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CONSTRAINED STABILIZATION
OF A DYNAMIC SYSTEM : A CASE STUDY

F. Blanchini1, S. Cotterli, G. Koruza, S. Miani, R. Siagri
and L. Tubaro

In this work we consider the problem of determining and implementing a state feedback
stabilizing control law for a laboratory two-tank dynamic system in the presence of state and
control constraints. We do this by exploiting the properties of the polyhedral Lyapunov
functions, i. e. Lyapunov functions whose level surfaces are polyhedra, in view of their
capability of providing an arbitrarily good approximation of the maximal set of attraction,
which is the largest set of initial states which can be brought to the origin with a guaranteed
convergence speed.

We will first recall the basic theoretical background necessary for the scope and then we
will report and analyze the results of the practical implementation on a two-tank laboratory
system of a linear variable-structure and a quantized control law proposed in literature.
Finally an heuristic procedure for the determination of a static linear gain will be presented.

1. INTRODUCTION

In the practical implementation of state feedback control laws there are normally
several aspects which the designer has to keep in consideration and which impose
restrictions on the allowable closed loop behavior. For instance a certain robustness
of the closed loop system is desirable if not necessary to guarantee a stable func-
tioning under different operating conditions which might be for example caused by
effectively different set points, component obsolescence, neglected nonlinearities or
high frequencies modes. Another issue which has surely to be taken into account is
most often the presence of constraints on the control values and on the state vari-
ables. The former usually derives from saturation effects of the actuators whereas
the latter normally comes from the necessity of keeping the states in a region in
which the linearized model represents a good approximation of the real plant or
might even be imposed by safety considerations.

The constrained control stabilization is by itself a challenging matter and in this
context the designer can either analyze the effects of saturating a stabilizing control
law or he can include the constraints in the controller requirements. If stability is the

1Corresponding author.
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only matter of concern then the first approach is indeed the easiest, although this
advantage is balanced by the extremely restricted set of initial states which can be
asymptotically driven to the origin [9, 10], say the attraction set. Moreover if state
constraints and uncertainties have to be considered then the first approach shows up
its deficiencies so that the second approach appears definitely as the most preferable
one. In this second class there are several techniques which can be followed to purse
the desired performance specification while satisfying the imposed constraints and
among these one of the approaches which can be used to overcome these limitations
is that based on invariant regions [1, 2, 7, 8, 11, 12, 13, 15].

The key idea which lies behind this approach is that of determining a set of initial
conditions starting from which the state evolution can be brought to the origin while
assuring that no control and state constraint violation occur. This is quite a standard
approach and practically amounts to determining a candidate Lyapunov function for
the constrained system which can be made decreasing along the system trajectories
by a proper choice of the feedback control. Of course there is a certain freedom in
the choice of such Lyapunov functions. From the existing literature it turns out that
the class of quadratic functions has been the most investigated one mainly due to
the elegant and powerful results existing in this area. Although this class is well
established and capable of furnishing simple linear control laws, it is not perfectly
suited for constrained control synthesis problem due to its conservativity.

For this reason in the last years several authors [2, 5, 7, 12, 13, 15] have put their
attention on the class of polyhedral functions (say functions whose level surfaces are
polyhedrons in IRn) and the associated polyhedral invariant sets. These functions
have their strength in their capability of well representing linear constraints on state
and control variables while being representable by a finite number of parameters.

In this work we will focus on the problem of determining a state feedback stabiliz-
ing control law for a constrained dynamic laboratory system affected by structured
memoryless uncertainties. First the solution will be given in terms of polyhedral
Lyapunov functions and then we will discuss the issues connected with the imple-
mentation of two nonlinear control laws already proposed in literature.

In Section 2 we will report some preliminary definitions and in the following
section we will briefly report some known results concerning the constrained sta-
bilization of dynamic systems by means of polyhedral Lyapunov functions. Then,
based on these results, in Section 4 we will focus our attention on the determination
of stabilizing control laws whose application to the system under consideration will
be reported in Section 5. Finally in Section 6 we will report some final considerations
and the directions for further research in this area.

