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ESTIMATION AND TESTING OF COINTEGRATION
RELATIONSHIPS WITH STRONGLY SEASONAL
MONTHLY DATA1

Emilio Caminero2 and Ignacio Dı́az–Emparanza

This paper extends the method proposed in [8] for quarterly nonstationary data, consid-
ering the estimation and testing for seasonal cointegration relationships when dealing with
strongly seasonal monthly data. The testing procedure is based on the maximum-likelihood
estimation of the ‘error correction mechanism’ for the vector of series considered. Finite
sample critical values for the cointegration test statistics at every frequency of interest are
obtained by Monte Carlo simulations. Finally, tests are applied to Spanish production
indexes data.

1. INTRODUCTION

The concept of cointegration defined in [4] allows us to describe the existence of a
stationary or equilibrium relationship among individually nonstationary time series.

In economic applications, series that are integrated of order one, I(1), are fre-
quently found among which the existence of possible cointegration relationships is
analyzed. On the other hand, many economic series exhibit a strong seasonality
which can be characterized by the presence of seasonal roots with modulus one.
Series of this type show peaks in their spectra at the corresponding seasonal fre-
quencies.

In [6] (HEGY) the standard cointegration technique is extended to include the
possibility that the data present unit roots at seasonal frequencies, suggesting the ap-
plication of an Engle& Granger type two-step testing procedure to the appropriately
filtered series. [8] extends the method developed in [7], which tests for the existence
of cointegration relationships among different time series (annual data) as well as
the number of possible cointegrating vectors. In his extension [8], Lee considers
quarterly data and the possible presence of unit roots at seasonal frequencies as well
as at zero frequency. His method is based on the maximum-likelihood estimation of
the error correction mechanism for the observed vector of series, and cointegration

1We acknowledge financial support from the U.P.V. through Research Project 038.321–
HB232/95.

2Grant Holder of the Research Training Program awarded by the Education, University and
Research Department of the Basque Government.
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tests are set out at each frequency individually with no prior knowledge about the
presence of unit roots at the remaining frequencies. These cointegration tests are
developed on the basis of the coefficient matrices of the error correction model.

The aim of the present paper is to extend the testing procedure based on the
maximum likelihood estimation developed in [8] to monthly processes.

Section 2 of this paper presents a generalization of the integration and cointe-
gration issues for the definitions of seasonal integrated process and seasonal cointe-
gration. The appropriate error correction mechanism for strongly seasonal monthly
data is set out in Section 3. Section 4 extends the general framework of the testing
strategy for cointegration considering processes that present unit roots at zero fre-
quency and/or at any seasonal frequencies of interest. The likelihood ratio statistics
are derived in each case. A particular case of full cointegration, where all cointe-
grating vectors coincide, is included in subsection 4.4. In Section 5 the finite sample
distributions of the statistics are analyzed by simulation. An example illustrates the
implementation of the tests in Section 6. Section 7 presents our conclusions.

2. GENERAL DEFINITIONS OF INTEGRATION AND COINTEGRATION

In recent time series literature the concepts of integration and cointegration have
been frequently used to describe the permanent behavior of many macroeconomic
time series. However, less attention has been devoted to data series of smaller peri-
odicity than a year. These series exhibit seasonal fluctuations that, in many cases,
are of a nonstationary nature. The structure of these series can be characterized
by the existence of unitary modulus roots at seasonal frequencies corresponding to
peaks in the pseudo-spectrum at the same frequencies (seasonal integration). Con-
sequently, it is also interesting to consider the existence of possible common factors
between different series, at any of the seasonal frequencies (seasonal cointegration).

This section presents a set of definitions that generalize the ideas of integration
and cointegration, presented in [5] and [3], which were originally formalized in [8].

Definition 2.1. Let S(L) be a polynomial in the lag operator3 that has a root
with modulus one at frequency ω — i. e., S(L) = (1− eiωL) — for ω ∈ (−π, π], and
also let D(L) be another polynomial collecting all the unit roots, if any, at seasonal
frequencies as well as at zero frequency, which are different from ω. A vector (n×1)
of series xt with no deterministic component is said to be integrated of order d at
frequency ω, and denoted as xt ∼ Iω(d), if d is the smallest integer for which the
representation S(L)dD(L)xt = C(L)εt has the following properties:

(i) The spectrum of C(L) εt is bounded away from zero and infinity at all frequen-
cies,

(ii) {εt} is a sequence of serially uncorrelated random vectors with finite and con-
stant unconditional variance,

(iii) the initial values are zero, for both εt and xt, for t ≤ 0.

3As usual, L denotes the lag operator.
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Due to the presence of D(L), this general definition allows a series xt to be
integrated of a different order at each frequency. Hence, the well known definition
of integrated process at zero frequency can be achieved as a particular case when
D(L) = 1 and ω = 0.

Assuming that xt ∼ Iω(1) and D(L) = 1, the following implications are obtained
from this definition:

(i) the variance of xt tends to infinity as t →∞;

(ii) innovations have a permanent effect on the seasonal pattern of xt (xt has ‘long
memory’);

(iii) the pseudo-spectrum of xt takes on asymptotically the form f(ϕ) = A(ϕ−ω)−2

for ϕ near ω, showing an infinite peak at frequency ω;

(iv) xt is asymptotically uncorrelated with processes which have unit roots at other
frequencies4 .

