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DETERMINATION OF PHASE-SPACE
RECONSTRUCTION PARAMETERS
OF CHAOTIC TIME SERIES

WEI-DonG CAl, YI-QING QIN AND BING-RU YANG

A new method called C-C-1 method is suggested, which can improve some drawbacks
of the original C—C method. Based on the theory of period N, a new quantity S(¢) for
estimating the delay time window of a chaotic time series is given via direct computing a
time-series quantity S(m, N,r,t), from which the delay time window can be found. The
optimal delay time window is taken as the first period of the chaotic time series with a
local minimum of S(¢). Only the first local minimum of the average of a quantity AS>(¢) is
needed to ascertain the optimal delay time. The parameter of the C—C method — embedding
dimension m — is adjusted rationally. In the new method, the estimates of the optimal delay
time and the optimal delay time window are more appropriate. The robustness of the C—
C-1 method reaches 40 %, whereas that of the C—C method is 30 %.

Keywords: phase-space reconstruction, embedding window, delay time, time series
AMS Subject Classification: 37D45

1. INTRODUCTION

Strange attractors embody the characteristics of chaotic systems. The evolvement
of any component in a chaotic system is determined by other components which
interacting each other, therefore the information of these correlated components is
underlying in the evolution process of the component [2]. Analyses to chaotic time
series are mostly based on the phase-space reconstruction. In [8, 10], Packard et al.
suggested that the phase-space can be restructured from observing the single delay
coordinate of the dynamical system, and the fundamental theorem of reconstruction,
introduced by Takens [10, 11] and extended more recently in [9], gives no restriction
on the time delay constant 7 while for m states a sufficient (but not necessary)
condition is m > 2d+1, where d is the fractal dimension of the underlying attractor,
and m is the phase-space dimension. The theorem of phase-space reconstruction is
as follows:

The method of delays can be used to embed a scalar time series {x(t;),
i = 1,2,...,N} into an m-dimensional space X(t;) = (x(t;),z(t; +71),...,
z(t;+(m—1)7)), i =1,2,..., M, where 7 is the delay time, m is the embedding
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dimension, M is the number of embedded points in the m-dimensional space, and
M =N-—(m-—1)r. Set {X(t;),i=1,2,..., M} shows the tracks of the strange
attractor in the phase-space, and the chaotic evolvement of the dynamical system
can be studied in the reconstructed m-dimensional space. Research shows that the
reconstructed phase-space with appropriate m and 7 has the same quality of diffeo-
morphism as the original dynamical system.

The selections of m and 7 are rather important but difficult in the phase-space
reconstruction [7]. There are two main points of selecting m and 7, see e.g. [5, 12,
13, 14].

Point 1: The selections of m are independent of the selections of 7. The selections
of m and 7 are based on 3 rules. The first one is the method of serial correlation,
such as autocorrelation function, mutual information, high-order correlation, and so
on; the second one is the method based on phase-space expansion, such as fill factor,
average displacement, SVF, and so on; the last one includes the method of multi-
ple autocorrelation function and the method of non-biased multiple autocorrelation
function.

Point 2: m and 7 are correlated one another for the reason that real data sets
are finite and noisy. Tests show that the delay time window is 7, = (m — 1)74, and
it is the entire time spanned by the components of { X (¢;)}, which is independent of
m instead. In this case, the delay time 74 varies with the embedding dimension m.
Tw 18 comparatively steady for a certain time series, and the irrelevant partnership
of m will affect the equivalence relationship between the reconstructed phase-space
and the former space. Thus, some combined computing methods come into being,
such as the C-C method [3], the time window length, the automated embedding and
the creep phenomenon, and so on.

Many researchers agree with Point 2 above. They consider that the process of
mutual information is rather cumbersome computationally, whereas the autocorre-
lation function only treats the linear dependence of the time series and it does not
treat the nonlinearity appropriately, but it may yield an incorrect value for the delay
time 74. The C-C method suggested is most popular, which gives the delay time
74 and delay time window 7, simultaneously by applying the correlation integral.
Based on the statistical results, although the C—C method lacks theoretical support,
it runs well in practice and it shows some advantages, such as simple operation,
lower algorithm complexity, reliability for less data and better robustness, etc. It
has become a regular method for analyzing the time series [4].

