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CLOSED-LOOP STRUCTURE OF
DECOUPLABLE LINEAR MULTIVARIABLE SYSTEMS

Javier Ruiz-León, Jorge Luis Orozco and Ofelia Begovich

Considering a controllable, square, linear multivariable system, which is decouplable
by static state feedback, we completely characterize in this paper the structure of the
decoupled closed-loop system. The family of all attainable transfer function matrices for
the decoupled closed-loop system is characterized, which also completely establishes all
possible combinations of attainable finite pole and zero structures. The set of assignable
poles as well as the set of fixed decoupling poles are determined, and decoupling is achieved
avoiding unnecessary cancellations of invariant zeros. For a particular attainable decoupled
closed-loop structure, it is shown how to find the corresponding state feedback, and it is
proved that this feedback is unique if and only if the system is controllable.

Keywords: linear systems, multivariable systems, feedback control, pole and zero placement
problems

AMS Subject Classification: 93C05, 93C35, 93B52, 93B55

1. INTRODUCTION

Roughly speaking, decoupling of dynamic systems implies that each input of the
system influences one and only one output. From the practical point of view it is of
interest to achieve decoupling because it is often desirable to control the outputs of
the system independently.

In this work we are interested in the row-by-row decoupling of linear multivariable
systems with the same number of inputs and outputs (square systems) by static state
feedback. The solution to this famous problem was first established in [2], based on
the nonsingularity of a matrix constructed from the system matrices. The structural
conditions of solvability in terms of the infinite structure of the system can be found
in [1]. The decoupling problem with stability of square systems has been solved in
[10] using a geometric approach, and in [12] using an algebraic approach.

Even though there exist many results concerning this problem, most of the con-
tributions in the literature about decoupling focus mainly on the necessary and
sufficient conditions to solve the problem, but they usually do not consider nei-
ther the issue of what the structure of the decoupled closed-loop system may be
(aside from the diagonality of the closed-loop transfer function matrix) nor the
characteristics of the decoupling state feedback. Actually, in order to simplify the
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problem, a common consideration is that the diagonal entries of the closed-loop
transfer function matrix are supposed to be of the form 1/sj , where j is a positive
integer, which is also referred to as integrator decoupling. Of course, no pole loca-
tions to obtain adequate system dynamics are considered within this approach, not
to speak of the problems (for instance, internal stability) which may be caused by
possible pole-zero cancellations. Achieving first decoupling, for example in integra-
tor decoupling form, and after that trying to assign the poles of the system can be a
difficult problem, since the state feedback designed to solve the pole-assignment will
usually destroy the diagonality of the closed-loop transfer function matrix. Then,
the more reasonable approach seems to be to achieve both objectives using the same
state feedback. Considering pole-zero cancellations, it is well known that in order to
decouple a linear system, it may be necessary to cancel some invariant zeros of the
system with closed-loop poles, but that not necessarily all invariant system zeros
have to be cancelled. Then, a complete characterization of the decoupled closed-
loop system should provide the whole set of finite pole-zero structures which can be
obtained for the closed-loop system, avoiding unnecessary cancellations of invariant
zeros.

A first attempt to study the structure of the decoupled closed-loop system was
presented in [2], where the authors characterized the class of all feedback matri-
ces which decouple a system, and the number of closed-loop poles which can be
assigned. Their conditions, however, are cumbersome and difficult to apply, there
is no connection whatsoever of these conditions to the structure of the system, and
they show how to assign only a number of poles equal to the sum of the system in-
finite zero orders, which is in general less than the true number of assignable poles.
The problem of block decoupling and pole assignment was tackled in [14] using a
geometric approach, and the authors presented necessary and sufficient conditions
to solve this problem in two special cases, based on the concept of controllability
subspaces and their properties. Fixed decoupling poles for minimal systems were
proved in [6] to be equal to the interconnection transmission zeros, as defined in this
reference.

In this paper we completely describe the closed-loop structure of a decouplable
system, which is considered to be controllable but not necessarily observable (i. e.
we are not restricted to minimal systems), thus providing the whole set of decoupled
closed-loop systems which can be obtained by static state feedback. A charac-
terization of the set of all attainable transfer function matrices for the decoupled
closed-loop system is presented, which also establishes all possible combinations of
finite closed-loop pole and zero structures. The set of assignable poles as well as the
set of fixed decoupling poles are determined, and decoupling is achieved avoiding
unnecessary cancellations of invariant zeros. It is also shown that the corresponding
state feedback for a particular attainable closed-loop structure is unique if and only
if the system is controllable, and a simple procedure is provided to obtain this state
feedback.