Example: An example of seasonal integrated processes for monthly data is

(1− L12)xt = εt, (1)

which has roots with modulus one at every seasonal frequency as well as at zero
frequency. The seasonal difference polynomial (1− L12) ≡ ∆12 can be factorized as

(1− L12) = (1− L) (1 + L) (1 + iL) (1− iL) (1 + (
√

3 + i)L/2) (1 + (
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The unit roots of this polynomial are:
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√

3− i); θ11 =
1
2
(
√
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The frequency associated with a particular root is the value of ω in Reωi — the
polar representation of the root. A root is seasonal if ω = 2πj/S, j = 1, . . . , S − 1,
where S is the number of observations per year (assuming S to be even). When
S = 12, the seasonal frequencies associated with the seasonal (unit) roots are ω =
π, ±π/2, ±2π/3, ±π/3, ±5π/6 and ±π/6; corresponding to 6, 3, 9, 8, 4, 2, 10, 7, 5,
and 11 cycles per year, respectively. Summarizing, Definition 2.1 can be used to

4The conditions under which the correlation coefficients approach zero as T → ∞ are given in
detail in [6].
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point out that the process xt is Iω(1) at these seasonal frequencies and at ω = 0,
i. e., xt has twelve unit roots.

Analogously, the idea of cointegration presented in Engle & Granger’s articles
can be generalized to define the concept of seasonal cointegration.

Definition 2.2. Let all components of xt be integrated of order one at frequency
ω, i. e., xt ∼ Iω(1). The components of xt are said to be cointegrated at frequency
ω, and denoted as xt ∼ CIω(1, 1), if there exists a vector α(6= 0) so that zt = α′xt ∼
Iω(0).

This definition is not at all restrictive, in the sense that it allows different coin-
tegrating vectors at each of the frequencies where unit roots are present.

However, it could be the case that for a vector of nonstationary series with unit
roots at some seasonal frequencies and at zero frequency, a single cointegrating vector
could eliminate all the unit roots in the series. This situation is formalized in the
following definition of full cointegration.

Definition 2.3. Let each component of xt be integrated of order one at some
frequencies, not necessarily at the same frequencies for all components. The com-
ponents of the vector xt are said to be fully cointegrated, and are denoted as
xt ∼ CI(1, 1), if there exists a vector α( 6= 0) so that zt = α′xt is stationary.

These definitions contain concepts that are quite similar to those derived from the
idea of cointegration established in [3]. Hence, if there is cointegration at seasonal
frequency ω each of the series contains the same factor Iω(1) and an innovation may
have a permanent effect on the seasonal behavior of xt, but only a temporary effect
on the seasonal pattern of zt = α′xt.

3. ERROR CORRECTION MODEL FOR A STRONGLY SEASONAL
PROCESS

Based upon the parallelism between cointegrated VAR models and error correction
models (ECM) established5 in [3], a seasonally cointegrated variables system may
be represented through either an autoregressive vector (VAR) or, equivalently, using
an error correction mechanism.

In this section, we set out the ECM equation that corresponds to a vector of
series presenting unit roots at all seasonal frequencies as well as at zero frequency.
This equation may be considered as the adaptation for monthly data of the annual
and quarterly models presented in [7] and [8], respectively. The model presented
sets up a basis on which cointegration tests can be carried out when analyzing the
existence of cointegration relationships on autoregressive vectors formed by monthly
time series.

5Adapted from Granger’s Representation Theorem.
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The data set considered is a monthly sequence of n-dimensional random vectors
{xt}. We consider a general VAR(p) model. The dynamic of the process is described
by the following model

xt = Φ1xt−1 + Φ2xt−2 + . . . + Φpxt−p + εt, t = 1, 2, . . . , T, (3)

where εt ∼ NIDn(0, Σ) and the Φ1, . . . , Φp, Σ are (n× n) matrices of parameters to
be estimated on the basis of T observations.

Since the process xt is allowed to have unit roots at seasonal frequencies as well as
at zero frequency, the determinant of the autoregressive matrix polynomial Φ(z) =
I − Φ1z − . . .− Φpz

p may have roots on the unit circle at these frequencies. It will
be assumed that all the remaining roots of |Φ(z)| = 0 satisfy6 |z| > 1.

Following a procedure parallel to that of the univariant case developed in [2],
from equation (3) the ECM representation can be obtained:

∆12xt = Π1y1,t−1 + Π2y2,t−1 + Π3y3,t−1 + · · ·+ Π12y12,t−1

+A1∆12xt−1 + A2∆12xt−2 + · · ·+ Ap−12∆12xt−p+12 + εt, (4)

6The straight implication is that the nonstationarity of the process will come from unit roots at
seasonal and zero frequencies but not from other frequencies.
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where

y1,t = Z1(L)xt

= (1 + L + L2 + L3 + L4 + L5 + L6 + L7 + L8 + L9 + L10 + L11)xt,
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y3,t = Z3(L)xt = −(L− L3 + L5 − L7 + L9 − L11) xt,
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2
(1 + L− 2L2 + L3 + L4 − 2L5 + L6 + L7 − 2L8 + L9 + L10 − 2L11) xt,

