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Pod Vodárenskou věž́ı 4, 182 08 Praha 8

Kybernetika is a bi-monthly international journal dedicated for rapid publication of
high-quality, peer-reviewed research articles in fields covered by its title.

Kybernetika traditionally publishes research results in the fields of Control Sciences,
Information Sciences, System Sciences, Statistical Decision Making, Applied Probability
Theory, Random Processes, Fuzziness and Uncertainty Theories, Operations Research and
Theoretical Computer Science, as well as in the topics closely related to the above fields.

The Journal has been monitored in the Science Citation Index since 1977 and it is
abstracted/indexed in databases of Mathematical Reviews, Current Mathematical Publi-
cations, Current Contents ISI Engineering and Computing Technology.

Ky b e r n e t i k a . Volume 41 (2005) ISSN 0023-5954, MK ČR E4902.
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FAST EVALUATION OF THIN–PLATE SPLINES
ON FINE SQUARE GRIDS

Petr Luner and Jan Flusser

The paper deals with effective calculation of Thin-Plate Splines (TPS). We present a new
modification of hierarchical approximation scheme. Unlike 2-D schemes published earlier,
we propose an 1-D approximation. The new method yields lower computing complexity
while it preserves the approximation accuracy.

Keywords: Thin-Plate Spline, fast evaluation, subtabulation

AMS Subject Classification: 65D07, 65D18

1. INTRODUCTION

Interpolation and/or approximation of 2-D data measured on an irregular grid is
one of traditional problems of numerical mathematics and statistics that has been
investigated for many years. It arises in many application areas such as in mechanics,
in surface approximation and reconstruction, in experimental data smoothing, and
in image processing, to name a few.

Formally, the interpolation problem is formulated as follows. Let a set of arbitrary
points (xi, yi), i = 1, . . . , N be given in a coordinate plane. Let zi be a data value
assigned to point (xi, yi). The task is to find a function s such that s(xi, yi) = zi for
i = 1, . . . , N .

This is an ill-posed problem having infinite number of solutions. To make the
formulation meaningful, a regularization constraint must be loaded on function s.
The choice of the regularization constraint also specifies the class of functions among
which the resulting interpolant should be selected. There are many different pos-
sibilities how to define the regularization constraint. An intuitive approach was
motivated by a physical model of elastic deformations. Let us imagine an ideal 2-D
thin metal plate of infinite extent, which is fixed in 3-D space at the points (xi, yi, zi).
Such a plate deforms into the form which minimizes its potential energy, that means
which minimizes so-called quadratic variation functional

V (s) =
∫ ∫

R2

[(
∂2s

∂x2

)2

+ 2
(

∂2s

∂x∂y

)2
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(
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∂y2

)2
]

dxdy (1)
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on Sobolev space W 2
2 of all eligible functions. Minimizing functional (1) means in fact

looking for the “smoothest” interpolant. Provided that the set of given coordinate
points includes at least three non-collinear points, this variational problem has a
unique solution [11], which is called Thin-Plate Spline (TPS) and can be expressed
in the explicit form

s(x, y) = ax + by + c +
N∑

i=1

λiφ(x− xi, y − yi), (2)

where φ(x, y) denotes the radial function

φ(x, y) = (x2 + y2) log
√

x2 + y2. (3)

Parameters a, b, c, λ1, . . . , λN are determined by solving the system of (N +3) linear
equations

s(xi, yi) = zi, i = 1, . . . , N,
N∑

j=1

λj = 0,

N∑

j=1

λjxj = 0, (4)

N∑

j=1

λjyj = 0.

The last three equations ensure consistent behavior of s in infinity.
The motivation given by the metal plate deformation can be used as well in

the approximation problem. The only difference is that we relax the interpolation
constraints – the imaginary plate is no longer fixed at the given data points but it
is attached by elastic spirals. The functional to be minimized then consists of two
terms – elastic term (1) and an error term which equals weighted mean square error.
Minimization of this new functional leads to so-called Smoothing TPS (STPS), the
form of which is exactly the same as in (2). The only difference is in coefficient
calculation.

Both the TPS and the STPS have been proven to be one of the best tools for
solving 2-D interpolation/approximation problems in statistical data analysis and
engineering calculations. They were originally introduced by Harder [12] as a tool
for wing surface interpolation in aeroelastic calculations. Basic theoretical studies
on the TPS were published by Duchon [7] and Wahba [17].