Observe that, strictly speaking, the problem solved in this paper can not be
considered as a generalization of the problem of decoupling with stability (properly
defined in Section 2), since we are concerned with the characterization of all possible
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combinations of finite pole and zero structures for the decoupled closed-loop system,
and not only with internal stable modes. However, the conditions for decoupling with
stability can be easily derived from the results presented here (see Lemma 2). Besides
stability, the characterization of the whole set of decoupled closed-loop systems can
be further used to determine decoupling with appropriate response shaping.

The approach used in this paper is a polynomial-based structural approach. The
conditions presented in our results are simple, they have a nice interpretation in
terms of system structure, and allow for simple design computations.

After introducing some preliminaries in Section 2, the structure of the decoupled
closed-loop system is described in Section 3, and the decoupling state feedback is
presented in Section 4. An illustrative example is presented in Section 5, and we
end up with some conclusions.

2. PRELIMINARIES

2.1. Problem statement and known solutions to decoupling

We consider in this work linear multivariable systems with the same number of
inputs and ouputs, described by

(A,B,C)

{
ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

where x ∈ Rn, u ∈ Rm and y ∈ Rm are, respectively, the state, input and output
vectors of the system, and

T (s) = C(sI −A)−1B

is the transfer function matrix of the system. Further, the system (A,B, C) is
supposed to be controllable, but not necessarily observable. Another assumption,
necessary for decoupling, is that the system is invertible, which implies that the
system transfer function matrix T (s) is nonsingular.

The system (A,B, C) is said to be row-by-row decouplable by static state feedback
(or simply, decouplable) if there exists a state feedback

(F, G) : u(t) = Fx(t) + Gv(t),

where F ∈ Rm×n and G ∈ Rm×m are constant matrices with G nonsingular, and v(t)
is a new input vector, such that the input vi(t) controls the output yi(t), i = 1, . . . ,m,
without affecting the other outputs.

From the input-output point of view, the previous formulation is equivalent to
the existence of a state feedback (F, G) such that the transfer function TF,G(s) of
the closed-loop system (A+BF,BG,C) is a nonsingular diagonal matrix, i. e. there
exists a state feedback (F, G) such that

TF,G(s) = C(sI −A−BF )−1BG = diag {w1(s), . . . , wm(s)} =: W (s) (1)

where wi(s) 6= 0, i = 1, . . . ,m, are strictly proper rational functions.
The solution to the decoupling problem in terms of the infinite structure of the

system is given by the following result [1].
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Proposition 1. The system (A,B, C) is decouplable if and only if

m∑

i=1

n′i =
m∑

i=1

ni (2)

where {n′1, . . . , n′m} are the infinite zero orders, and {n1, . . . , nm} are the row infinite
zero orders of the system.

For the definition and properties of infinite zero orders, see for instance [13].
As it can be seen from Proposition 1, the necessary and sufficient conditions for
decoupling depend only on the infinite (global and row) structure of the system. The
finite structure (finite zeros and poles), on the other hand, plays an important role
concerning the general structure of the decoupled closed-loop system. The system
zeros which are fundamental to our study are the invariant zeros of the system.
Transmission zeros will be also mentioned. Even though invariant system zeros
are briefly introduced in the next section, presenting the definitions and properties
of system zeros is out of the scope of this work. For a comprehensive treatment,
see for instance [9]. Let us just mention that transmission zeros are related to
the system transfer function matrix, and they can be considered as “input-output
zeros”, while invariant zeros can be considered as “internal zeros”. Invariant zeros
contain the transmission zeros and both sets coincide if the system is controllable
and observable.

If the stability issue is considered in the problem formulation, then the system
(A,B, C) is said to be decouplable with stability if it is decouplable and the closed-
loop system (A + BF, BG, C) is internally stable, i. e. the eigenvalues of the matrix
(A + BF ) are located in the open left half complex plane.

The solution to the decoupling problem with stability in terms of the infinite and
unstable structure of the system is given by the following result ([10, 12]).

Proposition 2. The system (A,B, C) is decouplable with stability if and only if
(1) holds, and the number of global invariant and row invariant unstable zeros1 of
the system (multiplicities included) is the same.