Schematically, the outline of the present paper will be the following:
– Definitions
– Brief summary of theoretical results on constrained control via polyhedral

invariant sets.
– Description of the linear variable structure and discontinuous control.
– Determination of a polyhedral Lyapunov function and implementation of the

cited control laws on a two-tank laboratory system.
– Analysis of the results and final considerations.
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2. DEFINITIONS

We will denote with conv(S) the convex hull of a set S ⊆ IRn. We will call C-set
a closed and convex set containing the origin as an interior point. Given a C-set
P ⊆ IRn we will denote with λP = {y = λx, x ∈ P} and with ∂P its border.
A C-set P will be said symmetric if x ∈ P implies −x ∈ P . In this work we will
be dealing with symmetric polyhedral C-sets which can be represented in terms of
their delimiting planes as

P = {x ∈ IRn : |Fix| ≤ 1, i = 1, . . . , s},

(each Fi represents an n-dimensional row vector) as well as by their dual represen-
tation

P = conv(v1, . . . , vk) = conv(V ),

in terms of vertex set V = {v1 v2 . . . vr}, which will be denoted by vert{P}. For
these sets it is possible to introduce a compact notation using component-wise vector
inequalities with which the set expression becomes

P = {x : |Fx| ≤ 1̄}

or, using the dual notation,

P = {x = V α, α ∈ IRr, α ≥ 0, ‖α‖1 ≤ 1},

where F is an s×n full column rank matrix having rows Fi and V is the full row rank
matrix having the vertices vi as column defined above, and 1̄ = [1 . . . 1]T represents
an s-dimensional unitary column vector.

It is known that every symmetric C-set P induces a norm ΨP (·) on IRn defined
as

ΨP (x) = min{λ : x ∈ λP}.
For a polyhedral set P = {x : |Fx| ≤ 1̄} the above expression can be simplified as

ΨP (x) = max
i
|Fix|

and in this case we will denote by I(x) the set of indexes for which |Fix| is maximum

I(x) = {i : |Fix| = ΨP (x)}. (1)

3. SET–INDUCED LYAPUNOV FUNCTIONS

In this section we will recall some of the results concerning polyhedral Lyapunov
functions and their use in the stabilization of uncertain linear dynamic time-invariant
systems in the presence of control and, possibly, state constraints. Consider a
continuous-time uncertain dynamic system of the form

ẋ(t) = A(w)x(t) + B(w)u(t) (2)
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where the state and control values are constrained to belong to the C-sets X ⊆ IRn

and U ⊆ IRp for every t ≥ 0 and the matrices A(w) and B(w) belong to the polytopes
of matrices

A(w) =
p∑

i=1

wiAi, B(w) =
p∑

i=1

wiBi.

The uncertainty w(t) is assumed to be piecewise continuous and such that

w ∈ W =

{
w :

p∑

i=1

wi = 1, wi ≥ 0

}
. (3)

For this system we want to provide a stabilizing control law and a region of
initial states starting from which the constraints are never violated for the closed
loop system’s motion for every possible uncertainty sequence, in other words we
want to provide a domain of attraction whose definition is now reported.

Definition 3.1. [4] The C-set S ⊂ X is a domain of attraction (with speed of
convergence β) for system (2) if there exists β > 0 such that for all x0 ∈ S there
exists a piecewise continuous control function u(·) : IR → U such that the trajectory
x(t) with initial condition x(0) = x0 corresponding to u(t) is such that

ΨS (x(t)) ≤ e−βtΨS (x(0)) (4)

for every possible w(t) as in (3). If we take β = 0, the set S is simply said to be
U -invariant [7].

If we temporarily assume that there is no uncertainty then it is immediate that
a first solution can be obtained by selecting a stabilizing linear static state feedback
control law u = Kx and then picking as set of initial states the ellipsoidal region
X0 = {x : xT Px ≤ d}, where P is the solution of the Lyapunov equation of the
closed loop system and d ≥ 0 is the maximal value such that X0 ⊂ (XK ∩ X),
being XK = {x : Kx ∈ U}. Unfortunately an inappropriate choice of the gain K
might result in a very small or either empty if uncertainties are considered) set of
attraction whereas we are normally interested in determining, given the constraint
sets X and U , the maximal set of initial states which can be asymptotically taken
to the origin.

One of the possible ways to proceed is that of trying to maximize the set of
attraction as done in [4]. The results contained in the above reference allow to
provide an arbitrarily close approximation of the maximal domain of attraction by
exploiting the relation existing between the original system (2) and its discrete-time
approximating system, the Euler Approximating System (EAS), which is defined as

x(k + 1) = [I + τA(w)] x(k) + τB(w)u(k), τ > 0. (5)

For this system, in the presence of control and state constraints, it is possible
to give a definition of domain attraction which is almost identical to the one given
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in the continuous-time case apart from the replacement of the constant β > 0 with
0 < λ ≤ 1 and the decreasing condition (4) which becomes

ΨS (x(k)) ≤ λkΨS (x(0)) . (6)

After these necessary definitions we are now able to summarize the main results
concerning the constrained control of continuous-time dynamic systems.