The TPS have found numerous applications also in image analysis, computer
graphics, and computer vision. They were used for shape recovery from stereo-
images, particularly for interpolation/approximation of depth maps [11], for inter-
polating incomplete surfaces [6], for image sharpening and scaling [2], and for noise
suppression via image smoothing [4, 13]. Probably the largest group of TPS-related
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image processing papers has been devoted to spatial transformations of images. Spa-
tial transformations are, among others, the key stage of image-to-image alignment,
spatial image normalization, image warping, and morphing. The TPS are used as
mapping functions between two different coordinate systems. This idea was theo-
retically proposed by Bookstein [5] and then further developed by other authors.
Successful application to face images [1], to satellite [9] and aerial images [8], and
to medical images [16] have been reported. Wolberg [18] used the TPS as a general
image warping model which can be employed in computer animation.

One drawback of the TPS/STPS is that they are computationally expensive to
evaluate. Usually, the spline is required to be calculated at all mesh points of a
fine square grid. While the number of the interpolation nodes N may be from ten
to several hundreds, the number of grid points is typically from hundred thousand
to million. The complexity of the TPS coefficients calculation is O(N3) which is
negligible comparing to the evaluation part. The evaluation of the spline at a single
grid point requires N calculations of logarithm and O(N) additions/multiplications.
If the number of grid points is large, the direct spline evaluation using formula (2)
becomes extremely expensive.

In the last decade, considerable attention has been paid to the methods decreasing
the complexity of the TPS evaluation while preserving reasonable accuracy. Flusser
[8] proposed an adaptive approximation of the TPS on square or triangular regions by
simpler functions. Beatson and Newsam [3] adapted an earlier method by Greengard
[10] for multipole expansion of radial functions. They proposed to calculate the
TPS exactly in a certain neighbourhood of the given points (xi, yi). Outside this
neighborhood, they expanded each term of the TPS into power series, collected the
contribution from all poles into one new power series and evaluated only several terms
of this expansion. Powell [15, 14] used the idea of TPS subtabulation. Although
the Powell’s method is considered to be the fastest algorithm ever published, it still
requires considerable computing time when the number of interpolation points N is
large. In this paper, we present a new method which is motivated by the Powell’s
algorithm but performs much faster without loss of accuracy.

The rest of the paper is organized as follows. In Section 2 we recall the original
Powell’s method. Section 3 describes the new algorithm and discusses its accuracy.
In Section 4, experimental comparisons with the Powell’s method as well as with the
direct evaluation are presented.

2. RECALLING POWELL

To describe the original method for the TPS tabulation developed by Powell [15, 14],
let us assume that spline s(x, y) given by formula (2) is required to be calculated on
a square grid consisting of points (k, `), k, ` = 0, . . . , M .

The algorithm can be outlined as follows: First, exact spline values are calculated
on an initial coarse grid consisting of points (kh, `h); k, ` = 0, . . . , M/h where h = 2t

for some suitable integer t. Next, on the two times finer grid (kh/2, `h/2), k, ` =
0, . . . , 2M/h, the missing spline values are approximated by applying carefully chosen
subtabulation schemes. The linear combination of the 4 × 4 neighboring coarse
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Fig. 1. Subtabulation schemes used in the Powell’s algorithm.

grid values shown in Figure 1a is used to approximate s(kh/2, `h/2) when k and
` are odd integers. The scheme shown in Figure 1b and its rotation by π/2 are
then applied to provide estimates of s(kh/2, `h/2) when k + ` is odd. Accuracy
of these approximations depends on the distance between the point (kh/2, `h/2)
and the interpolation points (xi, yi), i = 1, . . . , N . More specifically, Powell has
shown that the subtabulation schemes provide sufficient accuracy whenever the point
(kh/2, `h/2) satisfies the conditions

max[|kh/2− xi|, |`h/2− yi|] ≥ %h/2, i = 1, . . . , N, (5)

where % is a constant that depends on the required precision. Otherwise some
modifications to the calculation of s(kh/2, `h/2) are necessary to provide sufficient
accuracy. The subtabulation process is then iterated to calculate the spline on ever
finer grids until the final grid is reached.