Aiming at improving some drawbacks of the C-C method, this paper suggests
an advanced method to determine the optimal delay time 745 and the optimal delay
time window 7,,. It improves the computing process, parameter selections and the
determination rules of the C—C method. The selections of the optimal delay time
window 7, are more reliable and stable, the determination of the optimal delay time
T4 is more appropriate, and the robustness is higher than that of the C—C method.
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2. ANALYSIS OF THE C-C METHOD

2.1. Algorithm of the C—C method

Let the chaotic time series be z = {z;,7 = 1,2,..., N}, where m is the embedding
dimension, 74 is the delay time, and denote X = {X;}, where X, are the points in
the m-dimensional space:

Xi=(zj,zi4+7,...,xi+(m—-1)1)7T, i=1,2,...,M (1)
Thus, the correlation integral for the embedded time series is [1]:

2
Nort)=-———0 > 0(r—dy), 2
C(m7 T ) M(M _ 1) eien (T ]) r> 0 ( )

where m is the embedding dimension, N is the data number of the time series, r is
the search radius, t is the delay time, M = N — (m — 1)t is the number of embedded
points in the m-dimensional space, () is the Heaviside function: 6(z) = 0, if z <
0; O(z) =1,if x > 0, and d;; =|| ; — z; ||~ denotes the sup-norm.

Correlation integral is a cumulative distribution function, which denotes the prob-
ability of distances between any pairs of points in the phase-space that are not greater
than r. The distance between a pair of points is denoted by the sup-norm of the
difference between the two vectors. Define the statistical quantity of the time series
by

S(m,N,r,t) =C(m,N,r,t) — C™(1,N,r,t). (3)

The computing process of Eq. (3) is to subdivide the time series z = {z;} into ¢
disjoint time series averagely, where t is the reconstructive delay time, i.e.

J](l) = {x17$t+17 oo 7xLN/tJ7t+l}
2(2) = {72, Tty2, ., T N/t)—t42) @
o(t) = {Te, Tegt, - T Ny}

Here, define the average of the statistical quantity given by Eq. (3) as follows:
t
1
Sl<m7N7 r, t) = % Z[Cs(m7 N7 T, t) - an(17 N7 T, t)] (5)
s=1

As N — oo , we can write

t

Sy(m,r,t) = %Z[Cs(mm, t) — C™(1,7,1)]. (6)

s=1

For fixed m and ¢, Si(m,r,t) is identically equal to 0 for all r if x = {=;} is
independently and identically distributed (i.i.d.) and N — oo. However, real data
sets are finite, and the data may be correlated with noise; so, in general, Sy (m,r,t) #
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0. Thus, the locally optimal times may be either the zero crossings of Si(m,r,t) or
the times at which Si(m,r,t) shows the least variation in 7, since this indicates a
nearly uniform distribution of points. Hence, we select several representative values
rj, and define the quantity

AS1(m,t) = max{Si(m,r;,t)} — min{Sy(m,r;,t)} (7)

which is a measure of the variation of Sy(m,r,t) in . The locally optimal times ¢
are then the zero crossings of S1(m,r,t) ~ t and the minima of AS;(m,t) ~ ¢. The
zero crossings of Sq(m,r,t) ~ t should be nearly the same for all m and r, and the
minima of Sy(m,r,t) ~ t should be nearly the same for all m (otherwise, the time is
not locally optimal). The delay time 74 will correspond to the first of these locally
optimal times.

Appropriate choices for m, N and r may be found by examining the BDS statis-
tic. Generally, for N = 3000, m = 2,3,4,5, t = 1,2,...,200, r = k x 0/2,
k =1,2,3,4, where 0 = std (z) is the standard deviation of the time series. We
then define the following averages of the quantities given by Egs. (6) and (7):

— 1

%)
=
oy
~
=
I
—_
Pﬂ,>

Sl m, T,
6 m=11i=1 ( t) (8)
_ 14
ASi(t) = > AS(m,t) (9)

=1

3

and we look for the first zero crossing of Sy (¢) or the first local minimum of ASi(t)
to find the first locally optimal time for independence of the data, which gives the
delay time 74. The optimal time is the delay time ¢ for which S;(¢) and AS;(t) are
both closest to 0. If we assign equal importance to these two quantities, then we
may simply look for the minimum of the quantity

Sl,cor(t) = ASl(t)"" | 51 (t) | (10)

and this optimal time gives the delay time window 7.

2.2. Numerical examples of the C—C method

In these examples, we observe variable x from the chaotic Lorenz system by inte-
grating equations using function ode45 in MATLAB. The Lorenz system (11) is as
follows:
dz/dt = —ox + oy
dy/dt = —zz+rz—y (11)
dz/dt = xy — bz
where o, r and b are constants. We solve this system of equations for [o,7,b] =

[16.0,4.0,45.92], with initial conditions [z,y, 2] = [-1,0, 1], to generate a time series
of the variable x with interval of integration from 0 to 1000, step h = 0.01.
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The reconstruction results are the same as those given by Kim et al. in [3], tested
by 3000 points selected from 53001 to 56000 (Figure 1).