y6,t = Z6(L)xt =
√

3
2

(1− L + L3 − L4 + L6 − L7 + L9 − L10)xt,

y7,t = Z7(L)xt

=
1
2
(1− L− 2L2 − L3 + L4 + 2L5 + L6 − L7 − 2L8 − L9 + L10 + 2L11)xt,

y8,t = Z8(L)xt = −
√

3
2

(1 + L− L3 − L4 + L6 + L7 − L9 − L10)xt,

y9,t = Z9(L)xt

= −1
2
(
√

3− L + L3 −
√

3L4 + 2L5 −
√

3L6 + L7 − L9 +
√

3L10 − 2L11)xt,

y10,t = Z10(L)xt

=
1
2
(1−

√
3L + 2L2 −

√
3L3 + L4 − L6 +

√
3L7 − 2L8 +

√
3L9 − L10)xt,

y11,t = Z11(L)xt

=
1
2
(
√

3 + L− L3 −
√

3L4 − 2L5 −
√

3L6 − L7 + L9 +
√

3L10 + 2L11)xt,

y12,t = Z12(L)xt

= −1
2
(1+

√
3L+2L2+

√
3L3+L4−L6 −

√
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The interesting feature in this representation of model (3) is that it makes the set of
regressors mutually orthogonal, with each of them collecting the process xt filtered
so that it eliminates, each time, all unit roots except the one associated with one
particular frequency7. The Zk(L)’s (for k = 1, . . . , 12) will be filters performing the
function previously described, the Πk’s are (n×n) coefficient matrices related to the
filtered vectors and the Ai’s (for i = 1, . . . , p − 12) are (n × n) matrices related to
the elements included in the regression model to whiten the error εt and represent
the stationary structure of the model.

The ECM representation (4) will be employed to estimate and test for cointegra-
tion relationships between the components of a VAR.

7For frequencies associated with complex roots the two filters that leave the two conjugated unit
roots must be simultaneously applied.
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4. COINTEGRATION TESTS

In this section the testing strategies for the different frequencies of interest will be
detailed. It should be pointed out that in the ECM (4) the coefficient matrices
Π1, Π2, . . . , Π12 convey information concerning the permanent behavior of the se-
ries8; so if the coefficient matrix Πk has full rank, then the series do not contain
unit roots at the corresponding frequency. If the rank of Πk is zero, no cointegration
relationship will be found at that frequency. However, if there are linear combina-
tions between columns of matrix Πk, i. e. 0 < rank(Πk) = r < n, it can be said that
cointegration relationships exist at that frequency. Given that the rank of matrix
Πk is r, it can be shown for a suitable pair of (n× r) matrices γk and αk, satisfying
Πk = γkα′k, that despite yk,t−1 itself being nonstationary, α′kyk,t−1 will be station-
ary. This would mean that the vector process xt is cointegrated at the associated
frequency whose unit modulus root has not been eliminated in yk,t−1.

The proof is straightforward from the ECM (4) if we consider, for instance, k = 2.
If Π2 has incomplete rank r, the term Π2y2,t−1 may be rewritten as (γ2α

′
2) y2,t−1,

which must be stationary due to the stationarity of the left member in the equal-
ity, (∆12xt). The implication described above is obvious substituting y2,t−1 for
Z2(L) Lxt.

γ2Z2(L)Lα′2xt ∼ Iπ(0) ⇐⇒ α′2xt ∼ Iπ(0) ⇐⇒ xt cointegrated at ω = π.

The columns of αk are the cointegrating vectors of the series at that frequency. The
space spanned by the columns of αk, which at the same time coincides with the
space spanned by the rows of matrix Πk, will be called the seasonal cointegration
relationships space at that frequency.

The natural hypothesis of the cointegration rank test comes from this. Generally,
it can be formulated as the hypothesis that at most rk cointegration relationships
exist at the corresponding frequency, rank(Πk) ≤ rk, against the alternative that
rank(Πk) > rk. The main advantage of this procedure is that several null hypotheses
can be tested for each case of interest with no prior knowledge of the existence of
cointegration relationships at other frequencies, due to the asymptotic uncorrelat-
edness between any two series with unit roots at different frequencies.

4.1. Cointegration at zero frequency

To test the existence of at most r1 cointegrating vectors (at least n− r1 unit roots)
at zero frequency in the presence of unit roots at some seasonal frequencies, the
hypothesis can be formulated as H10 : rank(Π1) ≤ r1, (r1 < n) vs. H1a : rank(Π1) >
r1; which can be expressed alternatively as H10 : Π1 = γ1α

′
1. Since neither γ1 nor

α1 is observable, the test must be based upon estimates of them. Nevertheless, as
pointed out in [7] these parameter matrices cannot be estimated, since they form an

8Each matrix Πk informs about the behavior of the series at the frequency whose associated
root has not been eliminated in the corresponding yk,t−1. Note that for every pair of seasonal
frequencies associated with conjugated complex roots the information concerning the permanent
behavior of the series is included jointly and inseparably through the corresponding pair of matrices.
That is, Πk−1 and Πk (k = 4, 6, 8, 10, 12), in each case.
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overparametrization of the model. Therefore the estimates of the spaces spanned by
γ1, ŝp(γ1), and by α1, ŝp(α1) will be used to test hypothesis H10 .

Equation (4) will be estimated by maximizing the likelihood function with re-
spect to the parameters (Π1, . . . , Π12) and (Σ, A1, . . . , Ap−12). Since the way the
parameters take part in the likelihood function is independent9, we can concentrate
it sequentially, obtaining an expression depending solely on the parameters of inter-
est Π1 of the testing hypothesis. The estimates of Π1 are substituted, recursively, in
the corresponding expressions to obtain the estimates of the remaining parameters.

Firstly, for fixed values of Π1, . . . , Π12 the maximum-likelihood estimates of A1, . . .