To state the algorithm more precisely, we need to introduce some necessary def-
initions. Let us assume that the constant % from conditions (5) is given. We let
Ni(h) be the neighbourhood

Ni(h) = {(x, y) : max[|x− xi|, |y − yi|] < %h} ⊂ R2 (6)

of (xi, yi), we let Jh(x, y) be the set

Jh(x, y) = {i : (x, y) /∈ Ni(h)}, (7)

and we let sh(x, y) be the function

sh(x, y) = ax + by + c +
∑

i∈Jh(x,y)

λiφ(x− xi, y − yi). (8)

In other words, sh(x, y) is the same spline as (2) except the terms expressing the
contributions to s(x, y) from the interpolation points whose maximum-norm distance
to (x, y) is less than %h. Using this notation, the algorithm can be written as follows:
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Step 1: Set the initial value of h to 2t for an integer t chosen in such a way that
the number of points of the initial grid (kh, `h), k, ` = 0, . . . , M/h is between about
20×20 and 40×40. Calculate the function sh/2 on the initial grid using formula (8).

Step 2: Repeat t times the following steps:

(a) Set h := h/2.

(b) Approximate the missing values of sh on the grid (kh, `h), k, ` = 0, . . . , M/h by
applying the subtabulation schemes in Figure 1.

(c) Near the boundaries of the neighborhoods Ni(h), i = 1, . . . , N where the usage
of the subtabulation schemes is prevented by the discontinuities of the function
sh, calculate the values of sh directly from formula (8).

(d) Replace the obtained values of sh by the values sh/2(kh, `h), k, ` = 0, . . . , M/h.
Do this by a loop through the interpolation points (xi, yi), i = 1, . . . , N that
adds the term λiφ(kh− xi, `h− yi) to sh(kh, `h) for every grid point (kh, `h) ∈
Ni(h) \Ni(h/2) (where “\” denotes the set difference).

Step 3: Complete the calculation by replacing the obtained values of s1/2 on the final
grid by the values of s. For this purpose, employ a loop through the neighborhoods
Ni(1/2), i = 1, . . . , N that adds the term λiφ(k − xi, ` − yi) to s1/2(k, `) for every
grid point (k, `) that is in Ni(1/2).

The resultant accuracy of the computed spline values depends on selection of the
constant %. By taking advantage of the smoothness of the TPS, Powell showed that
when the spline is required to be calculated to a relative accuracy ε, it is suitable to
set % to the least integer such that % ≥ (6/ε)1/6. For example, in the cases ε = 10−6

and ε = 10−9, the recommended choices are % = 14 and % = 43, respectively.
The time complexities of Steps 1, 2c, 2d and 3 are O(N), O(%N2), O(%2N) and

O(%2N), respectively. Further, since the subtabulation schemes are applied at each
grid point at most once, the total work of all t iterations of Step 2b is of magnitude
O(M2). It follows that the resultant time complexity of the Powell’s algorithm
is O(M2 + t%N2 + t%2N). Especially when N is small in comparison to M , this
yields a significant speedup over the direct use of formula (2), because the number
of operations of the direct approach is of magnitude O(M2N).

3. THE NEW METHOD

It was proven that the Powell’s algorithm can provide very substantial speed-up over
the direct spline evaluation [14, 15]. It is also evident, however, that the improvement
rate gradually decreases as the algorithm is applied to splines with growing number
of interpolation nodes N . The main cause of this slowdown is Step 2c. At every grid
resolution level, O(%N2) explicit evaluations of TPS terms are required because of
the discontinuities of function sh. When N is large, this part dominates the entire
computation and prevents the practical usage of the algorithm. In this Section, we
present a modification of the Powell’s algorithm that we have developed to remove
this “bottleneck”.
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The proposed algorithm preserves the basic structure of the original method –
similarly to the Powell’s algorithm, the pyramidal subtabulation of function sh is
used. The new algorithm however differs both in the subtabulation schemes used
and in the way in which the discontinuities of the function sh are treated. The major
difference in comparison to the original method is that we enable the usage of the
subtabulation schemes also at the points at which the approximation is calculated
“across” the boundary of neighborhood Ni(h). To make it possible, we propose a
new 1-D approximation scheme instead of the Powell’s 2-D schemes. As a result,
we completely eliminate the need for any expensive explicit corrections mentioned
above.