Fig. 1. C-C method: analysis on variable z from the Lorenz system.

2.3. Drawbacks of the C—C method

While the numerical examples are carrying on, we also select 3000 points from dif-
ferent intervals to estimate the optimal delay time 7; and the optimal delay time
window 7,,. The results are shown in Table 1.

Table 1. C-C method: results of the reconstructed
variable x from the Lorenz system.

Sample Interval m T4 Tw
10001-13000 21 10 191
2000123000 15 10 132
30001-33000 20 10 184
40001-43000 11 11 104
50001-53000 14 11 137
60001-63000 14 11 137
7000173000 9 11 84
80001-83000 17 10 152
90001-93000 11 11 101

There are at least 3 drawbacks in the C—C method.
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Ideally the minimum of S .- () is the optimal delay time window 7,,, whereas
in the tests there are some local minimal points whose values are much close
to the minimum of S _co-(t). They disturb the estimate of the minimum of
S1_cor(t). And even worse, the optimal delay time window 7, is not the exact
minimum point, which may mislead the estimate of the optimal delay time
window 7. In Figure 2, the marked points are all likely to be the optimal
delay time window 7.

08 - S
06
04

02

0 ! : : :
40 60 80 100 120 140 160 180 200 t

Fig. 2. C-C method: results of the local minima and the minimum of S1_cor(%).

In practice, the first zero crossing of Sy (t) is unequal to the first local minimum
of AS1(t). But for the time series with period T, for t = kT, k =1,2,..., one
of the points is mostly not only the first zero crossing of S;(¢) but also the
minimum of Sp_¢.(t); therefore, paradoxical conclusions can be drawn. We
suggest that it is not appropriate to take the first zero crossing of S;(t) as
the optimal delay time 74. We may consider taking the first local minimum of
AS,(t) as the first locally optimal time 7,,.

Strictly speaking, a chaotic system has no period. For low-dimensional chaotic
systems with period N, the mean orbital period T is the mean period gen-
erated by the oscillations of the chaotic attractor in the phase-space orbits.
The computing mode of Eq. (5) leads to the following result: if ¢t = kT, k =
1,2,..., then AS;(t) = 0, and AS;(t) shows high-frequency oscillations in-
creasingly along with the increase of . When the value of the optimal delay
time 74 is big enough, the high-frequency oscillations can even affect the esti-
mate of the first local minimum of AS; (¢).

Aiming at improving the drawbacks of the C—C method, we suggest an improved
method of phase-space reconstruction, which is called C—C—1 method.



Determination of Phase—Space Reconstruction Parameters 563

3. THE IMPROVED METHOD: C-C-1 METHOD

3.1. Algorithm of the C—C—1 method

By comparing S(m, N, r,t) with S;(m, N,r,t) in Eq. (5), for fixed m, and n — oo,
S1(m, N,r,t) ~ t shows high-frequency oscillations increasingly along with the in-
crease of t. In Eq. (3), on the same conditions, generally S(m, N,r,t) ~ t has the
same oscillations characteristics as Sy(m, N,r,t) ~ ¢, whereas the high-frequency
oscillations of Sy (m, N,r,t) ~ t disappear.

Therefore, instead of subdividing the time series * = {z;} into ¢ disjoint time
series, the C—C—1 method computes S(m, N, r,t) directly. Since chaotic time series
has intrinsic determinacy, and the direct algorithm is rather cumbersome computa-
tionally, in order to reduce the time complexity, the statistical quantity S(m, N, r,t)
given by Eq. (3) is computed with another average method. Being different from the
C—C method, a positive integer p is selected as a constant, which is independent of
the delay time ¢, to subdivide the reconstructed phase-space X = {X (¢;)}; and ac-
cording to the calculation of Sy (¢) and AS;(t) in the C-C method, Sz(t) and ASs(t)
are calculated.

Numbers of tests show that So_.o-(t) have some clear peak values with qualita-
tively chaotic period N, and all of the points that bring these clear peak values are
the local minima of Sy_cor(t). Thus, a new determinative rule of the optimal delay
time window T, is given: to estimate the optimal delay time window 7, the C-C
method looks for the minimum of Sy_¢.(t), whereas the C—~C—1 method combines the
clear peak values of Sy .. (t) with the chaotic period N and with the local minima
of S1_cor(t). By looking for the first local minimum peak value of S1_cor(t) — S2_cor(t)
with the clear quality of chaotic period N, we estimate the optimal delay time win-
dow 7,,; and aiming at the results with no clear quality of chaotic period N, we select
the minimum of S7_cor(t) — Sa_cor(t) to estimate the optimal delay time window 7.

