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ON THE COEFFICIENTS OF THE MAX-ALGEBRAIC
CHARACTERISTIC POLYNOMIAL AND EQUATION

Peter Butkovič

No polynomial algorithms are known for finding the coefficients of the characteristic
polynomial and characteristic equation of a matrix in max-algebra. The following are
proved: (1) The task of finding the max-algebraic characteristic polynomial for permutation
matrices encoded using the lengths of their constituent cycles is NP -complete. (2) The
task of finding the lowest order finite term of the max-algebraic characteristic polynomial
for a {0,−∞} matrix can be converted to the assignment problem. (3) The task of finding
the max-algebraic characteristic equation of a {0,−∞} matrix can be converted to that of
finding the conventional characteristic equation for a {0, 1} matrix and thus it is solvable
in polynomial time.
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1. DEFINITIONS AND KNOWN RESULTS

If we replace the operations of addition and multiplication in the real numbers by
taking the maximum of two numbers and by adding two numbers, we obtain the
so-called max-algebra which offers an attractive language to deal with problems
in automata theory, scheduling theory, and discrete event systems, see e. g. the
monographs of Baccelli, Cohen, Olsder and Quadrat [2], Cuninghame–Green [4] and
Zimmermann [9]. Significant effort has been devoted to building up a theory similar
to that of linear algebra, for instance to study systems of linear equations, eigenvalue
problems, independence, rank and dimension.

In this paper we deal with the max-algebraic characteristic polynomial (or, briefly
characteristic maxpolynomial) of a square matrix as defined in Cuninghame–Green [5]
and with some aspects of the max-algebraic characteristic equation as defined in [2].
Both these concepts are related to the minimal-dimensional realisation problem for
discrete-event dynamic systems [2] and the first one has also some interesting oper-
ational research interpretation (see the job rotation problem below). Since to our
knowledge no efficient method for finding the max-algebraic characteristic polyno-
mial and equation exists we study in this paper some questions related to these two
problems which can be solved in polynomial time.
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Let us denote a⊕b = max(a, b) and a⊗b = a+b for a, b ∈ R where R = R∪{−∞}.
The iterated product a ⊗ a ⊗ . . . ⊗ a, in which the letter a appears k-times will be
denoted by a(k). Let us extend the pair of operations (⊕,⊗) to matrices and vectors
in the same way as in conventional linear algebra. That is if A = (aij), B = (bij)
and C = (cij) are matrices or vectors over R of compatible sizes then C = A ⊕B
if cij = aij ⊕ bij for all i, j and C = A⊗B if cij =

∑⊕
k aik ⊗ bkj for all i, j.

For any set X and a positive integer n the symbol X(n, n) will denote the set of
all n×n matrices over X. The letter I stands for a square matrix of an appropriate
order whose diagonal entries are 0 and off-diagonal ones are −∞. By a principal
submatrix of A = (aij) ∈ R(n, n) we understand as usual any matrix of the form




ai1i1 ai1i2 . . . ai1ik

ai2i1 ai2i2 . . . ai2ik

...
...

...
aiki1 aiki2 . . . aikik




where 1 ≤ i1 < i2 < . . . < ik ≤ n. This matrix will be denoted by A(i1, i2, . . . , ik).
The assignment problem for an n×n matrix A is the task of selecting n entries of

the matrix, one from each row and from each column so that their sum is maximal.
The selection of n such entries is fully described by a permutation, say π, of the set
N = {1, . . . , n}. Let us denote by Pn the set of all permutations of N . Then the
assignment problem is the task of finding a permutation π ∈ Pn which maximises∑n

i=1 ai,π(i). The quantity

max
π∈Pn

n∑

i=1

ai,π(i) (1)

will be called the optimal assignment problem value (for A).
The max-algebraic permanent of A = (aij) ∈ R(n, n) is defined as an analogue

of the classical one:

maper(A) = Σ⊕π∈Pn
w(A, π) (2)

where

w(A, π) = Π⊗i∈Nai,π(i).

In conventional notation maper(A) = maxπ∈Pn

∑
i∈Nai,π(i), thus the max-algebraic

permanent of A is the optimal assignment problem value for A. There are a num-
ber of efficient solution methods for finding this value, one of the best known is the
Hungarian method of computational complexity O(n3), see for instance Ahuja et al
[1].