The new method is, similarly to the original Powell’s method, based on hierarchi-
cal calculation from coarse to fine levels. The algorithm starts on a reasonably sparse
grid on which the spline values are computed exactly from the definition. Having
the spline values on a coarse grid, the values on a twice-finer grid are calculated
by means of 1-D interpolation formulae. These formulae are‘ basically up-sampling
convolution filters with properly chosen coefficients, the length of which (i. e. the
order of the filter) is a user-defined parameter. The filters are successively applied
both in x and y directions.

However, the spline values on those coarser grid points which are located near
any initial interpolation node must be properly modified when they propagate to
the finer level. This is necessary to keep the approximation accurate.

In the rest of this section, we first derive the approximation formulae, then we
show how they are used to step from a coarse to a fine level and, finally, we formally
describe the algorithm as a whole.

3.1. Subtabulation schemes

We start the detailed description of the proposed algorithm by introducing the new
subtabulation schemes. In contrast to the two-dimensional subtabulation schemes
used by Powell, our algorithm works with the following two one-dimensional schemes:

f(kh, `h) ≈
K∑

j=1−K

αjf(kh− h + 2jh, `h), (9)

f(kh, `h) ≈
K∑

j=1−K

αjf(kh, `h− h + 2jh). (10)

The user-defined parameter K determines how many coarse-grid points are re-
quired for the approximations at one finer-grid point. Jointly with the constant %
introduced in the previous section, it is used to control the accuracy of the calculated
spline values. The only constraints for the selection of these parameters are K ≥ 2
and % ≥ 2K.

Depending on the value of K, the subtabulation coefficients αj , j = 1−K, . . . , K
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Fig. 2. Subtabulation coefficients for K = 3.

are defined by the following system of 2K linear equations:

α1−j = αj , j = 1, . . . , K, (11)
K∑

j=1

αj =
1
2
,

K∑

j=1

αj(2j − 1)2n = 0, n = 1, . . . , K − 1.

These equations ensure that formulae (9) and (10) are exact when f is a polynomial
up to degree 2K−1. For K = 3, the subtabulation coefficients are shown in Figure 2.

3.2. Subtabulation procedure

Having introduced the subtabulation schemes, we can proceed to the description of
the subtabulation procedure which performs a single grid refinement. We consider
the following model situation:

• The function sh is required to be calculated on the grid of mesh size h consisting
of points (kh, `h), k, ` = 0, . . . , 2m.

• The values of sh are already available on the coarser grid of mesh size 2h
consisting of points (2kh, 2`h), k, ` = 1−K, . . . ,m + K − 1.

The subtabulation process consists of two stages. First, scheme (9) is used to
refine all grid lines that are parallel to the x-axis. This stage produces the values
sh(kh, 2`h), k = 0, . . . , 2m, ` = 1−K, . . . ,m + K − 1. Then, the grid refinement is
completed by applying scheme (10) in the y-direction.

Let G be the set of all points on the coarser grid, i. e. G = {(2kh, 2`h) : k, ` =
1−K, . . . , m+K−1}. For every interpolation point (xi, yi), i = 1, . . . , N , we denote
Ai, Bi, Ci and Di the following point sets:

Ai = (xi − %h− 2Kh + h, xi − %h] × (yi − %h, yi + %h) ∩ G,
Bi = (xi − %h, xi − %h + 2Kh− h] × (yi − %h, yi + %h) ∩ G,
Ci = [xi + %h− 2Kh + h, xi + %h) × (yi − %h, yi + %h) ∩ G,
Di = [xi + %h, xi + %h + 2Kh− h) × (yi − %h, yi + %h) ∩ G.

Schematically, these sets are shown in Figure 3 for the choice K = 3. Further, we
use AddTerm(i, P ) (resp. SubtractTerm(i, P )) to denote the subroutine that adds
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Ai Bi Ci Di

Ni(h)

Fig. 3. Point sets Ai, Bi, Ci and Di for K = 3.

(resp. subtracts) the term λiφ(x − xi, y − yi) to (resp. from) the current values at
grid points specified by a set P .

