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ITERATES OF MAPS WHICH ARE NON-EXPANSIVE
IN HILBERT’S PROJECTIVE METRIC

Jeremy Gunawardena and Cormac Walsh

The cycle time of an operator on Rn gives information about the long term behaviour
of its iterates. We generalise this notion to operators on symmetric cones. We show that
these cones, endowed with either Hilbert’s projective metric or Thompson’s metric, satisfy
Busemann’s definition of a space of non-positive curvature. We then deduce that, on a
strictly convex symmetric cone, the cycle time exists for all maps which are non-expansive
in both these metrics. We also review an analogue for the Hilbert metric of the Denjoy–
Wolff theorem.

Keywords: Hilbert geometry, Thompson’s part metric, non-expansive map, symmetric cone,
cycle time, topical map, iterates

AMS Subject Classification: 47H09, 53C60

1. INTRODUCTION

Let (X, d) be a metric space. A map F : X → X is said to be non-expansive if
d(F (x), F (y)) ≤ d(x, y) for all x, y ∈ X. In studying such maps, one is typically
interested in the asymptotic behaviour of their iterates. In the special case when X
is a normed space, a useful description of this behaviour is given by the cycle time
of F , which is defined to be

χ(F ) := lim
i→∞

F i(x0)
i

(1)

when the limit exists. Since F is assumed to be non-expansive, the cycle time
will of course be independent of the initial point x0. Kohlberg and Neyman have
shown [11] that if X is a Banach space, then χ(F ) exists for every non-expansive
map F : X → X if and only if the dual space X∗ has a Fréchet differentiable norm.

Rather than imposing conditions on the normed space, one can impose conditions
on the map. For example, in [9], several classes of maps are discussed, each of which
is non-expansive in the l∞ norm on Rn. For some of these classes, in particular the
so called min-max maps, it is known [8] that the cycle time always exists.

Relying as it does on the linear structure, the definition of cycle time in (1) only
applies when X is a normed space. We propose to extend the definition of cycle
time to another class of spaces, the symmetric cones. We do this by exploiting the
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fact that associated to each symmetric cone C of dimension m is a naturally defined
map log : C → Rm. The cycle time of an operator F : C → C can therefore be
defined by

χ(F ) := lim
i→∞

log F i(x0)
i

, (2)

where x0 is, as before, an arbitrary initial point. The log appearing in the definition
is appropriate because of the nature of the metrics we will be considering, those of
Thompson and Hilbert. Iterates of maps that are non-expansive in these metrics
tend to grow exponentially rather than linearly as in the case of normed spaces.
An illustration of this is that multiplication by a positive scalar is non-expansive in
both metrics. It is also worth noting that the symmetric cone Rm

+ endowed with the
Thompson metric is isometric to (Rm, l∞). Indeed, if F is a self map of Rm and F̃ is
its translation across to Rm

+ , then the cycle time of F defined by (1) will be identical
to that of F̃ defined by (2).

The layout of the paper is as follows. The relevant background definitions and re-
sults are recalled in Section 2. In Section 3, we establish some geometrical properties
of the Thompson and Hilbert metrics on symmetric cones. These are then used in
Section 4 to prove that, if F : C → C is non-expansive in one of these metrics, then
the limit points of log F i(x0)/i all lie in a face of a ball of a certain norm on Rm.
This is an exact analogue of the main Theorem in [11]. In Section 5, we restrict our
attention to a particular class of cone, the Lorentz cones. We show that the cycle
time exists for maps on such cones that are non-expansive in both the Thompson
and Hilbert metrics. In the final Section, we consider a different question concerning
iterates: that of convergence to a ray in the boundary of the cone.

2. PRELIMINARIES

A cone is a subset of a vector space that is convex, closed under multiplication by
positive scalars, and does not contain any complete line through the origin. In this
paper we consider only open cones in finite dimensional spaces. Associated with
each cone C ⊂ Rm is a partial ordering on Rm defined as follows: x ≤ y if and only
if y − x ∈ clC. In addition, there are the following two metrics. For each x ∈ Rm

and y ∈ C, define M(y, x) := inf{λ ∈ R : y ≤ λx}. Then Thompson’s part metric
on the cone is defined to be

dT (x, y) := log max
{

M(x, y),M(y, x)
}

and Hilbert’s projective metric is defined to be

dH(x, y) := log
(
M(x, y)M(y, x)

)
.