The max-algebraic characteristic polynomial of the matrix A = (aij) ∈ R(n, n)
has been defined in Cuninghame–Green [5] as

χA(x) = maper(A⊕ x⊗ I),
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that is the max-algebraic permanent of the matrix



a11 ⊕ x a12 . . . a1n

a21 a22 ⊕ x . . . a2n

...
...

...
an1 an2 . . . ann ⊕ x.


 .

It follows from this definition that χA(x) is of the form

δ0 ⊕ δ1 ⊗ x⊕ . . .⊕ δn−1 ⊗ x(n−1) ⊕ x(n) (3)

or, briefly
∑⊕

i=1,...,n δi⊗x(i), where δn = 0 and, by convention, x(0) = 0. It has been
proved in Cuninghame–Green [5] that

δk = Σ⊕B∈Ak
maper(B) (4)

where Ak is the set of all principal submatrices of A of order n − k. Hence δ0 =
maper(A) and δn−1 = max(a11, a22, . . . , ann). Obviously, δk = −∞ if all B ∈ Ak

have maper(B) = −∞ in which case the term δk ⊗ x(k) is omitted from χA(x) by
convention. Note that χA(x) may reduce to just x(n), and that χA(x) is not affected
by a simultaneous permutation of the rows and columns of A. More details can be
found in Butkovič and Murfitt [3].

If for some k ∈ {0, . . . , n}

δk ⊗ x(k) ≤ Σ⊕i 6=kδi ⊗ x(i)

holds for all x ∈ R then the term δk⊗x(k) is called inessential, otherwise it is called
essential. Hence

χA(x) = Σ⊕i 6=kδi ⊗ x(i)

holds for all x ∈ R if δk ⊗ x(k) is inessential, and therefore inessential terms may be
ignored if χA(x) is considered as a function.

Note that although maper(B) can easily be found for any matrix B, δk cannot
be computed from (4) efficiently since the number of matrices in Ak is

(
n
k

)
.

One of the motivations for investigating the max-algebraic characteristic equation
and characteristic polynomial is related to the following two combinatorial optimi-
sation problems:

OPTIMAL AP-SUBMATRIX (OAPSM). Given a matrix A ∈ R(n, n) and k ∈
{1, . . . , n}, find the biggest optimal assignment problem value of a k × k submatrix
of A.

OPTIMAL AP-PRINCIPAL SUBMATRIX (PRINCIPAL OAPSM).
Given A ∈ R(n, n) and k ∈ {1, . . . , n}, find the biggest optimal assignment problem
value of a k × k principal submatrix of A.

Although it is not difficult to solve OAPSM, to the author’s knowledge no poly-
nomial method is known for PRINCIPAL OAPSM. In Butkovič and Murfitt [3] a
polynomial method for finding all essential terms of a max-algebraic characteristic
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polynomial was presented. It follows from (4) that in the case when all terms of
the max-algebraic characteristic polynomial are essential this method also solves the
PRINCIPAL OAPSM.

There is also a practical managerial motivation for the study of OAPSM which we
call the job rotation problem: Suppose that a company with n employees requires
these workers to swap their jobs (possibly on a regular basis) in order to avoid
exposure to monotonous tasks (for instance manual workers at an assembly line or
ride operators in a theme park). It may also be required that to maintain stability
of service only a certain number of employees, say k (k < n), actually swap their
jobs. With each pair old job - new job a coefficient may be associated expressing the
cost (for instance for an additional training) or the preference of the worker to this
particular change. Let us denote the matrix of these coefficients as A. So the aim is
to select k employees and to suggest a plan of the job changes between them so that
the sum of the coefficients corresponding to these changes is maximal. This task
leads to finding a k × k principal submatrix of A for which the optimal assignment
problem value is maximal (the diagonal entries can be set to +∞ or −∞ to avoid
an assignment to the same job).

The definition of the max-algebraic characteristic equation is motivated by that
in Baccelli et al [2]: Let π ∈ Pn and ν ∈ R. Then P+

n [P−n ] stands for the set of
even [odd] permutations of the set Pn and

p+(A, ν) = ‖ {π ∈ P+
n ;w(A, π) = ν} ‖,

p−(A, ν) = ‖ {π ∈ P−n ;w(A, π) = ν} ‖.

