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SOLUBLE APPROXIMATION OF LINEAR SYSTEMS
IN MAX–PLUS ALGEBRA

Kataŕına Cechlárová and Ray A. Cuninghame–Green

We propose an efficient method for finding a Chebyshev-best soluble approximation to
an insoluble system of linear equations over max-plus algebra.
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1. INTRODUCTION

It is well-known [1, 4] that the structure of many discrete-event dynamic systems
may be represented by square matrices A over the max-plus semiring

< = ({−∞} ∪R,⊕,⊗) = ({−∞} ∪R,max, +).

For example, if the initial event-times of such a system are represented by a vector
s, then the event-times after r stages are given by the rth term of the orbit

{A(r) ⊗ s(r = 1, 2, . . .)} where A(r) = A⊗A⊗ . . .⊗A(r-fold).

The reachability problem asks whether s can be chosen so that the orbit contains
a given vector b. Clearly, the answer is affirmative if and only if event-times b can
be achieved after one stage from suitable previous event-times, so algebraically the
reachability problem produces the linear-equations problem: to solve A⊗ x = b.

In a practical situation, the data may be such that an exact solution is not
possible. In [4] it was shown how to find the maximum solution to the inequality
A ⊗ x ≤ b – the so-called principal solution – from which may be inferred the
Chebyshev-least perturbation of b necessary to make the system A⊗x = b soluble.
Some necessary facts relevant to this are reviewed in the next section.

In [5], the same problem was solved for the related algebraic system fuzzy algebra.
The question of achieving solubility by modifying the matrix A was examined for
fuzzy algebra in [2], while for both fuzzy algebra and < the search for solubility by
omitting equations was shown in [3] to lead to an NP-complete problem.
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In the present paper, we consider how solubility may be achieved for a system
A ⊗ x = b over < if both A and b may be perturbed. Specifically, we seek a
Chebyshev-least perturbation, consistent with solubility, of the matrix [A,b].

2. PRELIMINARIES

In the system <, we write a(r) to denote the r-fold product a ⊗ . . . ⊗ a. Since the
operation ⊗ represents arithmetical addition, a(r) has the value ra. a(−1) is the
multiplicative inverse in <, hence a(−1) = −a.

The system < is embeddable in the self-dual system

= = ({−∞} ∪R ∪ {+∞},⊕,⊗,⊕′,⊗′) = ({−∞} ∪R ∪ {+∞}, max, +,min, +)

where the operations ⊗,⊗′, representing arithmetical addition, differ only in that

−∞⊗+∞ = −∞, −∞⊗′ +∞ = +∞.

The set of all m by n matrices over = will be denoted by =(m, n), the set of all
m−vectors by =(m) and the operations ⊕,⊗ and ⊕′,⊗′ are extended to matrix
algebra in the usual way. Matrices will be denoted by upper-case italics and vectors
by lower-case bold letters.

For any matrix A = [aij ] ∈ =(m,n), the conjugate matrix is A∗ = [−aji] ∈
=(n,m) obtained by negation and transposition. We shall use the following proper-
ties of conjugation (compare [4, p. 5])

(A∗)∗ = A and (A⊗B)∗ = B∗ ⊗′ A∗. (1)

A set of linear inequalities A ⊗ x ≤ b over < always possesses a solution. The
greatest is

xp(A,b) = A∗ ⊗′ b. (2)

This principal solution is calculated in = but lies in <. It is also the greatest
solution of A⊗ x = b if and only if any solution exists (see [4, p. 5] and [1, p. 112]).

For brevity, in what follows, the symbol [A,b] for A ∈ =(m,n),b ∈ =(m) repre-
sents the m × (n + 1) matrix obtained by appending column b as column n + 1 to
matrix A.

Definition 1. Given two matrices P, Q ∈ =(m,n), their Chebyshev distance will
be denoted by ∆(P,Q) = maxi,j |pij − qij |.

Definition 2. For two given integers m,n denote the family of all soluble max-plus
linear systems with n unknowns and m equations by

S(m,n) = {(A,b); A ∈ =(m,n),b ∈ =(m); system A⊗ x = b is soluble}.
A Chebyshev-best soluble approximation of an insoluble system

A⊗ x = b, A ∈ =(m,n),b ∈ =(m)
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is a pair A′ ∈ =(m,n),b′ ∈ =(m) such that (A′,b′) ∈ S(m,n) and

∆([A′,b′], [A,b]) ≤ ∆([A′′,b′′], [A,b])

for each pair (A′′,b′′) ∈ S(m,n).

Let us denote by

δ+(B ⊗ x;b) = max
i
{(B ⊗ x)i − bi}

and by
δ−(B ⊗ x;b) = min

i
{(B ⊗ x)i − bi}

the extreme positive and the extreme negative deviation of B⊗x from b, respectively.
In notation of max-plus algebra

δ+(B ⊗ x;b) = b∗ ⊗ (B ⊗ x)

and
δ−(B ⊗ x;b) = b∗ ⊗′ (B ⊗ x).

Note that if x̂ = xp(B,b) then δ+(B ⊗ x̂;b) = 0 and δ−(B ⊗ x̂;b) ≤ 0, moreover
δ−(B ⊗ x̂,b) = 0 if and only if the system B ⊗ x = b is soluble.