. . . , Ap−12 can be obtained by an OLS regression of
(
∆12xt −

∑12
k=1 Πkyk,t−1

)
on the

lagged seasonal differences ∆12xt−1, . . . , ∆12xt−p+12. Alternatively, we can obtain
the OLS residuals Rt by first regressing ∆12xt on the lagged seasonal differences
giving the residuals R0t, then regressing each yk,t−1 (k=1,. . . ,12) on the lagged
seasonal differences giving the residuals Rkt for k = 1, 2, . . . , 12, and finally forming
Rt = R0t −

∑12
k=1 ΠkRkt.

Then, the ML estimates of Πk’s can be achieved by the following OLS regression

R0t = Π1R1t + Π2R2t + . . . + Π11R11t + Π12R12t + εt. (6)

Since the parameter matrices Π2, . . . , Π12 in equation (6) are independent, the
likelihood function can be concentrated on Π1. Thus regressing R0t and R1t on
(R2t, R3t, . . . , R12t), we obtain the residuals U0t and U1t, respectively; thus finally
forming Ut = U0t − Π1U1t. The concentrated likelihood function can be rewritten
as

L(Π1,Σ) ∝ |Σ|−T/2 exp

(
−1

2

T∑
t=1

U ′
tΣ
−1Ut

)
. (7)

The ML estimation of the parameter matrix Π1 may be obtained by the OLS regres-
sion U0t = Π1U1t + ξ1t. Since our hypothesis imposes the restriction Π1 = γ1α

′
1, for

a fixed value of α1 the ML estimation for γ1 and Σ are equivalent to the LS reduced
rank estimation in the regression U0t = γ1(α′1U1t) + η1t, obtaining

γ̂1(α1) = D01α1(α′1D11α1)−1 (8)

Σ̂(α1) = D00 −D01α1(α′1D11α1)−1α′1D10. (9)

where Dij = T−1
∑T

t=1 UitU
′
jt.

Now the likelihood function is proportional to |Σ̂(α1)|−T/2 and hence, its maxi-
mization with respect to α1 is equivalent to minimizing

∣∣D00 −D01α1(α′1D11α1)−1

α′1D10| with respect to α1. Using commonly known results (see [1] or [7]), the
expression to be minimized remains

min
(α1)

|α′1D11α1 − α′1D10D
−1
00 D01α1|

|α′1D11α1| . (10)

9 Due to the asymptotic uncorrelatedness between any two series with unit roots at different
frequencies, y1,t−1 and yj,t−1, and the fact that both are at once asymptotically uncorrelated with
(stationary) lags of ∆12xt.
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Based upon [7] and [8], α1 can be estimated by choosing the first r1 eigenvectors of
D10D

−1
00 D01 with respect to D11, α̂1 = (v1,1, v1,2, . . . , v1,r1). That is, the eigenvectors

corresponding to the r1 largest eigenvalues, λ̂1i, i = 1, . . . , r1 solving |λ1D11 −
D10D

−1
00 D01| = 0.

Without a priori information, a variety of possible optimum choices10 of the
matrix α1 can be obtained from the resulting α̂1 that solves the eigenvalue problem
above. However, we can always infer the cointegration space of vector xt at that
frequency.

The inference about the number of cointegration relationships at the zero fre-
quency can be carried out through the likelihood ratio test statistic or trace statistic.
This tests the hypothesis H10 : Π1 = γ1α

′
1, through11

−2 ln (Q) = −T

n∑

i=r1+1

ln (1− λ̂1,i) (11)

where λ̂1,r1+1, . . . , λ̂1,n are the (n − r1) smallest eigenvalues of D10D
−1
00 D01 with

respect to D11, corresponding to the (n − r1) smallest squared partial canonical
correlations of U1 with respect to U0.

4.2. Cointegration at seasonal frequency π

Let us now set up the test for the hypothesis that there are at most r2 cointegrating
vectors at seasonal frequency π. In this case, the matrix that conveys the informa-
tion about the behavior at seasonal frequency π is the one related to y2,t−1. The
confronted hypotheses are H20 : rank(Π2) ≤ r2 (r2 < n) vs. H2a : rank(Π2) > r2.

Analogously to the previous section, the hypothesis that Π2 does not have full
rank can be formulated as the expression: H20 : Π2 = γ2α

′
2. The testing procedure

is very similar to the one developed above except that the role played by the vectors
of residuals R1t and R2t is reversed.

Given the hypothesis of interest, for a fixed value of α2 the ML estimation for
γ2 and Σ are equivalent to the LS reduced rank estimation in the regression U0t =
γ2(α′2U2t) + η2t, causing

γ̂2(α2) = D02α2(α′2D22α2)−1, (12)

Σ̂(α2) = D00 −D02α2(α′2D22α2)−1α′2D20. (13)

The likelihood function is proportional to |Σ̂(α2)|−T/2. Maximizing it with respect
to α2 is equivalent to minimizing the expression

min
(α2)

|α′2D22α2 − α′2D20D
−1
00 D02α2|

|α′2D22α2| (14)

10Given that Π1 = γ1α′1 is satisfied, for any (r1 × r1) nonsingular matrix P it is true that
Π1 = γ1α′1 = bγ1PP−1bα′1.

11The asymptotic distribution of the test statistic is a function of the distribution of several
stochastic matrices, involving integrals of multivariant Wiener processes of dimension (n− r1).
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The trace statistic for the hypothesis that there are at most r2 cointegrating vectors
— (n− r2) unit roots — at seasonal frequency π is

−2 ln (Q) = −T

n∑

i=r2+1

ln (1− λ̂2,i) (15)

where λ̂2,r2+1, . . . , λ̂2,n are the (n − r2) smallest eigenvalues of D20D
−1
00 D02 with

respect to D22, which correspond to the (n− r2) smallest squared partial canonical
correlations of U2 with respect to U0.