1. If there exists a C-set S which is a domain of attraction for (2) with a speed
of convergence β > 0 then for all β′ < β there exists τ > 0 such that the set S
is contractive for the EAS with λ′ = 1− τβ′.

2. If, for some 0 ≤ λ < 1, there exists a λ-contractive C-set P for the EAS (5)
then P is a domain of attraction for (2) with β = 1−λ

τ . Moreover, there exists
a Lipschitz feedback control function Φ : P → U assuring condition (4).

3. For every ε1, ε2 > 0 the set Sβ̄ (the largest domain of attraction in X for
(2) with speed of convergence β̄ > 0) can always be approximated with a
polyhedral C-set P such that (1 − ε1)Sβ̄ ⊂ P ⊂ X and such that P is a
domain of attraction for (2) with speed of convergence β, with β̄− ε2 < β < β̄.
Moreover the control can be expressed in a feedback form u = Φ(x) where Φ
is a Lipschitz function on P .

4. It is possible to determine such polyhedral functions by means of a numerical
procedure which can be applied to the EAS of (2).

In simpler words the meaning of the above results is the following: for a given
β>0 we can get an arbitrarily close approximation of the largest domain of attraction
(with speed of convergence β) for (2) by applying the numerical procedure suggested
in [4] to the EAS (5) for an appropriate choice of the parameter τ which finally
depends mainly on how close we want this approximation to be.

4. LINEAR VARIABLE STRUCTURE AND DISCONTINUOUS CONTROL
LAW

Once a polyhedral approximation of the domain of attraction for (2) with a certain
speed of convergence has been found, a feedback control law has to be provided. In
this section we focus our attention on the determination of two stabilizing control
laws whose practical implementation will be presented in the next section. Let then

P = {x : |Fix| ≤ 1̄, i = 1, . . . , s}

be the contractive set which resulted from applying the mentioned procedure to the
EAS of (2). To each vertex vi of P remains associated a control value ui (actually
provided by the procedure itself). The set P can be naturally partitioned in sim-
plicial sectors Sh each delimited by the origin and n vertices vh1 . . . vhn which lay
on the same face cx = 1 delimiting the set P (hence the row vector c is either Fi

or −Fi, for some i) [7]. The partition can be made in such a way that two of these
sectors have intersection with empty interior and the union of all the sectors is P .
Thus every x ∈ P belongs necessarily to at least one of these sectors so that it is
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possible to define a mapping h = h(x) from the state space to the set of the sectors
indexes, where h(x) is the index of a sector containing x. Now, if to each of these
sectors we associate the gain Kh defined as

Kh = [uh1 . . . uhn ] [vh1 . . . vhn ]−1

where the matrix [vh1 . . . vhn
] is invertible by construction, we have that the linear

variable structure control law defined as

uvs(x) = Kh(x)x

stabilizes the system and guarantees condition (4) for every initial state x(0) ∈ P .
Moreover it can be shown [3] that this control law is continuous.

It is quite obvious that such partition, to reduce the computational load of the
proposed control law, should be computed off line so that on-line the algorithm has
just to check to which sector the state belongs. If the contractive set under consid-
eration is simplicial, say every face contains exactly n vertices, the determination of
the partition is immediate and the required map is indeed h(x) = I(x) as defined
in (1). Unfortunately the construction of the maximal λ-contractive set most often
generates a non-simplicial set P ⊂ IRn (say a set whose delimiting planes contain
more than n vertices, see [6]) hence such a partition results in being an essential
point for the practical implementation of the controller (apart obviously from the
two dimensional case where every polyhedron is simplicial). One possible way to de-
rive the proceeding partition is by means of a ‘stretching’ procedure which, starting
from the original polyhedron P generates a supporting polyhedron P̃ [6] which is
nothing but a polyhedral representation of the mentioned partition. We skip the de-
scription of such procedure for the sake of brevity (the interested readers can contact
the corresponding author for the Fortran code almost in its final form).