Theorem 1. Let A ∈ =(m,n) and b ∈ =(m) be such that (A,b) /∈ S(m,n); let
us define

δ = (δ−(A⊗ xp(A,b);b))(1/4). (3)

If B ∈ =(m,n) is such that ∆(A,B) ≤ δ, i. e.

δ(−1) ⊗A ≤ B ≤ δ ⊗A,

then ∆(B⊗x,b) ≥ δ for each x ∈ =(n), with equality only if (xp(A,b))∗⊗x = δ(2).

P r o o f . Let (xp(A,b))∗ ⊗ x = ε(2). This means that maxj{xj − (xp(A,b))j} =
ε(2), hence for each j xj ≤ ε(2) + (xp(A,b))j ; or in max-plus algebra notation
x ≤ ε(2) ⊗ xp(A,b). Two cases arise:

1. ε ≥ δ. Since B ≥ δ(−1) ⊗A, we have

δ+(B ⊗ x,b) = b∗ ⊗ (B ⊗ x) ≥
≥ δ(−1) ⊗ b∗ ⊗ (A⊗ x) =
= δ(−1) ⊗ (A∗ ⊗′ b)∗ ⊗ x = (by (1) and associativity of ⊗)
= δ(−1) ⊗ (xp(A,b))∗ ⊗ x = (by (2))
= δ(−1) ⊗ ε(2) ≥ δ.
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2. ε < δ. Since B ≤ δ ⊗A and x ≤ ε(2) ⊗ xp(A,b), we have

δ−(B ⊗ x,b) = b∗ ⊗′ (B ⊗ x) ≤
≤ b∗ ⊗′ (δ ⊗A⊗ ε(2) ⊗ xp(A,b)) =
= δ ⊗ ε(2) ⊗ b∗ ⊗′ (A⊗ xp(A,b)) = (by commutativity of

scalar multiplication)
= δ ⊗ ε(2) ⊗ δ(−4) < (by (3))
< δ(−1).

Hence either δ+(B ⊗ x,b) ≥ δ or δ−(B ⊗ x,b) < δ(−1) and so ∆(B ⊗ x;b) ≥ δ. 2

3. ALGORITHM APPROXIMATION

Input: Matrix A ∈ =(m, n), vector b ∈ =(m).

Output: A pair (A′,b′) ∈ S(m,n) with ∆([A,b], [A′,b′]) smallest possible.

Step 1. Find the principal solution xp(A,b) and δ := (∆(A⊗ xp(A,b),b))(1/4).

Step 2. x̂ := δ(2) ⊗ xp(A,b).

Step 3. For each row i with b∗i ⊗′ (A⊗ x̂)i = ε
(2)
i do (comment |εi| ≤ δ)

begin b′i := εi ⊗ bi; for all j do a′ij = ε
(−1)
i ⊗ aij end.

Example. Suppose the following matrix A and vector b are given.

A =




10 −1 11
9 11 5
5 0 2
1 −2 0


;b =




2
3
1
1


.

We compute successively

xp(A,b) =

(
−10 −9 −5 −1

1 −11 0 2
−11 −5 −2 0

)
⊗′




2
3
1
1


 =

(
−8
−8
−9

)
;A⊗ xp(A,b) =




2
3

−3
−7




so the Chebyshev error is ∆(A⊗ xp(A,b),b) = δ(4) = 8 and it is achieved in row 4.
Now,

x̂ =

(
−4
−4
−5

)
; A⊗ x̂ =




6
7
1

−3


; ε(2) =




4
4
0

−4


;A′ =




8 −3 9
7 9 3
5 0 2
3 0 2


;b′ =




4
5
1

−1


.

Theorem 2. Algorithm APPROXIMATION correctly finds in O(mn) steps a
Chebyshev-best soluble approximation of system A⊗x = b, A ∈ =(m,n),b ∈ =(m)
over max-plus algebra.

P r o o f . Notice, that for x̂ defined in the second step of the algorithm, δ+(δ(2) ⊗
A⊗xp(A, b); b) = δ(2), δ−(δ(2)⊗A⊗xp(A, b); b) = δ(−2), and hence ∆(Ax̂, b) = δ(2).
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Then, system A′⊗x = b′ is soluble, x̂ being a solution. Further, ∆([A,b], [A′,b′]) ≤
δ. Moreover, Theorem 1 shows that it is impossible to find a soluble system A′′⊗x =
b′′ with Chebyshev error 4([A, b], [A′′, b′′]) smaller than δ.

The complexity bound is trivial. 2

In conclusion, we recall [4, p. 5] the important property of xp(A,b) that no x can
have both

δ+(A⊗ x,b) ≤ 0 (i. e. A⊗ x ≤ b)

and
δ−(A⊗ x,b) > δ−(A⊗ xp(A,b),b) = δ(−4).

Setting x = δ(−2) ⊗ y, it follows that no y can have 4(A ⊗ y,b) < δ(−2) (see also
[6]). In other words, to produce a soluble approximation if only b may be perturbed
incurs at best a Chebyshev error double that incurred at best if both A and b may
be perturbed.
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