4.3. Cointegration at the remaining seasonal frequencies

The cointegration analysis at each pair of seasonal frequencies ±π/2, ±2π/3, ±π/3,
±5π/6 and ±π/6 — all associated two by two with conjugated complex unit roots —
must take into account simultaneously the information provided by two parameter
matrices, in each case. This means that the information about permanent behavior
of the series at each pair of conjugated frequencies ±ω`, for ` ∈ {4, 6, 8, 10, 12}
(where it must be noted that ω4 = π/2, ω6 = 2π/3, ω8 = π/3, ω10 = 5π/6 and
ω12 = π/6) is conveyed jointly and inseparably through the matrices Π`−1 and Π`.
Therefore, we need to look at the two matrices, Π`−1 and Π`, simultaneously to
test the hypothesis of seasonal cointegration at each pair of conjugated frequencies
(±ω`).

In a more general context, the testing procedure might imply that we need to
consider polynomial cointegrating vectors (PCIV), since one vector is sought to
eliminate two unit roots from two different filtered vectors, y`−1,t−1 and y`,t−1. If
PCIV are employed, both the cointegrating vectors and the error correction term
coefficients may be different at different lags.

Henceforth, this paper will assume that cointegration, if any, is contemporaneous.
Under this assumption the testing procedure is simpler than that which results from
a general framework such as the one described above.

Using the above generic notation, the test of interest for either of the five pairs
of seasonal frequencies can be formulated by means of the joint hypothesis

H`0 : {Π`−1 = γ`−1α
′
`} ∩ {Π` = γ`α

′
`} .

Obviously, the restriction of contemporaneous cointegration imposes that the coin-
tegrating vectors must coincide at different lags.

As above, we can develop the testing procedure for each case ` ∈ {4, 6, 8, 10, 12}.
For fixed values of Π` and Π`−1, the maximum-likelihood estimation of the remain-
ing matrices Πk is equivalent to an OLS estimation in the regression of (R0t −
Π`−1R`−1,t − Π`R`t) on (R1t, R2t,P `), where P ` = P − {R`−1,t, R`t} and P =
{R3t, R4t, . . . , R12t}.

If we consider the series of residuals from the OLS regressions of R0t, R`−1,t

and R`t on (R1t, R2t, P `) consecutively and denote them as U0t, U`−1,t and U`t

respectively, we can obtain the MLE of the parameter matrix [Π`−1

... Π`] from the
regression

U0t = Π`−1U`−1,t + Π`U`t + ξ`t.
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Given the restriction under the joint hypothesis of contemporaneous cointegration,
H`0 , for a fixed value of α`,

Σ̂(α`) = D00 −
(

D0,`−1 D0`

)(
α` 0
0 α`

)

×
[(

α′` 0
0 α′`

)(
D`−1,`−1 D`−1,`

D`,`−1 D`,`

) (
α` 0
0 α`

)]−1

×
(

α′` 0
0 α′`

) (
D`−1,0 D`0

)
. (16)

Now the likelihood function is proportional to
∣∣∣Σ̂(α`)

∣∣∣
−T/2

and its maximization
is equivalent to minimizing the determinant of expression (16) with respect to α`.

The trace statistic for the hypothesis that there are at most r` seasonal cointe-
grating vectors — (n− r`) unit roots — at each pair of frequencies ±ω` is12

−2 ln (Q) = −T

n∑

i=r`+1

ln (1− λ̂`−1,i − λ̂`,i) (17)

where λ̂`−1,r`+1, . . . , λ̂`−1,n are the (n−r`) smallest eigenvalues of D`−1,0D
−1
00 D0,`−1

with respect to D`−1,`−1; and on the other hand, λ̂`,r`+1, . . . , λ̂`,n are the (n − r`)
smallest eigenvalues of D`,0D

−1
00 D0,` with respect to D`,`.

In practice, it is useful to consider a simpler performance of the testing procedure
with very little effect (see [8]) on the test when cointegration is contemporaneous.
This simplification is based upon the structure of the error correction model consid-
ered and consists of assuming γ` = 0 (⇒ Π` = 0), ` ∈ {4, 6, 8, 10, 12}.

Under this assumption we can restrict our attention to the matrix Π`−1 to test
for cointegration relationships. The hypothesis of interest will be formulated as

H(`−1)0 : Π`−1 = γ`−1α
′
`−1.

Thus, the testing strategy is similar to that for the zero or seasonal frequency π
except that the series of residuals R`−1,t — in each particular case — takes the role
of R1t or R2t, respectively. So, we obtain that the likelihood ratio test statistic for
the hypothesis that there are at most r`−1 seasonal cointegrating vectors at seasonal
frequencies ±ω` is

−2 ln (Q) = −T

n∑

i=r`−1+1

ln (1− λ̂(`−1),i) (18)

where λ̂(`−1),r`−1+1, . . . , λ̂(`−1),n are the (n−r`−1) smallest eigenvalues of D`−1,0D
−1
00

D0,`−1 with respect to D`−1,`−1.