With respect to Thompson’s part metric, the cone C is a complete metric space.
Hilbert’s projective metric, however, is only a pseudo-metric: it is possible to find
two distinct points in C that are zero distance apart. Indeed it is not difficult to see
that dH(x, y) = 0 if and only if x = λy for some λ > 0. Thus dH is a metric on the
space of rays of the cone. For further details, see the monograph of Nussbaum [12].
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Let S be a cross section of C, that is S := {x ∈ C : φ(x) = 1}, where φ : Rm → R
is some linear functional that is positive with respect to the ordering induced by C.
Suppose that x and y are a pair of distinct points in S and define a and b to be the
points in the boundary of S such that a, x, y, and b are collinear and arranged in
this order along the line in which they lie. Then, it can be shown that the Hilbert
distance between x and y is given by the logarithm of the cross ratio of these four
points:

dH(x, y) := log
|bx| |ay|
|by| |ax| .

Indeed, this was the original definition of Hilbert, who defined the metric on bounded
convex open sets. If S is the open unit disk, the Hilbert metric is exactly the Klein
model of the hyperbolic plane.

Operators on cones which are non-expansive in both the Hilbert’s projective met-
ric and Thompson’s part metric arise quite naturally. For example, consider those
self maps of the cone that are both isotone with respect to the cone ordering and ho-
mogeneous of degree one. Recall that isotone means x ≤ y implies F (x) ≤ F (y) and
homogeneous of degree r means that F (λx) = λrF (x) for each x ∈ C and λ > 0.
Gunawardena and Keane [10] have called these maps topical. Topical maps are
non-expansive in both the Thompson and the Hilbert metrics. In fact this is a con-
sequence of a more general theorem [12] which states that if F is homogeneous of de-
gree r 6= 0 and isotone, then dH(Fx, Fy) ≤ |r|dH(x, y) and dT (Fx, Fy) ≤ |r|dT (x, y)
for all x, y ∈ C.

The Thompson and Hilbert geometries are both examples of a Finsler space [13].
The cone can be considered to be an m-dimensional manifold and the tangent space
at each point may be identified with Rm. If a norm

|v|Tx := inf{α > 0 : −αx ≤ v ≤ αx},

is defined on the tangent space at each point x ∈ C, then the length of any C1 curve
φ : [a, b] → C can be defined to be

L(φ) :=
∫ b

a

|φ′(t)|Tφ(t) dt.

The Thompson distance between any two points is recovered by minimising over all
paths connecting the points:

dT (x, y) = inf{L(φ) : φ ∈ C1[x, y]},

where C1[x, y] denotes the set of all C1 paths φ : [0, 1] → C with φ(0) = x and
φ(1) = y. A similar procedure yields the Hilbert metric when the norm above is
replaced by the semi-norm

|v|Hx := M(v, x)−m(v, x).

Here M(v, x) is as before and m(v, x) := sup{λ ∈ R : v ≥ λx}. The Hilbert
geometry will be Riemannian only in the case of the Lorentz cone, which will be
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defined shortly. The Thompson geometry will be Riemannian only in the trivial case
of the 1-dimensional cone R+.

A particularly interesting class of cones is the class of those that are symmetric,
in other words both self dual and homogeneous. Recall that a cone C is self dual if
it equal to its dual

C∗ :=
{

x ∈ Rm : x · y > 0 for all y ∈ cl C \ {0}
}

.

A cone c is said to be homogeneous if its group of linear automorphisms acts tran-
sitively on it, in other words for any x, y ∈ C there is some linear automorphism g
of C such that g(x) = y.

An example of a symmetric cone is the Lorentz cone,

Λm := {(t,v) ∈ R× Rm−1 : |t| > |v|}, (3)

where |v| denotes the Euclidean norm of v. Another example is the set of positive
definite Hermitian matrices Herm(n,E), where n ∈ N and the set of entries E can
be either R, C, or H. The Octonians O are anomalous in this respect – the positive
definite elements of Herm(n,O) only form a symmetric cone when n = 3.