2.2. Decoupling and cancellation of system zeros

It is well known that in the process of decoupling a linear system, some of the
transmission zeros of the system may be cancelled by assigning closed-loop poles to
the position of these zeros. It is important, however, to make the distinction between
transmission zeros that have to be cancelled in order to achieve decoupling, and
transmission zeros which are not necessary to cancel (see Example 1). Concerning
controllable and non-observable, or non-minimal systems, instead of transmission
zeros it is necessary to consider the invariant zeros of the system, which may appear
as transmission zeros of the decoupled closed-loop system.

In practical designs, cancellation of invariant zeros is usually avoided because of
potential internal instability caused by hidden system dynamics and undesirable pole

1Invariant unstable zeros are invariant zeros located in the closed right half complex plane.
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locations, which is dramatically important in the case of unstable invariant zeros.
Thus, if the main objective is to decouple the system, it is important at least to know
the number of poles which can be freely assigned, and the number of poles which have
to be cancelled with invariant zeros in order to achieve decoupling, i. e. the so-called
fixed decoupling poles.2 This information would provide a complete characterization
of the closed-loop structure and complete pole assignment of a decouplable system.

2.3. Feedback realizability of precompensators

The approach used in the next section to characterize the set of all transfer function
matrices for the decoupled closed-loop system is related to the problem of feedback
realizability of dynamic precompensators, which is introduced next. First, let us
define a biproper matrix: a nonsingular proper rational matrix is said to be biproper
if its inverse is also proper. We have [13] that a proper rational matrix, say V (s), is
biproper if and only if

lim
s→∞

V (s)

is a constant and nonsingular matrix.
Let us consider a state feedback (F, G) acting on the system (A,B, C), and the

corresponding closed-loop transfer function matrix

TF,G(s) = C(sI −A−BF )−1BG.

After some manipulations on the last equation, we obtain

TF,G(s) = C(sI −A)−1B[I − F (sI −A)−1B]−1G (3)

where T (s) = C(sI − A)−1B is the transfer function of the system (A,B, C), and
the matrix

[I − F (sI −A)−1B]−1G

appearing on the right side of (3) is easily seen to be a biproper matrix. Then the
effect of a state feedback acting on (A,B, C) can be represented in transfer function
terms as a biproper matrix postmultiplying the system transfer function T (s).

The converse problem, i. e. under which conditions a proper matrix postmulti-
plying T (s) can be realized using state feedback, is known as feedback realizability
of precompensators. Then, a given proper compensator, say Q(s), will be said to be
feedback realizable if there exists a state feedback (F,G) such that

Q(s) = [I − F (sI −A)−1B]−1G. (4)

The following result [3] states the conditions for a proper compensator to be
realizable.

2Strictly speaking, cancelled frequency values are not system poles, since they do not appear
in the system transfer function matrix. Then, it should be more appropriate to speak of fixed
decoupling modes instead of fixed decoupling poles, where poles are a subset of the system modes,
and both sets are equal if the system is controllable and observable. For simplicity, we make no
distinction in this paper between modes and poles.
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Proposition 3. Let the matrices N̄(s) and D(s) be a right coprime matrix frac-
tion description (MFD) of the system (A,B, In), and let Q(s) be a nonsingular
compensator. Then Q(s) is state feedback realizable on (A,B, In) if and only if

— Q(s) is biproper, and

— Q−1(s)D(s) is a polynomial matrix.

3. STRUCTURE OF THE DECOUPLED CLOSED-LOOP SYSTEM

The conditions for decoupling a linear multivariable system (A,B, C) are intimately
connected to the structure of the so-called system matrix [11]

P (s) =
[

sI −A B
C 0

]
(5)

related to the structure of the matrices

Pi(s) =
[

sI −A B
ci 0

]
, i = 1, . . . , m, (6)

where ci, i = 1, . . . , m, is the ith row of matrix C.
Indeed, the system (A,B,C) is decouplable if and only if the infinite structure of

P (s) coincides with the infinite structure of the matrices Pi(s), i. e. if and only if (2)
holds, where {n′1, . . . , n′m} are the infinite zero orders of P (s) (infinite zero orders of
the system), and {n1, . . . , nm} are the infinite zero orders of P1(s), . . . , Pm(s) (row
infinite zero orders of the system), see Proposition 1.

