typseq P ∩ Cseq f , t (10)

of sequences which are both “typical” and (f , t)-complex.
As a rule, probabilities of the sets IP, f , t converge to probability of the set

Typseq P of typical sequences, as is shown in

Proposition 2.1. Let P be a probability measure on Σ∞.
Assume that Σ∞n=0πn(P ) · cfn < ∞ (i. e. (6)) is fulfilled.
If Typseq P is a measurable set, then we have

lim
t→∞

P (IP, f , t) = P (Typseq P ). (11)

P r o o f . The sets Cseq f , t are measurable (see Section 1). Hence the sets IP, f , t

are measurable by (10). We have

lim
t→∞

P (Cseq f , t) = 1 (12)

according to (5), hence (11) follows from (10). 2

3.3. Extending results of the paper

Basic results of the paper are formulated by means of the sets Typstr P of “typical”
strings and the sets IP, f , t of “typical” and (f , t)-complex sequences. Analogical
results are true for the other sets introduced in the paper. We does not formulate
them explicitly because of space limitations. Instead, we introduce and prove them
by means of the following

Metatheorem 2.1. (extending results of the paper)

a. All results on the sets Typstr P hold for the sets SIP, f , t in the following sense.
Assume that some statement M1 concerning the set Typstr P is true. Replace
Typstr P by SIP, f , t in the statement, exclude the assumption (∗) from the
statement. Then the new statement M2 is true.

b. All results on the sets Typstr P hold for the sets Cstr f .

c. All results on the sets IP, f , t hold for the sets Cseq f , t.

P r o o f .

a. Consider the statement M1 without the assumption (∗). Put Typstr P :=
SIP, f , t. Then (∗) takes place, as follows from (3) and (10). Hence the state-
ment M2 is true.
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b. Clearly, (∗) is true for Typstr P := Cstr f .

c. Put Typseq P := Cseq f ; then the equality IP, f , t = Cseq f , t takes place. 2

It follows from Metatheorem 2.1 b, c, that our results on sets Typstr P and IP, f , t

can be transformed into results on sets of f -complex strings and (f , t)-complex se-
quences, i. e. into those formulated purely in terms of Kolmogorov complexity theory.

4. ON PSEUDORANDOM GENERATORS

We show in this section that no pseudorandom generator can produce long strings
“typical” for probability measures used in practice. Pseudorandom generators with
oracles capable to recognize “typical” strings are introduced. We show that the
time complexity of such generators grows at least exponentially with the length of
the output. A relationship of these results with applied Monte–Carlo methods is
mentioned at the end of the section.

Assume that G is a pseudorandom generator. It means that G represents an
effectively computable function ascribing strings from Σ∗ to natural numbers. Ac-
cording to Church’s thesis (see [1], p. 92) we can suppose that G is a recursive
function. Moreover, we assume that the length of the output string G(n) equals the
value of the input number n.

Our pseudorandom generators are “purely deterministic” ones. Hence random
side affects, like random seeds performed by means of physical entities at the begin-
ning of the process or periodically in the course of the process, are not considered
here.

No pseudorandom generator can produce long “typical” strings, as follows from

Theorem 3.1. Let (∗) take place, let limn→∞ fn = ∞. Then we have

G(n) /∈ Typstr P a. s.

P r o o f . Clearly, the conditional Kolmogorov complexities KΨ(G(n)|n) are bounded
from above by some constant. Moreover limn→∞ fn = ∞, hence there is a constant
n(Ψ, f , G) such that

KΨ(G(n)|n) < fn (13)

is true for all n ≥ n(Ψ, f , G).
There is some n0 such that (8) is true for all strings x with l(x) ≥ n0, as follows

from (∗). Consider a “typical” string x with n := l(x) ≥ max{n(Ψ, f , G), n0}. It
suffices to prove that G(n) 6= x. The string x lies in Cstr f by (8), hence (2) is true,
so that G(n) 6= x by (13). 2

No pseudorandom generator can produce long initial segments of sequences from
the set SIP, f , t (by Theorem 3.1 and Metatheorem 2.1 a). Moreover, the length of
these segments is independent of the probability measure under consideration, as
follows from
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Theorem 3.2. Let limn→∞ fn = ∞.
Then there is a constant n(Ψ, f , G, t) independent of P such that we have

G(n) /∈ SIP, f , t ∀ n ≥ n(Ψ, f , G, t).

