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RATIONAL ALGEBRA AND MM FUNCTIONS

Ray A. Cuninghame–Green

MM functions, formed by finite composition of the operators min, max and translation,
represent discrete-event systems involving disjunction, conjunction and delay. The paper
shows how they may be formulated as homogeneous rational algebraic functions of degree
one, over (max, +) algebra, and reviews the properties of such homogeneous functions,
illustrated by some orbit-stability problems.
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1. INTRODUCTION

In the theory of discrete dynamic systems, attention has focused recently on the
so-called MM functions, which are those constructible by a finite number of appli-
cations of the operators min, max and translation, representing systems involving
disjunction, conjunction and delay. This may be see as a development beyond earlier
studies of conjunctive systems using the well-known (max, +) algebra (Cuninghame-
Green [2]; Baccelli et al [1]), but some sacrifice of the intuitive algebraic properties
of (max, +) results when working in a system with three underlying operations.

However, the MM functions may, as discussed below, still be approached within
the context of (max, +) by using the fact that the operator min is itself expressible
rationally in that algebra. In this formulation, MM functions become rational alge-
braic expressions in which both numerator and denominator are homogeneous, the
degree of the numerator exceeding that of the denominator by unity. Manipulation
of such expressions closely follows the rules of elementary algebra. Illustrations are
given in the context of orbit stability.

2. NOTATION

Denote by < the (max+) semiring, see (Cuninghame-Green [2]; Baccelli et al [1]):
briefly, the elements of < are the real numbers IR with the binary operations max
and + notated as ⊕, ⊗ respectively. In some contexts, it is useful to augment < with
the element −∞, though this will not be done here. Iterated use of the ‘addition’
⊕ and of the ‘multiplication’ ⊗ are notated as Σ⊕ and

∏⊗ respectively, and j-fold
‘powers’ x ⊗ . . . ⊗ x by using a bracketed exponent: x(j). Thus x(j) equals the
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ordinary arithmetical product jx. This can be extended to any real values of j or
x, though for clarity all exponents are non-negative integers in examples. E. g.

2⊗ x1 ⊗ x
(2)
2 ⊕ 3⊗ x2 ⊗ x3 ⊕ x

(3)
1 ⊗ x3 (1)

denotes the function more conventionally written

max (x1 + 2x2 + 2, x2 + x3 + 3, 3x1 + x3) .

This notational system was originally developed because it gives many problems
of discrete mathematics the familiar character of linear and polynomial algebra and,
despite lacking an inverse for its ‘addition’ operation ⊕, it mimics many of the
properties of an algebraically complete field. In particular, (Cuninghame-Green and
Meijer [3]), any maxpolynomial Σ⊕j

(
aj ⊗ x(j)

)
in one variable possesses a unique

resolution into linear factors: β ⊗Π⊗r (x⊕ βr), with corners βr. E. g.,

2⊗ x(2) ⊕ 5⊗ x⊕ 7 = 2⊗ (x⊕ 2)⊗ (x⊕ 3).

Efficient (linear-time) algorithms exist for the (max, +)-algebraic composition of
such maxpolynomials, including resolution into linear factors, as shown in (Cuning-
hame-Green [4]).

3. SEVERAL VARIABLES

Ordinary arithmetical multiplication will be denoted by juxtaposition. If J ⊂ <N is
a finite set of (N -tuple) indices, the notation x(j), for x = (x1, . . . , xN ) and j ∈ J ,
will denote x(j1)

1 ⊗ . . . ⊗ x
(jN )
N , which equals the usual real inner product 〈x, j〉 =

j1x1 + . . . + jNxN . A term will mean a monomial aj ⊗ x(j), where {aj ∈ < | j ∈ J}
is a collection of coefficients indexed by J . No distinction is made between js = 0
and the simple absence of xs from the term. The degree of the term is j1 + . . .+ jN ,
which may be zero. A maxpolynomial (in several variables) is any term, or finite set
of terms combined using the associative operation ⊕ as in (1), or the operator Σ⊕.

4. INESSENTIAL TERMS

A term ak ⊗ x(k), with k ∈ J , is inessential in the maxpolynomial Σ⊕j∈Jaj ⊗ x(j) if

ak ⊗ x(k) ≤ Σ⊕j∈J\kaj ⊗ x(j), ∀x,

and strictly inessential if the foregoing inequality is strict. Evidently, any such term
could be deleted from the formal maxpolynomial without changing it as a function.
The following result was proved for the case N = 1 by Cuninghame-Green and
Meijer [3], but the proof adapts easily to the several-variable case.
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Theorem 1. The term ak ⊗ x(k), with k ∈ J , is inessential (respectively strictly
inessential) in the maxpolynomial Σ⊕j∈Jaj ⊗ x(j) iff ak lies in (respectively in the
interior of) the convex hypograph of the other {aj | j ∈ J \ k}.