Furthermore, the C-C method looks for the first zero crossing of S1(t) or the
first local minimum of AS;(t) as the first optimal delay time 74, while the C-C-1
method just looks for the first local minimum of ASy(¢) as the first optimal delay
time 74.

The algorithm of the C—C-1 method is summarized as follows:

The phase-space reconstruction is the first step. Then, a positive integer p is
selected as a constant, which is independent of the delay time ¢, to subdivide the
reconstructed phase-space X = {X (¢;)}:

X(1) = {XlaXpH»“'aXLN/pJ—pH}
X(2) = {X2,Xp+27...7XLN/pJ7p+2} (12)

X(p) = {Xp, Xpip,--- »XLN/pJ}
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(1) = {X1(1): X1(2), - Xa(m), Xpa (1), Xp41(2), -, Xpya(m), -}
{X2(1), Xa(2),- s Xam), Xpra (1), Xpia(Ds oo Xppa(m) o} (g9

z(p) = {Xp(1), Xp(2),..., Xp(m), Xp4p(1), Xp1p(2), ..., Xpyp(m),.. .}
We define the average of the statistical quantity given by Eq. (3) as follows:

Sy (m, 7, t) Zc (m,r,t) Bcs(u,t)]m (14)

where p is an adjustable parameter to balance the precision and speed of calculation.
The definitions of ASy(m,t), So(t), ASa(t) and So_cor(t) are all the same as Egs. (7),
(8), (9) and (10).

For p = 1, Eq. (14) is equal to Eq. (3), so the results of So(m,r,t) have the
highest precision, but the algorithm has the highest time complexity. For p > 1,
the algorithm has the lower time complexity. Tests show that although the new
algorithm still has a few errors (the same situation as that in the C-C method),
these errors do not disturb the estimates of the local minima.

Furthermore, we just look for the first local minimum of ASs(¢) as the first
optimal delay time 74. Considering S1_cor(t) and Ss_cor(t) roundly, if we assign equal
importance to these two quantities, and define a new quantity

Scor(t) - Sl,cor(t) - SZ,COT (t) (15)
then we may simply look for the first local minimum peak value of the quantity
Secor(t) with the clear quality of chaotic period N. This optimal time gives the
optimal delay time window 7,; but if the results are not with clear quality of chaotic
period N, the minimum of S, (t) gives the optimal delay time window 7,,.

3.2. Numerical examples of the C—C—1 method

As tests, we apply the C—C—1 method to the Lorenz system. Large numbers of
simulations prove that the adjustments to the ranges of the embedding dimension m
can help to obtain a more appropriate optimal delay time 74. Let m =2,3,...,7, p=
60, and other conditions be the same as the C—C method.

Figures 3, 4, and 5 show some contrastive results between the C—C method and
the C—C-1 method (where 3000 points are selected from 60001 to 63000).

Analyzing Figures 3, 4, and 5 shows that high-frequency oscillations are still
increasing along with the increase of ¢ but they are improved significently, and more
importantly, the local maxima with the chaotic period N can be found from the
graph of the phase-space reconstruction (Figure 4).

In Figure 4, when ¢t = 46,92, 138, 184, the clear maximum peak values of So_cor-(t)
with the quality of chaotic period N are given. Comparing with Figure 3, these
values are all local minima of S_co-(t). Thus, an important conclusion is drawn: in
the C—C—1 method, the optimal delay time window 7, is estimated by the first local
minimum peak value of S.,.(t), with a clear quality of chaotic period N.



965

Determination of Phase—-Space Reconstruction Parameters

180 200 t

160

80 100 120

60

180 200 t

160

7).

2,3,...,

Fig. 3. C—C method: analysis on variable  from the Lorenz system (m
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Fig. 4. C—C—1 method: analysis on variable x from the Lorenz system

The results of different test intervals of the Lorenz system in the C—C—1 method

are shown in Table 2.

—1

Table 2 shows that the estimates of the optimal delay time 74 in the C-C
method are the same as that in the C—C method, whereas the estimates of the
optimal delay time window 7, in the C—C—-1 method — stable values — are different

(m—1)74, the results

from that in the C—C method. Therefore, by the formula 7,
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Fig. 5. C-C-1 method: results of local minimal peak values of Scor(t)
(m=2,3,...,7, p=60).

of the optimal embedding dimension m become more robust, and are most close to
the well-known optimal embedding dimension m calculated by the theoretical value
of the fractal dimension, d = 2.06 of the Lorenz system [6]. The complexity of
the prediction and the analysis on the chaotic time series based on the phase-space
reconstruction is lower than before.