Here are the steps used to refine the coarse grid in the x-direction:

Step 1: For each i = 1, . . . , N do
If h ≤ xi − %h then AddTerm(i, Bi)
If xi − %h < h < xi + %h then SubtractTerm(i, Ai ∪Di)
If h ≥ xi + %h then AddTerm(i, Ci)

Step 2: Create the following lists:

Lk = {i : 2kh + h ≤ xi − %h < 2kh + 3h}, k = 0, . . . ,m− 1
Rk = {i : 2kh + h < xi + %h ≤ 2kh + 3h}, k = 0, . . . ,m− 1

Step 3: For each k = 0, . . . , m− 1 do

For each ` = 1−K, . . . , m + K − 1 do
Apply scheme (9) at point (2kh + h, 2`h)

For each i in Lk do SubtractTerm(i, Ai ∪Bi ∪Di)
For each i in Rk do AddTerm(i, Ai ∪ Ci ∪Di)

end

Step 4: For each i = 1, . . . , N do
If 2m + h ≤ xi − %h then SubtractTerm(i, Bi)
If xi − %h < 2m + h < xi + %h then AddTerm(i, Ai ∪Di)
If 2m + h ≥ xi + %h then SubtractTerm(i, Ci)
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The operation of the above procedure can be logically divided into two parts:
(i) subtabulation scheme application and (ii) dynamic modification of the coarse
grid values near the boundaries of the neighborhoods Ni(h), i = 1, . . . , N . It is
not difficult to verify that, as a part of the main loop in Step 3, the procedure
incrementally alters the coarse grid values in such a way that when scheme (9) is
applied at point (2kh + h, 2`h), the current values at points (2kh − h + 2jh, 2`h),
j = 1−K, . . . , K represent the values of the function

sh,k,`(x, y) = ax + by + c +
∑

i∈Jh(kh,`h)

λiφ(x− xi, y − yi).

This ensures that Step 3 produces valid estimates of sh(2kh + h, 2lh) for all k =
0, . . . ,m− 1 and ` = 1−K, . . . , m + K − 1. Step 4 is then necessary to restore the
original values on the coarse grid (i. e. the values sh(2kh, 2`h), k, ` = 1−K, . . . , m+
K − 1).

The time complexities of Steps 1, 2, 3 and 4 are O(KN), O(m + N), O(Km2 +
K%N) and O(KN), respectively. It follows that the time complexity of the first
stage of the subtabulation procedure is O(Km2 + K%N). Since the second stage
can be realized in a quite analogical way, this is also the resultant time complexity
of the whole subtabulation procedure.

3.3. The algorithm

We are now ready to state the whole algorithm. As in Section 2, let us assume
that our task is to calculate the spline s(x, y) on the unit grid consisting of points
(k, `), k, ` = 0, . . . , M . Further, let us denote Mh the least integer that satisfies the
inequality Mhh ≥ M + 2h(K − 1). The algorithm consists of the following steps:

Step 1: Set the initial value of h to 2t for integer t chosen in such a way that the
number of points of the initial grid (kh, `h), k, ` = 2− 2K, . . . , Mh is between about
20 × 20 and 40 × 40. Calculate the function sh/2 on the initial grid using formula
(8).

Step 2: Repeat t times the following steps:

(a) Set h := h/2.

(b) Given the values sh(2kh, 2`h), k, ` = 2− 2K, . . . , M2h, apply the subtabulation
procedure described in Section 3.2 to generate the values sh(kh, `h), k, ` =
2− 2K, . . . ,Mh.

(c) Replace the obtained values with the values sh/2(kh, `h), k, ` = 2−2K, . . . ,Mh.

Step 3: Replace the values of s1/2 on the final grid with the values of s.

We already showed that Step 2b requires O(KM2
h + K%N) time. The time com-

plexities of Steps 1, 2c and 3 are O(N), O(%2N) and O(%2N), respectively. It follows
that the total time complexity of the proposed algorithm is O(KM2+tK%N +t%2N)
which, in view of the constraint % ≥ 2K, can be simplified to O(KM2 + t%2N).
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3.4. Accuracy

We complete the description of the proposed algorithm by discussing its accuracy
and the choice of the parameters K and %. Basically, we use a similar approach to
that of Powell [14, 15]. A key assertion is the following lemma:

Lemma 1. Let δ(x, y) be the truncation error of the estimate of the function φ at
a point (x, y) obtained by means of subtabulation formula (9), i. e.