Given two cones C1 and C2 in linear spaces V1 and V2, we may form the product
cone C1 +C2 in the linear space V1⊕V2. If C1 and C2 are both symmetric then this
cone will also be. The class of symmetric cones is actually quite small. It can be
shown that all finite dimensional symmetric cones can be formed by taking products
of the two classes of examples mentioned above.

Our interest in symmetric cones stems from their close connection with Jordan
Algebras. A commutative algebra J over R with identity I is said to be a Jordan
algebra if x(x2y) = x2(xy) for all x, y ∈ J . A finite dimensional Jordan algebra is
called Euclidean if there is an inner product (·|·) such that (xy|z) = (y|xz) for all
x, y, z ∈ J .

The connection with symmetric cones is that the interior of the set of square
elements, int {x2 : x ∈ J}, in a Euclidean Jordan algebra is a symmetric cone.
Furthermore, every symmetric cone arises in this way: for each symmetric cone
C ⊂ Rm we can define a product on Rm such that Rm becomes a Euclidean Jordan
algebra with C = int {x2 : x ∈ Rm}.

For a reference on symmetric cones and Jordan algebras, see the book by Faraut
and Korányi [7].

By way of an example, if (λ,u) and (µ,v) are two points in a Lorentz cone, then
their Jordan product is

(λ,u) ◦ (µ,v) = (λµ + u·v, λv + µu).

For two points A and B in Herm(m,E), the Jordan product is

A ◦B =
1
2
(AB + BA).

In a product cone C1 + C2, two points (a, b) and (c, d) are multiplied according to
the rule

(a, b) ◦ (c, d) = (a ¦ c, b ? d),
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where ¦ and ? are the Jordan products associated with cones C1 and C2 respectively.
Jordan algebras are power associative, that is wiwj = wi+j for every element w of

the algebra and positive integers i and j. This means that the exponential function
can be defined using the usual formula:

exp(w) :=
∞∑

i=0

wi

i!
.

This function is a bijection between J and C. We denote its inverse by log.
Using these functions we may define the cycle time of an operator F acting on C:

χ(F ) := lim
i→∞

log F i(x0)
i

.

Note that if F is non-expansive in dT , then χ(F ) is independent of the initial point x0.
Gunawardena and Keane [10] found an example of a map on the symmetric cone R3

+

which is topical but for which the cycle time does not exist. Let fi be a sequence
drawn from [0, 1] such that

∑n
i=1 fi/n does not converge and define the following

trajectory in R3
+:

wn = (1, en,
∏n

i=1 efi).

Then the map
F (x) := inf

n∈N
{M(x, wn) wn+1}

is clearly topical. However F (wn) = wn+1 for each n ∈ N and so the third component
of log Fn(w0)/n is

∑n
i=1 fi/n, which we have assumed does not converge.

It is often useful to express an element of a Jordan algebra in terms of a Jordan
frame. Recall that an element c ∈ J is said to be an idempotent if c2 = c and such
an element is said to be primitive if cannot be written as the sum of two non-zero
idempotents. Also, a pair of idempotents c1 and c2 are said to be orthogonal if
c1c2 = 0 and a set of primitive orthogonal idempotents c1, c2, . . . , cn is said to be
complete if c1 + c2 + · · ·+ cn = I. Then, a Jordan frame is defined to be a complete
set of orthogonal primitive idempotents. It is a fact that any element of a Jordan
algebra can be expressed as a linear combination

x :=
n∑

i=1

λici,

of members of some Jordan frame {ci : 1 ≤ i ≤ n}. Moreover, if x is in the interior
of the cone of squares, then the coefficients {λi : 1 ≤ i ≤ n} will be positive. In
general, the frame will depend on the element in question. The exponential function
will be given by

exp(x) :=
n∑

i=1

eλici.

The distance, with respect to the Thompson and Hilbert metrics, between a point
x ∈ C and the unit can be expressed in terms of the coefficients of x in its Jordan
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frame:

dT (x, I) = max
i
{| log λi|}, (4)

dH(x, I) = max
i
{log λi} −min

i
{log λi}.

We say that a cone is strictly convex if any line segment contained in its boundary
is contained within a ray. We will show later that the cycle time exists for all topical
operators defined on a strictly convex symmetric cone. But first we will investigate
the properties of the Hilbert and Thompson geometries.