Table 2. Results of the reconstructed variable =
from the Lorenz system (m = 2,3,...,7, p = 60).

Sample C—C method C—C—-1 method

Interval m T4 Tw m Td Tw
10001-13000 14 | 12 148 5 12 46
20001-23000 10 | 12 99 6 11 46
30001-33000 17 | 12 184 6 11 46
40001-43000 12 12 122 5 12 46
50001-53000 14 | 12 151 5 12 46
60001-63000 17 | 12 188 5 12 46
70001-73000 15 12 167 5 12 46
80001-83000 14 | 12 152 5 12 46
90001-93000 10 | 12 101 5 12 46

In order to test the universality of the C—C—1 method, we also applied it to the
Duffing chaotic system:

dz/dt =y
dy/dt = —6y — ax(1l + 2%) + fcosz (16)
dz/dt = w

where d, a, f and w are constants. We solve this system of equations for [4, o, f,w] =
[0.05,0.5,7.5, 1], with initial conditions [z,y, 2] = [—1,0,1], and integrate equations
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by function ode45 in MATLAB, to generate a time series of the variable z with
interval of integration from 0 to 5000, step h = 0.05.

In testing the Duffing system, we select 3000 points from 50001 to 53000. For
m=2,3,...,7, p= 60, and in order to show the characteristic of the chaotic period
N, welett=1,2,...,300.

The reconstructed results of = from the Duffing system in the C—C method and
the C-C-1 method are shown in Figures 6, 7, and 8. The local minimum peak
values with the chaotic period N are also given in the graph of the phase-space
reconstruction.

0 50 100 150 200 250 300 t

Fig. 6. C—C method: analysis on variable z from the Duffing system (m = 2,3,...,7).

Analyses show that the C—C—1 method has broader universality and a more appro-
priate optimal delay time window 7,,, and the optimal delay time 7; can be obtained.

4. NOISE EFFECTS

To study the effects of noise on the C—C—1 method, we add Gaussian noise to the
Lorenz time series. Specifically, we examine the time series y; = x; + noe;, where x;
is the noise-free Lorenz time series, o is its standard deviation, ¢; is a Gaussian i.i.d.
random variable with zero mean and a standard deviation of 1, and 7 is the strength
of the noise. Noise levels of 10%, 20%, ..., and 60% (with n = 0.1,0.2,...,0.6)
are added to the Lorenz time series, and the C—C—1 method is performed for each
of these noise levels. According to the error standard given in [3], we observe that
the estimates of the optimal delay time 74 and the optimal delay time window 7,
remain unchanged for n = 0.1,0.2,0.3, 0.4, but not for n = 0.5,0.6. The results show
that the robustness of the C—C-1 method reaches 40 %, whereas that of the C-C
method is 30 %.
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Fig. 7. C-C-1 method: analysis on variable x from the Duffing system
(m=2,3,...,7, p=60).

02 T T T ¥ T
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Fig. 8. C—C-1 method: results of local minimal peak values of Scor(t)
(m=2,3,...,7, p=60).

5. CONCLUSIONS

The C-C-1 method is an improvement of the C—C method. It designs one mode to
subdivide the time series by a parameter p, which is independent of the embedding
time t. The results of the process clearly show the quality of chaotic period N
of the chaotic time series. Furthermore, a new S.,.(t) quantity to estimate the
optimal delay time window 7, of the chaotic time series is given. As a new rule
of estimating the optimal delay time window 7,, the C—C-1 method looks for the
first local minimum of the quantity Se..(t) and this optimal time should be the
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first period of the chaotic time series. On the other hand, we point out that in
the C—C method the rule of determining the optimal delay time 74 by choosing the
zero crossings of S;(t) may lead to an incorrect value. The C—C—1 method looks for
the first local minimum of ASy(t), which gives the optimal delay time 74. In the
computing process, the parameter of the C—C method — embedding dimension m —
is adjusted rationally in order to obtain more appropriate estimates of the optimal
delay time 74. Tests show that the C—C—1 method can give more reliable and stable
estimates of the optimal delay time window 7, and the optimal delay time 7,. We
also demonstrate the robustness of this method in the presence of noise. The noise
levels reach 40 %, which is about 10 % higher than that of the C—C method.
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