The removal, if necessary, of inessential terms from a maxpolynomial thus amounts
to implementing a convex-hull routine. For e. g. N = 1 this can be done in linear time
by adapting the algorithm of Graham (Manber [7]). In fact, however, many standard
(max, +)-algebraic manipulations intrinsically do not generate strictly inessential
terms.

5. RATIONAL EXPRESSIONS

The group operation ⊗ is invertible. Double fraction bars, reminiscent of division,
will denote use of this inverse: P//Q = P −Q. Absolute values can thus be notated,
e. g.: | a − b | = (a//b) ⊕ (b//a). A rational expression is a maxpolynomial P or an
expression P//Q, where P , Q are maxpolynomials. For example:

(
2⊗ x

(2)
1 ⊕ 5⊗ x2 ⊗ x3

)
//

(
x

(2)
1 ⊕ 3⊗ x

(3)
2 ⊕ 1⊗ x2 ⊗ x3 ⊕ 2⊗ x1

)
(2)

In the obvious way, a rational expression induces a rational function from <N to
<. (Function and expression will not be distinguished notationally.)

Such functions admit a straightforward procedure for finding maxima and min-
ima. The following result was proved for N = 1 by Cuninghame-Green and Meijer
[3], but the proof adapts easily to several variables.

Theorem 2. Given the rational expression

R(x) = P (x)//Q(x) =
(
Σ⊕j∈Jaj ⊗ x(j)

)
//

(
Σ⊕j∈Kbj ⊗ x(j)

)
,

(i) If J ⊆ K then maxxR(x) ≤ maxj∈J(aj//bj), with equality if Q has no strictly
inessential terms.

(ii) If K ⊆ J then minxR(x) ≥ minj∈K(aj//bj), with equality if P has no strictly
inessential terms.

For example, the global maximum of the rational function (2) is max(2//0, 5//1)=4.

6. HOMOGENEOUS RATIONAL EXPRESSIONS

If all terms in a maxpolynomial P have the same degree r (say), the maxpolynomial
is homogeneous (of degree deg(P ) = r). In particular, a maxpolynomial which is
merely a constant is homogeneous of degree zero.

A rational expression R = P//Q is homogeneous if both P and Q are homoge-
neous, and its degree is then deg(R) = deg(P )−deg(Q). Examples of homogeneous
rational expressions are:

5; 3⊗ x1 ⊕ 2⊗ x3;
(
x1 ⊗ x

(2)
2 ⊕ x

(3)
4

)
// (x3 ⊕ 2⊗ x4) .
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7. COMPOSITION OF RATIONAL FUNCTIONS

For given r, a function from <N to <M is homogeneous rational of degree r if
it is componentwise so. Denote by Υ(N,M, r) the set of such functions. E. g.,
F ∈ Υ(3, 3, 1), where

F :



x1

x2

x3


 7→




2⊗ x1 ⊕−1⊗ x2(
3⊗ x1 ⊗ x2 ⊕ x

(2)
2

)
// (4⊗ x1 ⊕ 3⊗ x2)

4⊗ x2 ⊗ x3// (6⊗ x2 ⊕ x3)


 . (3)

The following lemma is straightforwardly proved.

Lemma 1. If θ ∈ Υ(N,L, r) and ψ ∈ Υ(L,M, s) then the composition ψ ◦ θ
∈ Υ(N,M, rs). Thus

(i) Υ(N,N, r) is closed under composition iff r equals 0 or 1.
(ii) Every Υ(N,M, r) is closed under the componentwise action of every ψ

∈ Υ(L, 1, 1).

8. MM FUNCTIONS

An MM function is any function obtained by the composition of a finite number of
the functions max,min and the translations {ma : x 7→ a⊗ x |x, a ∈ <}; the scalars
a will be called parameters. MM(N,M) will denote the set of functions from <N to
<M in which every component is an MM function. Now, clearly x⊕ y and a⊗ x are
homogeneous of degree 1. Moreover, the smaller of two numbers equals their sum
less the greater, whence

min(x, y) = x⊗ y//(x⊕ y),

which is also homogeneous of degree 1. Hence, using Lemma 1.

Theorem 3. MM(N,M) ⊂ Υ(N,M, 1), and every Υ(N,M, r) is closed under
the componentwise action of any MM function. Hence, every Υ(N,M, r) is a ⊕-
semimodule.