If the system is decouplable, then it is decouplable with stability if and only
if the number of unstable zeros of P (s) (unstable invariant zeros of the system),
multiplicities included, is equal to the number of unstable zeros of P1(s), . . . , Pm(s)
(row unstable invariant zeros of the system), taken all together, see Proposition 2.

The invariant zeros of the system are the finite zeros of matrix P (s), i. e. the
roots of the invariant polynomials of P (s) [9], while the row invariant zeros are the
finite zeros of matrices P1(s), . . . , Pm(s).

The general structure of the decoupled closed-loop system depends also on the
structure of matrices (5) and (6), as it will be shown. First, let us introduce the
following preliminary result.

Lemma 1. Let (A,B, C) be a square controllable system, and let ci be the ith
row of matrix C, i = 1, . . . , m. Then, the matrix

Pi(s) =
[

sI −A B
ci 0

]

can have at most one non-unit invariant polynomial.

P r o o f . The invariant polynomials of Pi(s) can be obtained as

λj(s) =
∆j(s)

∆j−1(s)
, j = 1, . . . , n + 1,
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where

∆0(s) := 0,

∆j(s) := monic greatest common divisor (gcd) of all j × j minors of Pi(s),
j = 1, . . . , n + 1,

are the determinantal divisors of Pi(s) (see for instance [5]). Since the system is
controllable, at least the first n determinantal divisors of Pi(s) are all units. This
can be seen from the fact that the Smith form of

[
sI −A B

]
is

[
In 0

]
. Then,

the only possible non-unit invariant polynomial of Pi(s) is the last one, which is equal
to ∆n+1(s). 2

Let us denote by zi(s) the last invariant polynomial of Pi(s), i = 1, . . . ,m. It
can be seen that any finite zero of Pi(s) is also a zero of the matrix P (s) given by
(5), but that a zero of P (s) is not necessarily a zero of Pi(s). In other words, any
row invariant zero is an invariant zero of the system, but an invariant zero is not
necessarily a row invariant zero. Then the product of the polynomials

∏m
i=1 zi(s)

divides exactly
∏n+m

i=1 εi(s), where εi(s) are the invariant polynomials of P (s).
The invariant zeros of the system (global or row invariant zeros) can also be

obtained from a matrix fraction description (MFD) of the system as follows. Let
N̄(s) and D(s) be a right coprime MFD of (A,B, In). Then the matrices N(s) :=
CN̄(s) and D(s) form a right MFD of (A,B,C). Observe that N(s) and D(s) are
not necessarily right coprime, since we are not restricted to minimal systems. The
invariant zeros of the system can be obtained from the invariant polynomials of the
numerator matrix N(s). In the case of row invariant zeros, the previously defined
polynomial zi(s) corresponds then to the invariant polynomial of the ith row of
N(s), i. e. zi(s) is the monic gcd of all entries in the ith row of N(s). This fact will
be used in the proof of Theorem 1.

The family of all attainable transfer function matrices for the decoupled closed-
loop system is characterized by the following result.

Theorem 1. Let (A, B,C) be a square, controllable, and decouplable system.
Then, there exists a state feedback (F, G) which decouples the system, such that the
transfer function of the decoupled closed-loop system is of the form

W (s) = C(sI −A−BF )−1BG =




k1
z1(s)
a1(s)

. . .
km

zm(s)
am(s)


 (7)

where k1, . . . , km, are real numbers, zi(s) is the last invariant polynomial of the
matrix Pi(s), i = 1, . . . , m, as introduced before, a1(s), . . . , am(s), are monic poly-
nomials with arbitrary roots, satisfying

deg ai(s)− deg zi(s) = ni, i = 1, . . . , m, (8)

and n1, . . . , nm, are the row infinite zero orders of the system.
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P r o o f . We will prove the result by showing that the set of compensators given
by

Q(s) := T−1(s)W (s), (9)

and producing (7) as transfer function matrix, are the set of all feedback realizable
compensators that decouple the system.

The degree constraint (8) is easily seen to hold, since the decoupling state feedback
(F, G) does not modify the infinite zero structure of the system, and in particular it
does not modify the row infinite zero orders. Since the system is decouplable, then
there exists a biproper matrix U(s), such that

T (s) = diag
{

1
sn1

, · · · ,
1

snm

}
U(s).

Then, we have from (9) that

Q(s) = U−1(s)diag {sn1 , . . . , snm}W (s).

From the last equation and the degree constraint (8), it can be seen that Q(s) is
a biproper matrix.