The max-algebraic characteristic equation of the matrix A is

λ(n) ⊕ Σ⊕k∈Jcn−k ⊗ λ(n−k) = cn−1 ⊗ λ(n−1) ⊕ Σ⊕
k∈J̄

cn−k ⊗ λ(n−k)

where for k = 1, . . . , n

cn−k = max

{
ν;

∑

B∈Ak

p+(B, ν) 6=
∑

B∈Ak

p−(B, ν)

}
,

J = {j; dn−j > 0} , J̄ = {j; dn−j < 0}

dn−k = (−1)k

( ∑

B∈Ak

p+(B, cn−k)−
∑

B∈Ak

p−(B, cn−k)

)
.

Note that if k ∈ {1, . . . , n} and maper(B) = −∞ for all B ∈ Ak then the term
cn−k ⊗ λ(n−k) does not appear on either side of the equation.

If A = (aij) ∈ R̄(n, n) then D(A) will denote the digraph with the node set
{1, . . . , n} and arc set {(i, j); aij is finite}. Note that the max-algebraic charac-
teristic equation plays a crucial role in investigating max-algebraic discrete-event
dynamic systems [2].
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2. NEW RESULTS

The task of finding the lowest order term in the max-algebraic characteristic poly-
nomial of a matrix A is equivalent to the task of finding the maximal value of k for
which there is a k× k principal submatrix B of A with finite maper(B). It is easily
seen that this is equivalent to each of the following combinatorial problems:

(A) (By replacing −∞ by 1 and finite elements by 0). Given a 0−1 matrix A, find
the maximal value of k for which A contains a k× k principal submatrix with
k independent zeros (that is k zeros no two of which are taken either from the
same row or the same column).

(B) (After swapping 0’s and 1’s in (A)) Given a 0− 1 matrix A, find the maximal
value of k for which A contains a k×k principal submatrix whose conventional
permanent is non-zero.

In what follows the letter T stands for the set {−∞, 0}. Obviously, every (finite)
coefficient of a max-algebraic characteristic polynomial of a matrix from T (n, n) is 0.

Theorem 1. If A ∈ T (n, n) is a permutation matrix given by the list of lengths
of constituent cycles and k ∈ {1, . . . , n} then the task of deciding whether δk is 0
or −∞ is NP -complete. Hence the task of finding the max-algebraic characteristic
polynomial for permutation matrices encoded using the lengths of their constituent
cycles is NP -complete.

P r o o f . Suppose that {`1, `2, . . . , `s} is the list of the lengths of constituent cycles
of the matrix A. Thus A is the permutation matrix corresponding to the permuta-
tion

π = π1 ◦ π2 ◦ . . . ◦ πs

where π1, π2, . . . , πs are cycles of the lengths `1, `2, . . . , `s. Since the max-algebraic
characteristic polynomial is not affected by simultaneous permutations of the rows
and columns, it can be assumed that A = blockdiag(A1,A2, . . . ,As) where each of
Aj is of the form

Aj =




· 0 · · · ·
· · 0 −∞ ·
· · · ·
· −∞ · · ·
· · 0
0 · · · · ·




.

Clearly, B is a principal submatrix of A with maper(B) = 0 if and only if

B = blockdiag (Ai1 ,Ai2 , . . . ,Air )

where {i1, i2, . . . , ir} ⊆ {1, . . . , s}.
Let k ∈ {1, . . . , n}. Then δn−k = 0 ⇔ there is a k×k principal submatrix B of A

with maper(B) = 0 ⇔ k = `i1 + `i2 + . . . + `ir for some {i1, i2, . . . , ir} ⊆ {1, . . . , s}.
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Hence if there is a polynomial-time algorithm for deciding whether δn−k = 0 for
k ∈ {1, . . . , n} then there is also a polynomial-time algorithm for solving the problem:

Given k and `i, i ∈ S = {1, . . . , s}, is there a set R ⊆ S such that k =
∑

i∈R`i?
This problem is the 0 − 1 KNAPSACK which is NP -complete [7]. This completes
the proof. 2

Remark. (Klinz [6]) It is well known that 0 − 1 KNAPSACK is solvable by
pseudopolynomial algorithms, that is algorithms polynomial in L =

∑
i∈S`i. It is

therefore clear that if the consituent cycles are given as sequences of nodes (and
hence the input of A has size L = n) then any such algorithm is polynomial in n
and decides whether δn−k = 0 for a k ∈ {1, . . . , n}.

It may be useful to see that the problem of finding the max-algebraic characteristic
polynomial has a very natural graph-theoretic interpretation:

Theorem 2. If A ∈ T (n, n) then δn−k = 0 if and only if the following holds: In
the digraph D(A) there is a set of k nodes which is the union of the sets of nodes
of node-disjoint cycles in D(A).