P r o o f . Choose n0 equal t in the proof of Theorem 3.1. Apply Metatheorem 2.1 a.
to the proof. 2

Assume for a moment that there is a lot of “typical” sequences, i. e. that

P (Typseq P ) = 1. (14)

Moreover, suppose that the probabilities πn(P ) of a most probable string of the
length n are of O(n−2) type (there may be several most probable strings). Majority
of probability measures used in practice satisfies this condition, like the ergodic mea-
sures do (see Example 1 in [9] for details). Finally, take a sequence f of lower bounds
converging slowly to infinity, e. g. like log1/2

c n does. Then limt→∞ P (Cseq f , t) = 1
holds, as follows from (5).

Let ε be a small positive constant. Consider a probability measure P satisfying

P (Cseq f , t) ≥ 1− ε. (15)

The class of such measures, say P, is very large, at least for large t. We have

Pn(SIP, f , t ∩ Σn) ≥ 1− ε

for all n (by (14), (10) and (15)). Therefore, majority of strings “typical” for any
probability measure from the class P lies in the set SIP, f , t. But no pseudoran-
dom generator can produce long strings from this large and heterogeneous set by
Theorem 3.2. It reflects our intuitive feeling that no pseudorandom generator can
produce long strings “typical” for any of the probability measures used in practice.

Let us turn to pseudorandom generators with oracles. Before going ahead, we
limit the class of probability measures under consideration. Nevertheless, it remains
substantially general for practical purposes.

In the rest of the section we assume, that

ε · n ≤ fn a. s.

takes place, where 0 < ε < 1 is a positive real. Majority of probability measures
used in practice, e. g. ergodic measures, is taken into account in this case, as follows
from Example 1 in [9]. (But different measures may be covered by different ε’s.)

It was shown above, that the pseudorandom generators fail to produce long “typ-
ical” strings. For this reason we add an oracle to a pseudorandom generator, namely
the oracle capable to recognize “typical” strings. We investigate the time complexity
of such generators.

A Turing machine equipped by an oracle is considered. Inputs of our machine are
natural numbers, outputs are strings. Starting on the input n, the machine works
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as follows. It subsequently generates auxiliary strings. Whenever some auxiliary
string is obtained, the machine asks the oracle whether it is a “typical” string of the
length n, or not. If the answer is positive, the string is placed on the output tape of
the machine and the machine halts. If the answer is negative, new auxiliary string
is generated, etc. Each of Turing machines just described is called a pseudorandom
generator with oracle.

Clearly, producing of an auxiliary string takes at least one unit of time. Therefore,
if i auxiliary strings are generated until the machine halts, then the time complexity
of the procedure is greater than or equal to i.

Theorem 3.3. Let (∗) take place. Assume that ε · n ≤ fn is true for almost all n,
where 0 < ε < 1.
Then the time complexity of a pseudorandom generator with oracle grows at least
exponentially with the length of the output.

P r o o f . Consider an input n of the generator. Suppose that the auxiliary strings
x1, x2, . . . , xi were generated until the machine halts. Hence the “typical” string
xi ∈ Typstr P is produced as the output. If n is sufficiently large, then ε · n ≤ fn

and xi ∈ Cstr f are true. So that we have

ε · n ≤ fn ≤ KΨ(xi|n)

by (2). Moreover, there is a constant C such that

KΨ(xi|n) ≤ l(i) + C

takes place. Therefore, we have

ε · n ≤ l(i) + C ≤ logc(i) + C. (16)

If n is sufficiently large, then ε
2 · n ≤ logc(i) is valid by (16), i. e. c

ε
2 ·n ≤ i is true.