Let N̄(s), D(s) be a right coprime matrix fraction description of (A, B, In). Then,
by Proposition 3 the matrix Q(s) will be proved to be state feedback realizable if
Q−1(s)D(s) is a polynomial matrix.

We have that
T (s)Q(s) = CN̄(s)D−1(s)Q(s) = W (s),

then

Q−1(s)D(s) = W−1(s)N(s) =




a1(s)
k1z1(s)

. . .
am(s)

kmzm(s)


 N(s)

where N(s) = CN̄(s). Since zi(s) is the monic gcd of all entries in the ith row of
N(s), then it can be seen that Q−1(s)D(s) is a polynomial matrix, implying that
the matrix Q(s) is state feedback realizable.

To see that any other matrix not contained in the set (7) can not be the transfer
function of the decoupled closed-loop system, observe that the state feedback can
not introduce finite zeros, and therefore no other polynomial different from zi(s) (not
considering possible cancellations between zi(s) and ai(s)), which contains the row
invariant zeros of the system, can appear as numerators in (7). Alternatively, the
corresponding compensator to get any matrix not contained in (7) is not feedback
realizable. 2

Theorem 1 completely characterizes the set of all matrices which can be obtained
as transfer function matrices for the decoupled closed-loop system of a decouplable
system. This characterization provides also all the set of possible finite pole-zero
structures for the decoupled closed-loop system. The set of fixed decoupling poles
of the system are given by the following result.
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Theorem 2. The fixed decoupling poles of the system correspond to the roots of
the polynomial

δ(s) :=
∏n+m

i=1 εi(s)∏m
i=1 zi(s)

(10)

where ε1(s), . . . , εn+m(s), are the invariant polynomials of P (s), and zi(s) is the last
invariant polynomial of Pi(s), i = 1, . . . ,m.

P r o o f . The set of invariant zeros of (A,B,C) are the roots of the polynomials
εi(s), and it is evident from (7) that the only frequency values that can be finite
zeros of the decoupled closed-loop system are the roots of the polynomials zi(s). If
δ(s) is a polynomial different from 1, then some of the poles of the system (the fixed
decoupling poles) must be located at the positions of the roots of δ(s) producing
cancellation with invariant zeros of the system. 2

Remark 1. From the previous result, it can be seen that the fixed decoupling
poles correspond to invariant zeros which are not row invariant zeros of the sys-
tem. Observe also that there are no fixed decoupling poles (all system poles can be
assigned) if the system has no invariant zeros, or if all invariant zeros (multiplicities
included) are also row invariant zeros of the system.

Corollary 1. It follows from Theorem 2 that the number of poles which can be
arbitrarily assigned while decoupling the system is equal to

n− deg δ(s), (11)

where n is the order of the system and δ(s) is given by (10).

Well-known results about decoupling with stability can be readily obtained from
the results presented previously, as follows.

Lemma 2. The system (A,B, C) is decouplable with stability if and only if there
are no fixed unstable poles, i. e. if and only if the polynomial δ(s) given by (10) has
no roots in the closed right half complex plane.

P r o o f . The result follows since this condition is equivalent to saying that the
system is decouplable with stability if and only if it is decouplable, and the set of
unstable invariant zeros of the system (multiplicities included) coincide with the
unstable row invariant zeros of the system (see Proposition 2). 2

4. DECOUPLING STATE FEEDBACK

Concerning the decoupling state feedback, it will be shown next that for a particular
choice of transfer function matrix from the set (7), say W1(s), the corresponding state
feedback producing W1(s) is unique if and only if the system is controllable, which is
the case of the systems we are considering in this paper. First, the next preliminary
result will be presented.
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Lemma 3. The system (A,B, C) is controllable if and only if it does not exist a
constant vector q different from zero such that

q(sI −A)−1B = 0. (12)

P r o o f . Evident from the controllability of the system. 2

Theorem 3. Let (A,B,C) be a decouplable system, and let W1(s) be a particular
matrix from the set (7). Then, the state feedback (F,G) producing W1(s) as the
transfer function of the decoupled closed-loop system is unique if and only if the
system is controllable.