The major drawback of computing the auxiliary polytope and using its expression
in the on-line implementation of the control law is unfortunately given by the high
number of simplicial sectors of the supporting polyhedron. To avoid the burdens
deriving from this the authors have recently proposed a discontinuous control law
applicable to single input continuous-time systems (the extension to the multi-input
case is under development) and which relies solely on the contractive region P and
which is now reported.

Suppose a β-contractive symmetric region P = {x : |Fx| ≤ 1̄} for a single input
continuous-time system has been found and that the control constraint C-set can
be written as U = [umin, umax]. To derive this new control law we rewrite the
symmetric polyhedron P = {x : |Fx| ≤ 1̄} in its unsymmetric form, say P = {x :
[FT − FT ]T x ≤ 1̄} = {x : F̃ x ≤ 1̄} and, in analogy with the symmetric case, we
define Ĩ(x) = {i : F̃ix = maxj F̃jx}. We now define the mapping

Ī(x) = min
i∈Ĩ(x)

i (7)

which associates (arbitrarily) to every x ∈ P a single index corresponding to a sector
of P and for every x we consider the following min-max problem:

ν = min
u∈U

max
w∈W

FĪ(x)(A(w)x + B(w) u)
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and let uĪ(x) be the control value for which the minimum is reached. The right hand
side of the last equation is the derivative of the given polyhedral function along the
system trajectories (apart from proper subspaces of IRn) and, being linear in all its
terms, it is clear that uĪ(x) is either umin or umax (or the value 0 if there is more
than one minimizer). In this way the control law u(x) = uĪ(x) remains defined on
the whole state space (this is actually the main reason for the introduction of the
mapping Ī(x)) and can be proved [4] to be such that

ΨP (x) ≤ e−βtΨP (x(0))

for every initial state x(0) ∈ P .
As a final comment we point out that the cited control law is suitable to handle

the case of quantized control devices (see [4]).

5. APPLICATION OF THE CONTROL TO THE TWO TANK SYSTEM

The system we considered is a laboratory two-tank plant whose structure is that
reported in the scheme in Figure 1.

BAS

EV1 EV2

P12T1

T2
P1 P2

EP

VID1

VID2

Fig. 1. Plant schematic representation.

It is formed by the electric pump EP whose job is that of supplying water to the
two parallel pipes P1 and P2 whose flow can be either 0 or Umax and is regulated by
two on-off electro-valves EV1 and EV2 which are commanded by the signals coming
from the digital board BRD1 (not reported in Figure 1). The two parallel pipes
bring water to the first tank T1 which is connected, through P12, to an identical
tank T2 positioned at a lower level. From T2 the water flows out to the recirculation
basin BA. The two identical variable inductance devices VID1 and VID2, together
with a demodulating circuit in BRD1, allow the computer to acquire the water levels
of the two tanks. These levels are the state variables of the system.

If we denote by h1 and h2 the water levels of the two tanks and we choose as
linearization point the steady state value [h10 h20]T corresponding to the constant
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input u0 = .02985 and we set x1(t) = h1(t) − h10(t) and x2(t) = h2(t) − h20(t), we
get a linearized time-invariant system whose state and input matrix A and B are

A =

[
− α

2
√

h10−h20

α
2
√

h10−h20
α

2
√

h10−h20
− α

2
√

h10−h20
− β

2
√

h20

]
B =

[
1
0

]

and the parameters entering the above matrix are α = .08409, β = .04711, h10 =
.5274, h20 = .4014. To keep into account the effects due to the non linear part of
the system we considered the uncertain system described by

A(ξ, η) =
[ −ξ ξ

ξ −(ξ + η)

]
B(ξ, η) =

[
1
0

]

with ξ = .118 ± .05 and η = .038 ± .01. The state and control constraint sets
we considered are respectively given by X = {[x1 x2]T : |x1| ≤ .1, |x2| ≤ .1} and
U = {−Umax, Umax}, where Umax = .02985. Starting from X we computed the
maximal .2-contractive region, by using the corresponding EAS with τ = 1 and
λ = .8. The region representation in terms of planes is given by P = {x : |Fx| ≤ 1}
where
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Fig. 2. The maximal β-contractive region, with β=0.2.

F =




1.000 0.000
−0.1299 −1.727
−0.2842 −1.871
−0.4429 −1.932
−0.5833 −1.905
−0.6903 −1.806
−0.8258 −1.671
−0.8716 −1.557
−0.9236 −1.414
−0.9295 −1.317
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and it is ordered in a way such that each row i of F delimits the sector i according
to Figure 2.