12The asymptotic distribution of the test statistic is a function of the distribution of several
stochastic matrices involving integrals of two mutually independent Wiener processes of dimension
(n− r`) [A proof for seasonal frequencies ±π/2 can be found in [8]].
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4.4. Full Cointegration

In some data series, especially economic series, behavior at different frequencies may
be similar due to seasonality in the time series — or even the behavior of the trend
— having the same source. This will be reflected in the fact that some (though
not necessarily all) cointegrating vectors may coincide. That is, a single cointegrat-
ing vector, say αF , (αF = α1 = α2 = α`, ` ∈ {4, 6, 8, 10, 12.}) might remove all
unit roots in the system at all frequencies. This is defined as full cointegration in
Definition 2.3. In this case the ECM (4) will be reduced to

∆12xt = ΠF (L)xt−1 +A1∆12xt−1 +A2∆12xt−2 + · · ·+Ap−12∆12xt−p+12 +εt, (19)

where the hypothesis of full cointegration implies that ΠF (L) = γF (L)α′F must be
satisfied. Thus a single vector α′F may eliminate all the unit roots in the system and
γF (L) is a polynomial matrix having potentially eleven lags.

By arguments similar to those in the previous subsection, we will restrict our
attention to the case when cointegration relationships, if any, are contemporaneous.
So it is assumed that γF (L) = γF11L

11 so the ECM can be written as

∆12xt = ΠF11xt−12 + A1∆12xt−1 + A2∆12xt−2 + · · ·+ Ap−12∆12xt−p+12 + εt. (20)

Then, we can get the series of residuals RFt from the OLS regression of xt−12

on the lagged seasonal difference ∆12xt−1, . . . , ∆12xt−p+12 so, with the series of
residuals R0t, we can obtain the likelihood ratio test statistic for the hypothesis
HF0 : ΠF = γF α′F .

The trace statistic to test the hypothesis that there are at most rF full cointe-
grating vectors is13

−2 ln (Q) = −T

n∑

i=rF+1

ln (1− λ̂F,i) (21)

where λ̂F,rF +1, . . . , λ̂F,n are the (n− rF ) smallest eigenvalues14 of SF0S
−1
00 S0F with

respect to SFF .

5. FINITE SAMPLE CRITICAL VALUES. MONTE CARLO SIMULATIONS

The aim of this section is to analyze the finite sample behavior of trace statistic distri-
butions. This will be achieved by Monte Carlo simulations under the null hypothesis
considered — several values of rk — at any frequencies of interest individually as
well as in the full cointegration case.

We then study the power of the test statistics by generating the distribution
under several alternative hypotheses.

13The asymptotic distribution of the test statistic is a function of twelve standard mutually
independent Wiener processes.

14Remark: The matrices S0F and SFF correspond to the product matrix of the residuals R0 and
RF , that is, S0F = T−1

PT
t=1 R0tR′Ft and SFF = T−1

PT
t=1 RFtR

′
Ft.
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The simulation experiments are designed for a sequence of random (n×1)vectors
{xt} generated by

xt = xt−12 + εt, t = −99, . . . , 0, 1, . . . , T (22)

where each εt is a (n× 1) vector from a sequence of vectors NID(0, In).
Given the way the series are generated in this paper and since we consider that

the cointegration relationships, if any, are contemporaneous, the ECM (4) will take
the following simpler form to carry out the simulation exercise:

∆12xt = Π1y1,t−1+Π2y2,t−1+Π3y3,t−1+Π5y5,t−1+Π7y7,t−1+Π9y9,t−1+Π11y11,t−1+εt.
(23)

By construction, the dynamic (22) of the vector sequence {xt} imply that there
is no cointegration relationship between the elements of the vector xt at any fre-
quencies. It is then clear that the true Πk’s are null matrices. Hence the empirical
distributions of the test statistics will be obtained, in each case, under the null hy-
potheses that rk = rank(Πk) = 0, k = 1, 2, 3, 5, 7, 9, 11, respectively. The critical
values are reported in the Appendix.

To study the power of the test at any frequency we simulate several alternative
hypotheses, where only cointegration relationships that are contemporaneous have
been imposed, and confront them with the correspondent null hypotheses. All these
cases indicate that the power of the test for cointegration in rejecting the false null
hypotheses increases with T , so tests do not seem inconsistent. In Table 1 we report
the results for one of the cases.

Table 1. Power of Trace Statistic. True Model: (n− r) = (2− 1) = 1,

zt = 2xt + εt, where xt = xt−12 + ζt.

H0 : n − r = 2 Frequencies
Quantil T 0 π ±π/2 ±2π/3 ±π/3 ±5π/6 ±π/6

100 41.4 % 41.8 % 88.2 % 87.1 % 87.8 % 87.1 % 87.9 %
95% 300 99.8 % 99.9 % 100 % 100 % 100 % 100 % 100 %

500 100 % 100 % 100 % 100 % 100 % 100 % 100 %
100 20.3 % 18.7 % 66.1 % 63.2 % 63.3 % 63.1 % 66.1 %

99% 300 98.1 % 99.3 % 100 % 100 % 100 % 100 % 100 %
500 100 % 100 % 100 % 100 % 100 % 100 % 100 %

6. EMPIRICAL APPLICATION: PRODUCTION INDICATORS
IN THE SPANISH ECONOMY

In this section we estimate the cointegration rank at each frequency in a set of
variables related to Spanish production data from different economic sectors. The
existence of cointegration relationships at each frequency implies that the series in
the system fluctuate around a cyclical component at that frequency.
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Our intention is to include in the variable set considered not only production se-
ries from the Industrial Production Index (IPI) but also series from other industrial
sectors that are not reflected in this index, and series from the services sector. Thus
we try to take into account a more representative set of data on Spanish production.
The common element of these series is that they all feature a strong seasonal compo-
nent. The data are collected from the Bolet́ın de Indicadores Económicos published
monthly by the Spanish Central Bank (Banco de Espaňa).