3. GEOMETRICAL PROPERTIES

Let (X, d) be a metric space. A metric line is the image of R under any mapping
φ : R→ X such that

d(φ(t), φ(s)) = |t− s|, for all t, s ∈ R. (5)

In addition, we call a metric line segment the image of a real interval under such a
mapping. Often we wish to consider not the set of all metric lines of X but only a
subset M . Suppose that for every distinct pair of points x, y ∈ X there is a unique
metric line l ⊂ M containing both x and y. For each t ∈ [0, 1], there is a unique
point w ∈ l such that

d(x, w) = td(x, y)
and d(w, y) = (1− t) d(x, y).

This point is denoted by (1 − t)x ⊕ ty. The metric space (X, d, M) is said to be
hyperbolic if

d

(
1
2
x⊕ 1

2
y,

1
2
x⊕ 1

2
z

)
≤ 1

2
d(y, z)

for each x, y, z ∈ X. This nomenclature was used by Reich and Shafrir [15]. Buse-
mann [3] has called such spaces non-positively curved.

The images of the following mappings are natural candidates to be considered
special metric lines in a symmetric cone with Thompson’s metric:

φ(t) := exp(t log(x)) = xt.

To have the correct parameterisation, we must have that dT ( I, x) = 1. It is obvious
from expression (4), that (5) holds for these curves. Each of the above lines passes
through the unit I and there is a unique line passing through each point (apart from
I). Using the homogeneity of the cone we may obtain a set MT of metric lines such
that there is a unique line connecting any distinct pair of points. This set of lines
will be invariant under the action of the automorphisms of the cone.

Note that if y is a scalar multiple of x, then yt is a scalar multiple of xt. It follows
that the expression above also defines curves in the projective space of the cone. We
take these to be the metric lines in Hilbert’s metric. Correct parameterisation now
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requires that dT ( I, x) = 1. As above, a set MH of metric lines may be obtained
using homogeneity. Again, there will be a unique line connecting any distinct pair
of points and the set of lines will be invariant under cone automorphisms.

The following observation is of fundamental importance.

Proposition 1. Both (C, dT ,MT ) and (S, dH ,MH) are hyperbolic metric spaces.

This proposition is a direct consequence of Corollary 1 below.

Lemma 1. For r in the range [0, 1], the mapping C → C : w 7→ wr is isotone.

P r o o f . The complex function z 7→ zr is a Pick function [6] and has integral
representation

zr =
sin πr

π

∫ ∞

0

( t

t2 + 1
− 1

t + z

)
tr dt + cos

πr

2
.

By writing w in terms of its Jordan frame we see that we may replace z in the
formula above with any w ∈ C. Since w 7→ w + It is isotone and both w 7→ w−1

and w 7→ −w are antitone (order inverting), the integrand is isotone in w. The
conclusion follows. 2

Remark 1. This proof follows that of Bhagwat and Subramanian [2], where the
result was stated for bounded positive Hermitian operators on a Hilbert space.

Corollary 1. For all r ∈ [0, 1], and x, y, z ∈ C,

dT ((1− r) x⊕ ry, (1− r)x⊕ rz) ≤ rdT (y, z)
dH((1− r) x⊕ ry, (1− r)x⊕ rz) ≤ rdH(y, z).

P r o o f . Since the cone C is homogeneous, x may be taken to be I without loss
of generality. Observe that (1 − r) I ⊕ ry = yr. The map C → C : w 7→ wr is
isotone by the lemma above. Since it is also homogeneous of degree r, we have that
dT (yr, zr) ≤ rdT (y, z) and dH(yr, zr) ≤ rdH(y, z) for all y, z ∈ C using a result
stated previously. 2

Remark 2. Corach et al [5] prove this result using different means for the Thomp-
son metric on the cone of positive elements of a C∗-algebra.

Lemma 2. The mapping C → Rm : w 7→ log w is isotone.

P r o o f . We proceed as in the proof of the previous lemma, this time using the
formula

log w =
∫ ∞

0

dt

(1 + t)t

(
I− (1 + t)( I+ wt)−1

)
.

Again the integrand is isotone in w for each t ∈ (0,∞) and the conclusion follows.2
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Corollary 2. For each x, y ∈ C, we have that

dT (x, y) ≥ | log x− log y|TI
and dH(x, y) ≥ | log x− log y|HI .