For example, F ∈ MM (3, 3), where

F :



x1

x2

x3


 7→




max(x1 + 2, x2 − 1)
max(min(x1, x2 − 1), x2 − 3)

min(x2 + 4, x3 − 2)


 (4)

Converting this to (max, +) and tidying, produces (3), lying in Υ(3, 3, 1).
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9. EIGENVECTORS

ξ ∈ <N and λ ∈ < are respectively eigenvector and eigenvalue for given F :
<N 7→ <N iff F(ξ) = λ⊗ ξ. They play a classical role in the stability of the
orbits

{
F[t](b) | t = 0, 1, . . . ; b ∈ <N

}
of a discrete dynamic process of which F is

the transfer function, where F[0](b) = b and F[t+1](b) = F ◦ F[t](b), t = 0, 1, . . .
If Fi, ξi are the ith components of F, ξ respectively, the eigenvector-eigenvalue
relations are thus Fi(ξ)//ξi = λ (i = 1, . . . , N). Hence ξ, and so λ, may in prin-
ciple be found by solving the set of simultaneous rational equations of the form
F1(x)//x1 = . . . = FN (x)//xN . In fact, these may be reduced to a single equation

Σ⊕i>1 [(xi ⊗ F1(x)//x1 ⊗ Fi(x))⊕ (x1 ⊗ Fi(x)//xi ⊗ F1(x))] = 0,

which expresses the condition

max
i>1

| (F1(x)//x1)− (Fi(x)//xi)| = 0.

Notice that if F ∈ Υ(N,N, 1), in particular if F ∈ MM(N,N), all the functions
equated in these relations are homogeneous of degree 0. The efficient determination
of zeros of homogeneous functions R with deg(R) = 0 is therefore a topic of central
interest.

10. ILLUSTRATION 1

To find, if existent, eigenvector and eigenvalue of F : (x1, x2) 7→[
min(max(x1 + 1, x2 − 1), x2)

max(min(x1 − 2, x2 + 3), x1 − 4)

]

=




(
1⊗ x1 ⊗ x2 ⊕−1⊗ x

(2)
2

)
// (1⊗ x1 ⊕ x2)

(
−6⊗ x

(2)
1 ⊕ 1⊗ x1 ⊗ x2

)
// (−2⊗ x1 ⊕ 3⊗ x2)


 .

On writing u for x1//x2, the condition F1(x)//x1 = F2(x)//x2 leads to

(1⊗ u⊕−1) //
(
1⊗ u(2) ⊕ u

)
=

(
−6⊗ u(2) ⊕ 1⊗ u

)
// (−2⊗ u⊕ 3) .

Cross-multiplying and resolving into linear factors, a zero must be found for

4⊗ (u⊕−2)⊗ (u⊕ 5)//u(2) ⊗ (u⊕−1)⊗ (u⊕ 7).

Evaluating this function at its corners as in (Cuninghame-Green, [4, 5]), shows
that it equals 4 at u = −1 and −8 at u = 5. Linear interpolation finds a zero at
u = 1, giving λ = −1 and eigenvector (1, 0).

11. CYCLE–TIME VECTOR

For F ∈ MM(N,N) and x ∈ <N the limit a, as t→∞, of t−1F[t](x) is independent
of x. This cycle-time vector (ctv) characterises the asymptotic orbit. If F∧ ∈
MM(N,N) is derived from F by setting all parameters to zero, it is not hard to
show
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Theorem 4. The ctv of F is a fixed point of F∧.

F may not have an eigenvector, but always has a ctv a as shown by Gaubert
and Gunawardena [6]. For x ∈ <N , define x[t] = F[t](x). The same authors show
that F always has a generalised eigenvector ξ satisfying, in our present notation,
ξ
[t]
i = a

(t)
i ⊗ ξi, ∀ (i = 1, . . . , N ; t ≥ 0), giving Fi

(
ξ[t]

)
//ξ

[t]
i = ai.

12. ILLUSTRATION 2

To find the ctv of F in (4), first apply Theorem 2 to (3):

F1(x)//x1 = (2⊗ x1 ⊕−1⊗ x2)//x1 ≥ 2.

Hence a1 ≥ 2 and similarly, −3 ≤ a2 ≤ −1 and a3 ≤ −2. So a1 > a2, a3 and
ξ
[t]
1 À ξ

[t]
2 , ξ[t]3 for large t. So, substituting in (4):

F1

(
ξ[t]

)
//ξ

[t]
1 =

(
ξ
[t]
1 + 2

)
//ξ

[t]
1 = 2,

whence a1 = 2 and similarly a2 = −1. Since thereby a3 < a2, it follows that
ξ
[t]
2 À ξ

[t]
3 and thence a3 = F3

(
ξ[t]

)
//ξ

[t]
3 = −2.

Theorem 4 is now readily verified for this example:

F∧(2,−1,−2) = (2,−1,−2).

(Received April 5, 2002.)
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