δ(x, y) ≡
[ K∑

j=1−K

αjφ(x− h + 2jh, y)
]
− φ(x, y). (12)

Provided that K ≥ 2 and
√

x2 + y2 ≥ %h for some constant % ≥ 2K, it holds
|δ(x, y)| ≤ h2∆(K, %), where ∆(K, %) denotes the expression

∆(K, %) ≡
∞∑

n=K

1
n(n− 1)%2n−2

∣∣∣∣
K∑

j=1

αj(2j − 1)2n

∣∣∣∣.

For the proof of Lemma 1 see the Appendix.

Lemma 1 shows that after applying (9) to approximate the value of sh(kh, `h),
the absolute value of the contribution from the ith term of sh to the approximation
error is less or equal than

|λi|h2∆(K, %), (13)

and the same is true for subtabulation scheme (10) due to symmetry. Thus, schemes
(9) and (10) provide the relative accuracy

∆(K, %)/%2| log
√

(kh− xi)2 + (`h− yi)2| (14)

in the ith term of sh. Now, since the algorithm uses only values h ≥ 1, we have
√

(kh− xi)2 + (`h− yi)2 ≥ %h ≥ 2K ≥ 4.

Thus, the logarithm in expression (14) can be ignored. We can therefore conclude
that if we wish to work to a relative accuracy ε, it is suitable to use parameters K
and % satisfying the condition

∆(K, %)/%2 ≤ ε. (15)

Some recommended combinations of K and % for various choices of ε are listed in
Table 1. Besides satisfying condition (15), the given parameter values also have the
property of minimizing the expression 3%2 +12%(2K− 1) which gives approximately
the number of explicit evaluations of the TPS terms performed by the proposed
algorithm in one iteration of the subtabulation procedure per interpolation point.
Thus, besides providing required accuracy, the listed pairs of K and % are expected
to minimize the computational time as well.
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Table 1. Recommended combinations of parameters K

and % for various choices of relative accuracy ε.

ε K %

10−6 4 13
10−7 5 15
10−8 5 18
10−9 6 20
10−10 7 22
10−11 8 24

4. NUMERICAL EXPERIMENTS

To measure the performance of the proposed algorithm for the TPS evaluation and
to compare it with the original Powell’s algorithm, the following three experiments
were carried out.

4.1. Experiment 1

In the first experiment, the new and the Powell’s algorithms were compared on an
artificially formed test spline.

The test spline consisted of N = 100 interpolation points and its shape is illus-
trated in Figure 4. It was obtained as a solution to the interpolation problem

s(xi, yi) =
1
2

cos
(√

x2
i + y2

i

)
+

1
2
∈ [0, 1], i = 1, . . . , N

where the points (xi, yi), i = 1, . . . , N were selected at random in the square
[−3π, 3π]× [−3π, 3π].

Fig. 4. The test spline used in Experiment 1.

The comparison of the algorithms was made on a grid of the size 1000 × 1000.
Both the new and the original algorithms were applied to evaluate the spline several
times, using a variety of settings of their respective input parameters. In the case
of the new algorithm, the combinations of K and % from Table 1 were used. In the
case of the original algorithm, the value of % was varied from 10 to 60.
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Fig. 5. Dependence of relative runtime on the approximation error.

For each run, we monitored the time of computation and the maximum approx-
imation error between the computed and exact spline values. For the new and the
original algorithms, the results of the measurements are summarized in Table 2.
Graphically, comparison of the results is shown in Figure 5. The computing times
are given in percents relatively to the direct spline evaluation using formula (2) which
stands for 100 % .

Figure 5 clearly shows that the proposed algorithm provides substantial improve-
ments over the original Powell’s method. We can see that the computation was
about five times faster in the case of the approximation error 10−7 and with in-
creasing accuracy, the performance gap between the two algorithms rapidly widens.
While more than 30 percent of time taken by the direct spline evaluation was re-
quired by the original algorithm to approximate the spline with the error lower than
10−9, less than 6 percent was needed by the new algorithm even for approximation
errors of the order of 10−11.