The time complexity of producing xi is greater than or equal to i, which finishes the
proof. 2

An exponential upper bound of time complexity can be obtained too. Consider
a pseudorandom generator with oracle performing the following steps. Starting
on the input n, it subsequently generates strings of the length n in a prescribed
lexicographical order. Whenever it generates a string, it asks the oracle. If the string
is “typical”, the generator outputs the string and halts. Otherwise it generates the
next string. Clearly, generating of one string and asking the oracle once can be
done in a polynomial amount of time. Hence the whole procedure of producing of a
“typical” string takes at most p(n) · cardΣn = p(n) · cn units of time, where p(·) is
a polynomial. Finally, p(n) · cn ≤ c2n holds almost surely.

Our considerations on pseudorandom generators turn some light on applied Monte–
Carlo methods. They suggest that safe “purely deterministic” pseudorandom gen-
erators cannot be obtained in the frame of contemporary computer science.
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5. ON TESTING STRINGS TO BE “TYPICAL”

Tests proclaiming some strings as “typical” are considered in this section. We show
that the problem of testing the strings to be “typical” is undecidable. As a conse-
quence, one of the fundamental problems of applied statistics, the problem of cor-
respondence between statistical models and data, is undecidable. Finally, we prove
that the conditional probability that a string which is not f -complex is proclaimed
“typical” is bounded from below by a positive constant.

Consider a probability measure P on Σ∞.
A test is a recursively enumerable 5 set of strings, 6 i. e. a recursively enumerable

subset of Σ∗. It is denoted by
TP .

We assume that just the strings from the test TP are proclaimed “typical” for the
probability measure P .

No test TP can proclaim exactly the “typical” strings as “typical”, which follows
from

Theorem 4.1. Let (∗) take place, let limn→∞ fn = ∞.
If TP is an infinite test, then TP \ Typstr P is an infinite set.

P r o o f . If the set Typstr P is finite, then the assertion the theorem is true. Let
Typstr P be infinite. Then it constitutes an immune set by Theorem 2.1. Hence
TP \ Typstr P is infinite. 2

Theorem 4.1 means that the problem of testing the strings to be “typical” is
undecidable by means of Turing machines.

A fundamental problem of applied statistics consists in answering of the question:
“Does the collection of the observed data correspond to a given probability measure?”
We show that this problem is undecidable. The question should be answered in an
effective manner, safely and for infinitely many collections of input data. Therefore,
it can be formalized by: “Does an infinite test TP exist such that TP ⊆ Typstr P

takes place?” Theorem 4.1 shows that the answer is negative.
It will be interesting to estimate the conditional probability

Pn(TP | Σn \ Typstr P )

that some string which is not “typical” is proclaimed “typical” by the test. Unfor-
tunately, such an estimate cannot be obtained by means of the assumptions stated
above. Namely, the property (∗) gives no lower bound of the set Typstr P of “typi-
cal” strings, as follows from the equivalent condition (9) on page 751. It means that
we have at disposal no upper bound of the probability Pn(Σn \ Typstr P ).

5This is the weakest constructive restriction; see [1], p. 314, Comment b) for details.
6 Traditionally, a Martin-Löf test for randomness is a specific recursively enumerable subset of

Σ∗ × N . Our approach is different. Classical approach deals with testing a hypothesis about a
statistical model and data, while we are dealing with problem of correspondence between statistical
models and data.
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In the rest of the section we assume, that P is the Lebesgue measure. Hence

Pl(x){x} = c−l(x)

is true for each string x ∈ Σ∗.
Clearly, strings of low Kolmogorov complexity are too regular to be “typical” for

the Lebesgue measure. Therefore, the conditional probability

Pn(TP | Σn \ Cstr f ) (17)

that some string which is not f -complex is proclaimed “typical” is of interest. We
show that if a lot of strings is proclaimed “typical” by a test, then the probabilities
(17) are bounded from below by a positive constant almost surely.