P r o o f . δn−k = 0 ⇔ there is a matrix B = A(i1, i2, . . . , ik) with maper(B) =
0 ⇔ there exists a permutation π of the set {i1, i2, . . . , ir} such that

aipπ(ip) = 0 (p = 1, . . . , k).

Let π = π1 ◦π2 ◦ . . . ◦πq be a decomposition of π to cyclic permutations. Each of
π1, π2, . . . , πq determines a cycle in D(A) and all these cycles are pairwise disjoint.

Conversely, if the set of nodes I = {i1, . . . , ik} is a union of q pairwise node-
disjoint cycles then these cycles define cyclic permutations π1, π2, . . . , πq and π =
π1 ◦ π2 ◦ . . . ◦ πq is a permutation of the set I satisfying aipπ(ip) = 0 (p = 1, . . . , k).
Hence if B = A(i1, i2, . . . , ik) then maper(B) = 0 and so δn−k = 0. The theorem
statement follows. 2

Theorem 3. If A ∈ T (n, n) then the biggest value of k for which δn−k = 0 is
n + maper(A⊕ (−1)⊗ I) and thus it can be determined using O(n3) operations by
solving the assignment problem for the matrix A⊕ (−1)⊗ I.

P r o o f . Let us denote K = {k; δn−k = 0} and k0 = maxK. If A ∈ T (n, n) then
all finite δn−k are 0, thus in the conventional notation χA(x) = maxk∈K(n − k)x.
Therefore, for x < 0 there is

χA(x) = x ·min
k∈K

(n− k) = (n− k0) x

and thus χA(−1) = k0 − n from which the result follows. 2

Corollary. The problems (A) and (B) above are solvable using O(n3) operations.
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Theorem 4. If A ∈ T (n, n) then the max-algebraic characteristic equation for A
can be found in polynomial time.

P r o o f . If A ∈ T (n, n) then all finite cn−k are 0. Note that if k ∈ {1, . . . , n} and
maper(B) = −∞ for all B ∈ Ak then the term cn−k ⊗ λ(n−k) does not appear on
either side of the equation. If B = (bij) ∈ T (n, n) then p+(B, 0) is the number of
even permutations which select only zeros from B. Let us denote the matrix (ebij ) as
eB. This matrix is zero-one, zeros corresponding to −∞ in B and ones corresponding
to zeros in B. So p+(B, 0) is the number of even permutations which select only
ones from eB. Similarly for p−(B, 0). Since eB is zero-one, all terms in the standard
determinant expansion of eB are either 1 (if the corresponding permutation is even
and selects only ones) or −1 (if the corresponding permutation is odd and selects
only ones) or 0 (otherwise). Hence det eB = p+(B, 0)− p−(B, 0). Since dn−k in the
definition of the max-algebraic characteristic equation can be written as

dn−k = (−1)k
∑

B∈Ak

(
p+(B, cn−k)− p−(B, cn−k)

)
,

it follows that dn−k = (−1)k
(∑

B∈Ak
det eB

)
which is the coefficient at λk of the

conventional characteristic polynomial of the matrix eA. This characteristic poly-
nomial can be found in polynomial time (van Leeuwen [7]).

A matrix A = (aij) is called diagonally dominant [strictly diagonally dominant]
if the identity is an optimal permutation [unique optimal permutation] to the as-
signment problem for A and it is called bi-diagonal if aij is finite if and only if
|i− j| = 1.

For a given sequence {gr; r = 1, . . . , 2n−1}, n ≥ 2, the Hankel matrix is the n×n
matrix H = (hij) having hij = gi+j−1:

H =




g1 g2 g3 . . . gn

g2 g3 . . . gn+1

g3 . . . gn+2

... . . .
...

gn . . . g2n−1




.

Note that Hankel matrices play an essential role in investigating the max-algebraic
discrete-event dynamic systems.

In the light of the previous results it may also be interesting to mention the
following properties proved by Murfitt [8]. 2

Theorem 5. The max-algebraic characteristic equation [characteristic polynomial]
for the matrix A ∈ R̄(n, n) can be found in polynomial time if A is of one of the
following types:

– Strictly diagonally dominant [diagonally dominant],

– Hankel matrix corresponding to a strictly concave sequence;
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– Bi-diagonal.

Note that [strictly] diagonally dominant matrices include [strictly] Monge ma-
trices which in turn include Hankel matrices corresponding to [strictly] convex se-
quences.

(Received April 2, 2002.)
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