BIECO: IPI. Consumption Goods. Base 1990 = 100.

ESMEYCA: IPI. Investment Goods. Metal structures and Boilermaking.
Base 1990 = 100.

MATTRA: IPI. Investment Goods. Transport Material (except cars and motorbikes).
Base 1990 = 100.

MAQYBEQ: IPI. Investment Goods. Machinery and other Capital Goods.
Base 1990 = 100.

BIEINT: IPI. Intermediate Goods. Base 1990 = 100.

ACERO: Domestic Steel Production. In Thousands of Tons.

VENGRA: Multiples Sale Index. Base 1983 = 100.

PERNOCVI: Tourism and Travelling. Nights spent by Travellers in Hotels.
In Thousands of People.

We analyze monthly data for the period between January 1975 and March 1995.
Figure 1 shows the logarithmic transformations of the series. The series show strong
components in their seasonal and trend pattern, so we can expect to find unit roots
at seasonal frequencies as well as at zero frequency. Hence, we can test and estimate
cointegration relationships in the system at different frequencies.
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Fig. 1. Production Series (log).
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To carry out the unit roots tests for each individual series, we use the critical
values reported in Table A.1 in the Appendix. These tests corroborate the impression
reflected by the graphics of the series as to the existence of a unit root at every
frequency in each series. Once we have analyzed the individual structure in each
series, the cointegration tests for the different frequencies are applied.

Rank and cointegration relationships are estimated in the system formed by
the variables BIECO, ESMEYCA, MATTRA, MAQYBEQ, BIEINT, ACERO,
VENGRA and PERNOCVI. For the choice of the lag length p in the VAR, the
usual model selection methods such as the Akaike Information Criterion (AIC) and
Schwarz Criterion (SC) are used and Box-Pierce Q-statistics are also examined to
test for uncorrelatedness of residuals. The ECM representation is adjusted for a
VAR(22). Table 2 reports the results for the trace statistics to test the number of
cointegration relationships at every frequency.

Table 2. Cointegration Tests.

H0 : n − r(Πk) Trace Statistic at Frequencies
n = 8 T = 214 0 π ±π/2 ±2π/3 ±π/3 ±5π/6 ±π/6
n− r = 8 r(Πk) = 0 334.0a 195.4a 159.4 162.6a 151.6 182.5a 182.8a

n− r = 7 r(Πk) = 1 229.6a 120.8 104.3 103.3 95.0 114.3 101.6
n− r = 6 r(Πk) = 2 153.4a 72.2 60.3 67.3 54.4 61.8 56.6
n− r = 5 r(Πk) = 3 98.1a 41.8 37.7 37.7 26.2 32.4 24.7
n− r = 4 r(Πk) = 4 59.5a 20.3 21.2 17.8 12.4 12.8 4.7
n− r = 3 r(Πk) = 5 28.4a 10.0 8.0 6.7 3.3 4.8 2.0
n− r = 2 r(Πk) = 6 12.4 4.2 4.0 3.2 1.5 1.8 0.3
n− r = 1 r(Πk) = 7 2.1 0.0 0.7 1.1 0.0 0.0 0.0

aSignificant at the 5 % level.

The results show no cointegration at seasonal frequencies ±π/2 and ±π/3. How-
ever, it seems that there is evidence of cointegration relationships at the remaining
frequencies. The estimated cointegration ranks are r0 = 6 and rπ = r±2π/3 =
r±5π/6 = r±π/6 = 1.

The optimum estimates of the cointegrating vectors at each frequency can be
obtained by the method explained in Section 4. These estimates are:

α̂1 = (v̂1,1, . . . , v̂1,6) =




9.27 2.83 −2.39 2.68 4.62 4.00
2.51 −3.42 2.35 −2.39 −0.63 1.58

−1.85 1.64 −1.57 −0.62 −1.00 −1.65
0.17 −1.28 −0.25 3.79 0.64 1.42

−10.09 −4.63 6.53 −4.44 0.81 −4.48
1.66 0.28 −3.00 1.49 −0.58 0.05

−0.61 0.52 −0.51 −0.62 −0.58 −0.32
−0.46 1.83 0.25 −0.28 −1.44 −0.26
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α̂2 = (v̂2,1) =
[ −11.96 −2.21 1.28 −3.18 23.78 −1.33 9.30 7.27

]′

α̂5 = (v̂5,1) =
[ −16.96 8.98 0.48 6.78 −4.16 −11.63 −7.50 20.06

]′

α̂9 = (v̂9,1) =
[

19.90 −7.86 2.38 2.02 −23.72 6.03 −2.45 4.62
]′

α̂11 = (v̂11,1) =
[

6.40 −11.79 2.67 −2.89 32.31 −0.97 4.18 2.93
]′

Summarizing, the ECM that describes the dynamic of production is

∆12xt = γ1α
′
1y1,t−1 + γ2α

′
2y2,t−1 + γ5α

′
5y5,t−1 + γ9α

′
9y9,t−1 + γ11α

′
11y11,t−1 +

+A1∆12xt−1 + · · ·+ A10∆12xt−10 + εt, (24)

where γ1, α1 are (8×6) matrices and γ2, α2, γ5, α5, γ9, α9, γ11, α11 are (8×1) matrices.
Estimation of γ1, γ2, γ5, γ9, γ11 can be carried out as described in Sections 4.1, 4.2
and 4.3.