This region is formed by 20 symmetric sectors and (as it is always the case in two
dimensions) is simplicial. Hence the computation of the sector gains is immediate
and results in 10 different gains which are reported in the matrix K

K =




−0.2839 −0.3003
−1.035 −1.449
−0.0855 −0.5613
−0.1329 −0.5796
−0.1750 −0.5713
−0.2071 −0.5419
−0.2477 −0.5012
−0.2614 −0.4672
−0.2771 −0.4243
−0.2788 −0.3964




which again is ordered in a way such that the ith row of K corresponds to the ith
sector of P . The result of the implementation of the variable structure control law
u(x) = KI(x)x is reported in Figure 3.

We let the reader note that in this simple experiment we didn’t force the initial
state to belong to the set P . This can be immediately seen from the fact that the
control saturates for the first 20 seconds. After this period the system is maintained
inside the region and converges asymptotically to the steady state value (the origin
of the linearized system) with the assigned contractivity speed.

For this same plant we also implemented the discontinuous control law but, as one
can see from the experimental results in Figure 4, due to the extremely low sampling
frequency (1 Hz) the system exhibits a limit cycle thus not converging to the origin
(this is anyway in accordance with the theory of sliding modes, see [14]). Although
for two dimensional systems the computational load associated to the discontinuous
control law is essentially the same of the linear variable structure control and is given
by the on-line determination of the sector to which the state belongs through (7), we
stress once again that for systems of higher dimensions this is not the case since the
ratio between the number of facets delimiting the auxiliary simplicial polyhedron
and that of the “natural” contractive polyhedron grows exponentially.
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Fig. 3. Variable structure control.

Fig. 4. Bang-Bang control system evolution.
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Thus on one side we have an efficient control law whose implementation might
be unrealistic for high dimensional systems whereas the discontinuous one provides
reasonably good results if the sampling time is short enough. To try to reduce
the control complexity while maintaining a sufficiently large domain of attraction
the authors have considered an heuristic procedure which consists in considering
a simple linear control law whose gain is obtained by averaging the gains of the
previously reported variable structure control law. Although not yet supported
by any theoretical interpretation (currently under research), in most of the cases
this way of proceeding seems to furnish a good compromise between the controller
complexity and the dimension of the domain of attraction.

In our case the average gain is given by k = [ − .2984 − .5792 ] and the maximal
β-contractive region, with β = .2, of the closed loop system included in the non-
saturation set X ∩XU , where XU = {x : |kx| ≤ .3}, resulted in the internal region
in Figure 5. This set is obviously smaller than the largest 0.2-contractive domain of
attraction reported in Figure 2 and its existence assures a speed of convergence β =
0.2 for the closed-loop system with the obtained linear control. We also computed
the largest invariant set of the closed loop system when the above linear control is
applied (to this aim it is sufficient to apply the cited Fortran code to the system
without input and Acl(w) = A(w)+B ∗K), which resulted in the external region in
Figure 5. This set represents the set of all the initial states starting from which the
closed-loop system trajectories will never get out of the state and control constraints
sets (i. e. outside the set X ∩XU ).
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Fig. 5. The largest β-contractive and invariant sets with u = kx.

6. CONCLUDING REMARKS

In this work we have considered an experimental laboratory plant on which two set
induced nonlinear control laws have been implemented. First we have recalled some
known results concerning the constrained stabilization of the class of systems under
consideration. Then the application of the proposed techniques to the laboratory
control system has been presented together with some heuristic considerations re-
garding the possibility of deriving a simple linear control law. This gain can be
obtained by averaging those of the various sectors concurring in the determination
of the nonlinear control law and in most of the case the authors have seen that this
results in a quite good closed loop behavior.



104 F. BLANCHINI, S. COTTERLI, G. KORUZA, S. MIANI, R. SIAGRI AND L. TUBARO

Some directions for further research in this area concern the possibility of reducing
the complexity of the proposed controllers as well as that of solving output feedback
stabilization.

(Received April 8, 1998.)
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Via Gradenigo 6/a, 35131 Padova. Italy.

e-mail: miani@dimi.uniud.it


	INTRODUCTION
	DEFINITIONS
	SET--INDUCED LYAPUNOV FUNCTIONS
	LINEAR VARIABLE STRUCTURE AND DISCONTINUOUS CONTROL LAW
	APPLICATION OF THE CONTROL TO THE TWO TANK SYSTEM
	CONCLUDING REMARKS