P r o o f . Write δ := dT (x, y). Then e−δx ≤ y ≤ eδx. Since the log operator is
isotone,

−δ I+ log x ≤ log y ≤ δ I+ log x.

Subtracting log x we find that

−δ I ≤ log y − log x ≤ δ I

which is equivalent to | log y − log x|TI ≤ δ.
It is not hard to show that the Hilbert distance may be expressed in terms of the

Thompson distance as follows:

dH(x, y) = 2 inf
λ>0

dT (λx, y), for x, y ∈ C.

The infinitesimal form of this is

|V |HI = 2 inf
λ∈R

|V + λ I|TI , for V ∈ Rm.

The second inequality of the corollary can now be deduced by applying the first to
dT (λx, y) and then taking the infimum over λ. 2

Remark 3. Using a different method, Corach et al [4] derive this inequality for
the Thompson metric on the cone of positive elements of a C∗-algebra.

Remark 4. The inequalities of Corollary 2 may be seen to be a limiting case of
the those of Corollary 1. Take x to be I and consider what happens as r → 0. Using
d
dt wt

∣∣
0

= log w, we see that

dT (yr, zr)
r

→ | log y − log z|TI .

Corollary 1 implies that this quantity is less than dT (y, z). The case with the Hilbert
metric is similar.

4. ITERATES OF NON–EXPANSIVE MAPS

Let f be a linear functional on the tangent space at a point w ∈ C. Taking the norm
| · |Tw on this tangent space, we define the norm of f in the usual way to be

|f |Tw := sup{f(V ) : |V |Tw = 1}.
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Note that if |f |Tw = 1 then f(V ) ≤ |V |Tw for all tangent vectors V at w. If instead
we take the seminorm | · |Hw on the tangent space, we obtain a seminorm |f |Hw :=
sup{f(V ) : |V |Hw = 1}.

The following theorem is an analogue of a result of Kohlberg and Neyman [11].
Their result applies in the case when the metric is a norm, however the property of
the Hilbert and Thompson metrics given in Corollary 2 above is actually sufficient
to establish the result. Our method of proof is a modification of that of Plant and
Reich [14] who also considered the normed space case.

Theorem 1. Let C be a symmetric cone and let F : C → C be non-expansive
with respect to Thompson’s metric dT . Then, for each w ∈ C, there exists a linear
functional f on the tangent space of C at w such that |f |Tw = 1 and

lim
n→∞

f

(
log Fnw

n

)
= lim

n→∞

∣∣∣∣
log Fnw

n

∣∣∣∣
T

w

= inf
n∈N

dT (w, Fnw)/n.

P r o o f . For each k ∈ N, write ak := dT (F kw, w). For k, i ∈ N,

dT (F k+iw, w) ≤ dT (F k+iw,F iw) + dT (F iw,w)
≤ dT (F kw,w) + dT (F iw, w)

and hence the sequence ak is sub-additive. It follows that limk→∞ ak/k exists and
equals L := infk∈N ak/k. Plant and Reich show that sub-additivity also implies that,
for any p ∈ N and ε > 0, we can find np > p such that

anp − anp−m

m
≥ L− ε, for all m < p.

For each n ∈ N, there exists a linear functional fn such that |fn|Tw = 1 and
fn(log Fnw) = | log Fnw|Tw. Now, for any m,n ∈ N with n ≥ m,

fn(log Fnw − log Fmw) ≤ | log Fnw − log Fmw|Tw
≤ dT (Fnw, Fmw)
≤ dT (Fn−mw,w).

Also fn(log Fnw) = | log Fnw|Tw = dT (Fnw,w). Thus, for any p ∈ N,

fnp(log Fmw) ≥ (L− ε)m, for all m < p.

Let f be the limit of some subsequence of {fnp : p ∈ N}. Then |f |Tw = 1 and
f(log Fmw) ≥ (L− ε)m for all m ∈ N. Since ε is arbitrary, f(log Fmw) ≥ Lm. We
have

L = lim
m→∞

| log Fmw|Tw
m

≥ lim
m→∞

f

(
log Fmw

m

)
≥ L.

2

A similar result holds for the Hilbert metric.
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5. CYCLE TIMES OF TOPICAL OPERATORS

In this section we specialise to the case of the Lorentz cones Λm defined by (3).
These are interesting as they are the only examples of strictly convex symmetric
cones.