Table 2. Results of Experiment 1. The proposed algorithm (left)

and the original Powell’s algorithm (right).

K % time ( % ) error

4 13 3, 0 2, 6.10−7

5 15 3, 4 2, 3.10−8

5 18 3, 6 6, 1.10−9

6 20 4, 3 1, 7.10−9

7 22 5, 1 1, 4.10−10

8 24 5, 8 1, 2.10−11

% time ( % ) error

10 12 3, 8.10−7

20 20 2, 7.10−8

30 26 4, 4.10−9

40 31 1, 2.10−9

50 35 5, 9.10−10

60 39 2, 8.10−10
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4.2. Experiment 2

The second experiment was aimed to study the dependence of computing time on
the number of spline interpolation points N .

The experiment was made on five test splines which consisted of 100, 200, 300,
400 and 500 interpolation points and were obtained using the same procedure as in
Experiment 1. As in Experiment 1, the algorithms were applied to evaluate the test
splines on a grid of size 1000 × 1000. In the case of the new algorithm, the used
parameter values were K = 4 and % = 13. In the case of the original algorithm,
we set % = 10. Thus, we ensured that the achieved approximation error was always
about 10−7. The results of the experiment are shown in Table 3 and in Figure 6.
The way of measurement of the “time” and “error” was the same as in Experiment 1.
We can see that the relative runtime of the original Powell’s algorithm increases
approximately linearly with N . This is in accordance with the fact that while the
time complexity of the direct spline evaluation is O(M2N), the number of operations
required by the Powell’s algorithm depends on N quadratically. On the other hand,
the relative runtime of the modified algorithm almost does not depend on N , as
expected. This is the main result of this paper. It shows that, in contrast to the
original Powell’s algorithm, the presented algorithm can provide very substantial
gains over the direct evaluation even when the number of spline interpolation points
is large.

4.3. Experiment 3

The aim of the last experiment was to test the applicability of the proposed algorithm
in real task of computer vision – 3-D shape recovery from a depth map.

A depth map of a human face was obtained by disparity measurement on stereo
images. This map consisted of 2206 irregularly distributed nodes whose z-coordinates
equal the distances from the camera. These points were interpolated by a TPS to
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Fig. 6. Dependence of relative runtime on the number of interpolation points N .
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Table 3. Results of Experiment 2: The proposed algorithm (left)

and the original Powell’s algorithm (right).

N time ( % ) error

100 2, 8 2, 6.10−7

200 2, 2 1, 2.10−7

300 1, 9 1, 5.10−7

400 1, 8 2, 6.10−7

500 1, 7 1, 5.10−7

N time ( % ) error

100 12 3, 8.10−7

200 19 2, 1.10−7

300 24 1, 1.10−7

400 29 7, 6.10−8

500 34 6, 7.10−8

recover the original shape of the face (see Figure 7). In accordance with the preced-
ing experiments, the obtained spline was rescaled in the z-direction so that its range
of values was approximately [0, 1].

The spline was then evaluated on a regular 1200 × 2000 grid by means of the
proposed algorithm. As in Experiment 1, all combinations of the input parameters
K and % from Table 1 were examined. Using the same format as in Table 2, the
results of the experiment are given in Table 4.

Table 4. Results of Experiment 3.

K % time ( % ) error

4 13 1, 0 9, 6.10−7

5 15 1, 2 8, 4.10−8

5 18 1, 3 1, 3.10−8

6 20 1, 5 9, 7.10−10

7 22 1, 7 8, 4.10−11

8 24 2, 0 7, 3.10−11

Fig. 7. The face recovered from its depth
map by the TPS interpolation.

5. CONCLUSION

We presented a new modification of the Powell’s algorithm for Thin-Plate Splines
fast calculation. The proposed method differs from the original algorithm by the
dimension of the used approximation schemes. While Powell employed 2-D approx-
imation formulae, we used only 1-D schemes. Thanks to this, our algorithm reduces
the computational complexity from O(M2+t%2N+t%N2) to O(M2+t%2N). Another
advantage of the presented algorithm is that it has been formulated for a general
size of the subtabulation schemes. Thus, schemes of different approximation quality
can be chosen for the computation, which greatly extends the range of accuracy for
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which the algorithm is well suited. Experimental comparison confirmed that the
new algorithm performs much faster, especially when the number of interpolation
nodes N is large and/or high accuracy of the calculated spline values is required.