7. CONCLUDING REMARKS

The main result of this study is the provision of a testing framework for the coin-
tegration ranks in a system of nonstationary monthly processes. Its particularity
is that it allows these tests to be implemented at each frequency of interest in the
presence of unitary modulus roots at other frequencies. The extension made here —
from the research in [8] — provides the empirical distributions of the test statistics
for finite samples with different numbers of observations.

The statistical properties of these distributions seem to coincide with those found
in previous similar studies, and are not far from those we would have desired at the
beginning of our work. In particular, the power experiments show that the testing
procedure presented is not inconsistent.

The method is applied to Spanish economic data in the form of monthly produc-
tion indicators, which illustrates the implementation of the testing procedures. The
results enable the error correction mechanism describing the dynamic of the system
formed by these production variables to be identified.

We would expect inclusion of a constant term to affect — similarly to previous
studies — the distribution of the test statistics for cointegration at zero frequency,
and inclusion of seasonal dummies to change the distributions of the test statistics
for cointegration at seasonal frequencies.

Finally in practice, the assumption mentioned above, Π4 = Π6 = Π8 = Π10 =
Π12 = 0, hardly affects the distributions of the test statistics from the point of
view of contemporaneous cointegration analysis. However, this contemporaneous
cointegration analysis is included in a more general context that implies considering
polynomial cointegrating vectors (PCIV) which are difficult to find in practice, and
a much more complicated testing procedure will be required to study cointegrating
relationships.
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8. APPENDIX: TABLES OF TRACE STATISTICS

These tables report the critical values of the empirical distributions for the different
test statistics presented in Section 4; i. e., for the trace statistics (11), (15), (18)
and (21).

The distribution of probabilities for each test statistic has been approached by the
distribution of frequencies resulting from calculating repeatedly the trace statistic
under the null hypotheses of no cointegration (r = 0) for values of n = 1, 2, 3, 4, 5, 6, 7
and 8, respectively. The number of observations for the finite sample considered is
T = 100, 200, 300 and 500. The number of replications is 20,000 except in the cases
(n− r) = 6, 7, 8, where 3,000 replications are employed.

Each table reports the critical values for the cointegration tests at each frequency
individually and for the particular case of full cointegration. We use the statistics
program RATS.
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Table A.1 Quantiles in the distribution of Trace Statistics H0 : n− r = 1.

n – r = 1 Quantiles

Frequency T 1 % 5 % 10 % 50 % 90 % 95 % 97.5 % 99 %
100 0.00 0.00 0.02 0.55 3.20 4.54 5.95 7.86
200 0.00 0.00 0.02 0.62 3.23 4.52 5.71 7.45

ω = 0 300 0.00 0.00 0.02 0.61 3.04 4.29 5.46 7.23
500 0.00 0.00 0.02 0.60 2.99 4.15 5.35 6.91
100 0.00 0.00 0.02 0.54 3.16 4.50 5.82 7.97
200 0.00 0.00 0.02 0.62 3.21 4.44 5.76 7.52

ω = π 300 0.00 0.00 0.02 0.62 3.10 4.40 5.66 7.29
500 0.00 0.00 0.02 0.62 3.06 4.22 5.40 6.99
100 0.00 0.00 0.02 0.57 3.23 4.61 6.00 7.73
200 0.00 0.00 0.01 0.56 3.22 4.48 5.86 7.69

ω = π/2 300 0.00 0.00 0.01 0.57 3.17 4.44 5.66 7.40
500 0.00 0.00 0.01 0.58 3.16 4.39 5.54 7.30
100 0.00 0.00 0.01 0.55 3.20 4.52 5.92 7.88
200 0.00 0.00 0.01 0.56 3.12 4.39 5.71 7.52

ω = 2π/3 300 0.00 0.00 0.01 0.56 3.11 4.35 5.60 7.34
500 0.00 0.00 0.01 0.56 3.11 4.34 5.49 7.18
100 0.00 0.00 0.01 0.53 3.20 4.54 5.96 7.64
200 0.00 0.00 0.01 0.56 3.16 4.44 5.67 7.54

ω = π/3 300 0.00 0.00 0.01 0.55 3.12 4.33 5.63 7.18
500 0.00 0.00 0.01 0.56 2.99 4.18 5.46 7.10
100 0.00 0.00 0.01 0.54 3.28 4.68 6.14 8.12
200 0.00 0.00 0.01 0.57 3.20 4.52 5.86 7.67

ω = 5π/6 300 0.00 0.00 0.01 0.57 3.14 4.41 5.66 7.10
500 0.00 0.00 0.01 0.55 3.03 4.23 5.52 7.33
100 0.00 0.00 0.02 0.56 3.29 4.68 5.92 7.93
200 0.00 0.00 0.01 0.56 3.18 4.47 5.87 7.64

ω = π/6 300 0.00 0.00 0.01 0.56 3.14 4.41 5.61 7.32
500 0.00 0.00 0.01 0.56 3.06 4.28 5.60 7.21
100 0.00 0.00 0.01 0.51 3.08 4.33 5.70 7.33

Full 200 0.00 0.00 0.01 0.47 2.86 4.08 5.33 6.97
Cointe- 300 0.00 0.00 0.01 0.45 2.74 3.86 5.06 6.76
gration 500 0.00 0.00 0.01 0.42 2.66 3.76 4.90 6.53
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