Theorem 2. Let F : Λm → Λm be non-expansive in both the Thomson metric
and Hilbert’s projective metric. Then the cycle time χ(F ) exists.

P r o o f . The unit of the Jordan algebra associated with the Lorentz cone is I =
(1,0). The balls of radius r about the origin of the norms | · |TI and | · |HI are,
respectively,

{(t,x) : |t|+ |x| ≤ r}
and {(t,x) : |x| ≤ r/2}.

By Theorem 1, there exists a linear functional f such that |f |TI = 1 and

νT := lim
n→∞

f

(
log Fn I

n

)
= lim

n→∞

∣∣∣∣
log Fn I

n

∣∣∣∣
T

I
.

From the shape of the balls it is clear that the set ST := {V ∈ Rm : |V |TI = f(V ) =
νT } must take one of the following three forms: either it contains a single point
±νT I, or a single point (0,x) where |x| = νT , or a line segment [±νT I, (0,x)] again
with |x| = νT . Since the sequence n−1 log Fn I is norm bounded, it must have an
accumulation point.

F is also non-expansive in dH and so there exists a linear functional g such that
|g|HI = 1 and

νH := lim
n→∞

g

(
log Fn I

n

)
= lim

n→∞

∣∣∣∣
log Fn I

n

∣∣∣∣
H

I
.

The set SH := {V ∈ Rm : |V |HI = g(V ) = νH} is of the form {(0,y) + λ I : λ ∈ R}
where |y| = νH/2. The set of accumulation points of n−1 log Fn I must lie within
one of these lines. Since these lines cannot be parallel to the line segment ST , there
can be at most one accumulation point and so the limit exists. 2

6. THE DENJOY–WOLFF RESULT

In 1926, Denjoy and Wolff independently proved the following theorem. Let ∆ be
the open unit disk of the complex plane and suppose F : ∆ → ∆ is holomorphic and
has no fixed point. Then there exists a point p in the boundary of ∆ such that the
iterates Fn of F converge to p uniformly on compact subsets of ∆. A connection
between holomorphic and non-expansive maps had been made earlier by Pick who
observed that holomorphic self maps of ∆ are non-expansive in the Poincaré metric
on ∆. In fact the Denjoy–Wolff result holds even if F is merely required to be
non-expansive rather than holomorphic [16].

A contraction on a metric space (X, d) is a map F : X → X such that d(F (x), F (y))
< d(x, y). Beardon [1] proved the following theorem.
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Theorem 3. Let (X, d) be a metric space embedded in a compact Hausdorff topo-
logical space X in such a way that X is open and dense in X. Suppose that for all
sequences {xn} and {yn} in X converging respectively to distinct points x and y in
X −X, we have that

d(xn, yn)−max[d(xn, w), d(yn, w)] →∞

for all w ∈ X. Let F : X → X be a contraction with respect to d. Suppose that F
is the point-wise limit of a sequence of contractions with fixed points in X. Then
the iterates Fn converge locally uniformly on X to some point in X.

He deduced the following corollary.

Corollary 3. Let D be a bounded strictly-convex open subset of Rk and let F :
D → D be a contraction with respect to the Hilbert metric dH on D. Then the
iterates Fn converge locally uniformly on D to some point in the Euclidean closure
of D.

A minor modification of Beardon’s proof allows a version of this corollary to be
established for maps which are non-expansive rather than contractions.

Theorem 4. Let D be a bounded strictly convex open subset of Rk and let F :
D → D be non-expansive with respect to dH . If F has no fixed point then its iterates
converge locally uniformly on D to some point in the boundary of D.

P r o o f . The key property of contractions used by Beardon is that if F is a
contraction, x ∈ X, and some subsequence of Fn(x) converges to ζ ∈ X, then
F (ζ) = ζ. Of course, this is not true if F is merely non-expansive. The property is
used to show that if the iterates of F do not converge locally uniformly to a point in
the interior, then each orbit accumulates only on the boundary. In the present case
this can be established using a result of Nussbaum [12] that states that if F : D → D
is non-expansive with respect to dH and has no fixed point in D, then for any x ∈ D,
the sequence Fn(x) is in any compact set at most a finite number of times. 2

(Received February 11, 2003.)
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