APPENDIX

Proof of Lemma 1. The proof is based on the following two properties of the
function φ:

φ(x + t, y) =
∞∑

n=0

tn

n!
∂nφ(x, y)

∂xn
, |t| <

√
x2 + y2, (16)

∣∣∣∣
∂nφ(x, y)

∂xn

∣∣∣∣ ≤ 2(n− 1)(n− 3)!

(x2 + y2)
n−2

2

, n ≥ 3. (17)

Both these properties are special cases of more general statements derived by Powell
[15]. Since we assume that

√
x2 + y2 ≥ 2Kh, it follows from (16) that the Taylor

expansion

φ(x− h + 2jh, y) =
∞∑

n=0

(2j − 1)nhn

n!
∂nφ(x, y)

∂xn

is valid for every j = 1 − K, . . . , K. Substituting these expansions into (12) and
invoking identities (11), we can write δ(x, y) in the form

δ(x, y) =
∞∑

n=K

2h2n

(2n)!
∂2nφ(x, y)

∂x2n

∣∣∣∣
K∑

j=1

αj(2j − 1)2n

∣∣∣∣.

Provided that K ≥ 2, inequality (17) implies the bound

|δ(x, y)| ≤
∞∑

n=K

h2n

n(n− 1)(x2 + y2)n−1

∣∣∣∣
K∑

j=1

αj(2j − 1)2n

∣∣∣∣.

Finally, in view of the inequality
√

x2 + y2 ≥ %h, we can write

|δ(x, y)| ≤ h2
∞∑

n=K

1
n(n− 1)%2n−2

∣∣∣∣
K∑

j=1

αj(2j − 1)2n

∣∣∣∣. ¤
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versity, for kind providing the data used in Experiment 3.

(Received January 23, 2004.)



112 P. LUNER AND J. FLUSSER

REFE REN CES

[1] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun: Image warping by radial basis func-
tions: Application to facial expressions. CVGIP: Graphical Models and Image Pro-
cessing 56 (1994), 161–172.

[2] N. Arad and C. Gotsman: Enhancement by image-dependent warping. IEEE Trans.
Image Processing 8 (1999), 1063–1074.

[3] R.K. Beatson and G. N. Newsam: Fast evaluation of radial basis functions. Comput.
Math. Appl. 24 (1992), 7–19.

[4] M. Berman: Automated smoothing of image and other regularly spaced data. IEEE
Trans. Pattern Anal. Mach. Intell. 16 (1994), 460–468.

[5] F. L. Bookstein: Principal warps: Thin-plate splines and the decomposition of defor-
mations. IEEE Trans. Pattern Anal. Mach. Intell. 11 (1989), 567–585.

[6] J. C. Carr, W.R. Fright, and R. Beatson: Surface interpolation with radial basis
functions for medical imaging. IEEE Trans. Medical Imaging 16 (1997), 96–107.

[7] J. Duchon: Interpolation des fonctions de deux variables suivant le principle de la
flexion des plaques minces. RAIRO Anal. Num. 10 (1976), 5–12.

[8] J. Flusser: An adaptive method for image registration. Pattern Recognition 25 (1992),
45–54.

[9] A. Goshtasby: Registration of images with geometric distortions. IEEE Trans. Geo-
science and Remote Sensing 26 (1988), 60–64.

[10] L. Greengard and V. Rokhlin: A fast algorithm for particle simulations. J. Comput.
Phys. 73 (1987), 325–348.

[11] W.E. L. Grimson: A computational theory of visual surface interpolation. Philos.
Trans. Roy. Soc. London Ser. B 298 (1982), 395–427.

[12] R. L. Harder and R. N. Desmarais: Interpolation using surface splines. J. Aircraft 9
(1972), 189–191.

[13] R. Kašpar and B. Zitová: Weighted thin-plate spline image denoising. Pattern Recog-
nition 36 (2003), 3027–3030.

[14] M. J.D. Powell: Tabulation of thin plate splines on a very fine two-dimensional grid.
In: Numerical Methods of Approximation Theory, Volume 9 (D. Braess and L. L.
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