Theorem 4.2. Assume that P is the Lebesgue measure on Σ∞, limn→∞ fn = ∞.
Moreover, let

lim inf
n→∞

Pn(TP ∩ Σn) > 0. (18)

Then
lim inf
n→∞

Pn(TP | Σn \ Cstr f ) > 0. (19)

P r o o f .

1. There is some n0 ∈ N such that the sets Σn \ Cstr f are nonempty for all
n ≥ n0, because limn→∞ fn = ∞. From now on, let n ≥ n0.

The probability (17) equals

card [TP ∩ (Σn \ Cstr f )]
card [Σn \ Cstr f ]

. (20)

The value of the denominator in (20) is bounded from above by cfn+1−1
c−1 , as

follows from (1).

2. There is a partial recursive function F from the set Σ∗ × N into the set Σ∗

satisfying the following properties. The domain of the function F (·, n) contains
exactly card [TP ∩ Σn] shortest strings from the set Σ∗. The range of the
function coincides with TP ∩ Σn. Hence for each string z from the domain of
the function F (·, n) we have

KΨ(F (z, n)|n) ≤ l(z) + C, (21)

where C is a constant.

Let us put
rn := card [TP ∩ Σn]. (22)

We introduce auxiliary sets

Xn := {z ∈ Σ∗|l(z) + C < fn} . (23)
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3. We show that if z lies in Xn and F (z, n) is defined, then F (z, n) lies in the
set TP ∩ (Σn \ Cstr f ). This fact enables us to obtain a lower bound of the
numerator in (20). Consider the string z. The string F (z, n) lies in the set
TP ∩ Σn according to definition of the function F . At the same time we have
KΨ(F (z, n)|n) < fn by (21) and (23), hence F (z, n) does not lie in the set
Cstr f by (2).

4. Two cases are considered below, rn ≥ cardXn and rn < cardXn.

Case a. First, let rn ≥ cardXn. Then F (z, n) is defined for all z ∈ Xn. Hence the
value of the numerator in (20) is bounded from below by cardXn, which
is at the same time bounded from below by

cfn−C − 1
c− 1

. (24)

Hence the value of the numerator in (20) is bounded from below by the
value of (24). Therefore, we have

Pn(TP | Σn \ Cstr f ) ≥ cfn−C − 1
cfn+1 − 1

(25)

by part 1. of the proof.

Case b. Assume that rn < cardXn is true. Then there are rn strings z in Xn such
that F (z, n) is defined. Let z1, . . . , zrn be that strings. We have

{F (zi, n)|i = 1, . . . , rn} = TP ∩ Σn (26)

in this case according to definition of the function F and (22). Moreover,
part 3. of the proof gives

TP ∩ (Σn \ Cstr f ) ⊇ {F (zi, n)|i = 1, . . . , rn} ,

which together (26) proves that

TP ∩ (Σn \ Cstr f ) = TP ∩ Σn

takes place. Therefore, we have

Pn(TP | Σn \ Cstr f ) ≥ Pn(TP ∩ Σn). (27)

5. Two lower bounds (25) and (27) of the probability (17) show, that we have

Pn(TP |Σn \ Cstr f ) ≥ min
{

cfn−C − 1
cfn+1 − 1

, Pn(TP ∩ Σn)
}

. (28)

This inequality together with limn→∞ fn = ∞ and (18) show, that (19) is true.
2
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The assumption “there is a lot of strings proclaimed ‘typical by the test’ formal-
ized by (18) can be replaced by

lim
n→∞

Pn(TP ∩ Σn) = 1.

Then we have
lim inf
n→∞

Pn(TP | Σn \ Cstr f ) ≥ c−C−1. (29)

as follows from (28). If the universal Kolmogorov algorithm is chosen appropriately,
then the constant C equals 1 and the lower bound in (29) equals c−2.
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[5] I. Kramosil and J. Šindelář: On pseudo-random sequences and their relation to a class
of stochastical laws. Kybernetika 28 (1991), 6, 383–391.

[6] M. Li and P. Vitayi: Introduction to Kolmogorov Complexity and its Applications.
Springer, New York 1997.
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