P r o o f . Write Q(s) = T−1(s)W1(s) as

Q(s) = Q0 + Qsp(s) (13)

where Q0 is a constant matrix, and Qsp(s) is the strictly proper part of Q(s).
Then, from (4), and since F (sI −A)−1B is strictly proper, matrix G is uniquely

given by
G = lim

s→∞
Q(s) = Q0. (14)

Since the system is decouplable for W1(s), then there exists a constant matrix F
such that

F (sI −A)−1B = Im −GW−1
1 (s)T (s) (15)

where G is given by (14).
If the system is controllable, by Lemma 3 the matrix (sI − A)−1B has no left

constant kernel different from zero, thus matrix F is unique. 2

The decoupling state feedback (F,G) can also be obtained from the constant
solution to a polynomial matrix equation as follows. If the system is decouplable,
then there exists a constant solution X, Y , with X nonsingular [8] to the polynomial
matrix equation

XD(s) + Y N̄(s) = Q−1(s)D(s) (16)

where N̄(s), D(s) is a right coprime matrix fraction description of (A,B, In), with
D(s) column reduced. Then, the state feedback (F, G), given by

F = −X−1Y, G = X−1, (17)

produces W (s) as the transfer function of the decoupled closed-loop system.
From the previous results, it follows that if the system is controllable, then the

solution X,Y to (16) with the aforementioned properties is unique. The uniqueness
of such a solution to a polynomial matrix equation like (16) has already been proved
in [4]; see also [7].
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5. EXAMPLE

The following example is presented in order to illustrate the results of this paper.

Example 1. Let the controllable system (A,B,C) be given by

A =




−2 3 0 −1 1
1 0 0 0 0

−2 −1 −1 3 5
0 0 1 0 0
0 0 0 1 0




, B =




0 1
0 0

−1 1
0 0
0 0




,

C =
[

0 1 0 −1 −1
1 −1 0 0 0

]

whose transfer function is

T (s) =




1
(s−2)(s+2) 0

s−1
(s−2)(s+2)3

s+1
(s+2)2


 .

Since the row infinite zero orders of the system

n1 = 2, n2 = 1,

coincide with the infinite zero orders, then the system is decouplable. Further, we
have that

z1(s) = 1, z2(s) = s− 1,

ε1(s) = · · · = ε6(s) = 1, ε7(s) = (s + 1)(s− 1),

and

δ(s) =
(s + 1)(s− 1)

s− 1
= s + 1.

Then, the set of matrices which can be obtained as transfer function matrices for
the decoupled closed-loop system is given by

W (s) =




k1
(s+α1)(s+α2)

0

0 k2(s−1)
(s+α3)(s+α4)


 ,

and there exists a fixed decoupling pole at s = −1, i. e. the system invariant zero
at s = −1 has to be cancelled in order to decouple the system, while it is not
necessary to cancel the invariant zero at s = 1. Observe that s = 1 is an invariant
row and global zero of the system, which is not evident from the system transfer
function, since the system is not observable; thus, this zero can also appear in
W (s) using a state feedback which decouples the system. Notice also that the
system is decouplable with stability, since there are no fixed unstable poles, and
that 4 out of the 5 system poles can be arbitrarily assigned. To see the importance



44 J. RUIZ-LEÓN, J. L. OROZCO AND O. BEGOVICH

of characterizing the set of all attainable pole and zero finite structures for the
decoupled system, observe that if the invariant zero at s = 1 does not appear as a
zero of the closed-loop transfer function matrix (because it remains non observable or
it is cancelled later on “by mistake”) then the decoupled system would be internally
unstable.

Let us choose a pole-zero finite structure corresponding to the following matrix

W1(s) =




1
(s+1)(s+2) 0

0 s−1
(s+2)2




i. e. we aim to obtain a decoupled and internally stable closed-loop system, with
poles at the positions specified by W1(s).

Then, the unique state feedback producing W1(s) is computed as described in
the paper as

F =
[ −3 −6 3 9 6
−2 −7 0 1 −1

]
, G =

[
1 0
0 1

]
.

6. CONCLUSIONS

In this paper, we completely characterized the closed-loop structure of a linear square
multivariable system decouplable by static state feedback. A characterization of
all matrices that can be obtained as transfer function matrices for the closed-loop
decoupled system was presented. From this result, all possible combinations of
attainable finite closed-loop pole and zero structures of the system can be readily
established. The set of assignable modes was determined, as well as the set of
fixed decoupling modes. The conditions presented in our results are simple, they
have a nice interpretation in terms of system structure, and allow for simple design
computations.

Based on the results of the present paper, in [15] a numerical algorithm has been
developed to solve the problem of decoupling and complete pole assignment.

(Received October 17, 2003.)
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