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THE TECHNIQUE OF SPLITTING OPERATORS
IN PERTURBATION CONTROL THEORY

MiHAIL M. KONSTANTINOV, PETKO HR. PETKOV, NicoLAl D. CHRISTOV

Dedicated to the memory of our colleague and friend S. P. Patarinski.

The paper presents the technique of splitting operators, intended for perturbation anal-
ysis of control problems involving unitary matrices. Combined with the technique of Lya-
punov majorants and the application of the Banach or Schauder fixed point principles,
it allows to obtain rigorous non-local perturbation bounds for a set of sensitivity analysis
problems. Among them are the reduction of linear systems into orthogonal canonical forms,
the general feedback synthesis problem, and the pole assignment problem in particular, as
well as other basic problems in control theory and linear algebra.
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1. INTRODUCTION

The aim of perturbation analysis of a given problem is to provide bounds for the
perturbations in the solution as functions of the perturbations in the data. There
are at least three sound reasons to study the sensitivity of various problems relative
to perturbations in the data.

First, this may give an independent and deep insight at the very nature of the
problem, being therefore of independent theoretical interest.

Second, perturbation bounds provide a more realistic modelling framework for
most problems. Indeed, there are inevitable measurement and other parametric and
structural uncertainties, which means that we have to deal with a family of models
rather than with a single model. In this case the perturbation bounds give us a tube
in the space of models, to which the particular model actually belongs.

And third, when a numerically stable algorithm is applied to solve the problem
then the solution, computed in finite arithmetics, will be close to the solution of a
close problem. Having tight perturbation bounds and a knowledge of the equivalent
perturbations for the computed solution, we may produce condition and accuracy
estimates. Without such estimates a computational algorithm cannot be recognized
as reliable from the viewpoint of modern computing standards.
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In this paper we first present the technique, proposed in [13], which splits the
equivalent operator of a perturbation problem involving unitary matrices, thus al-
lowing an efficient application of Lyapunov majorants [1] and various fixed point
principles [4, 12]. Then, we use this technique to obtain non-local perturbation
bounds for the problem of computing orthogonal canonical forms of linear control
systems and for the general feedback synthesis problem and the pole assignment
problem in particular.

The following notations are used: F is the field of real R or complex C numbers;
FmX™ is the space of m x n matrices over F; Z7, ZH and ZT are the transpose,
the complex conjugate transpose, and Moore-Penrose pseudoinverse of Z = [z;;];
spect(Z) is the spectrum of Z € F™*™, i.e. the set of eigenvalues of Z counted
with their algebraic multiplicity; I, is the unit n x n matrix; GL£,, is the group of
nonsingular n x n matrices over F and O,,, U,, C GL,, are the groups of orthogonal
and unitary matrices; || - |2 and || - || are the spectral and Frobenius norms in
Fmxm while || - || is the induced operator norm or an unspecified matrix norm. The
Kronecker product of the matrices A, B is denoted by A ® B and the symbol :=
stands for “equal by definition”.

2. STATEMENT OF THE PROBLEM

Suppose that we have a matrix problem with data D = (A, B, ..., A), where A, B, ...,
are real or complex matrices and A is a collection (a set with repeated elements)
of complex numbers. We consider problems, in which the resulting matrix (or the
solution) S = F(D,U) is upper triangular, and is obtained from the data by mul-
tiplicative transformations with a unitary matrix U. We recall that the implemen-
tation of numerically stable unitary (or real orthogonal) transformations is highly
desirable in order to improve the performance and reliability of the corresponding
matrix numerical algorithm.

Let D be subject to a perturbation D — D + AD. We consider D as an element
of a normed linear space D with summation (D, F) — D + E, multiplication by
scalars (o, D) — aD and norm D +— ||D||, defined in some of the standard ways.
Thus F is a map from a subset of D xU to the space S of upper triangular matrices,
where U is the group of unitary matrices of corresponding size.

Suppose that the perturbed problem with data D+ AD has a solution S+ AS =
F(D+AD,U+AU), where U+ AU is the perturbed unitary transformation matrix.
Then the perturbation problem is to estimate the norm of the perturbation

AS =F(D + AD,U + AU) — F(D,U)

in the solution S and AU in the transformation matrix U as functions of the per-
turbation AD in the data, e.g.

1AS| < fAIAD]D, AUl < g([AD])

where f and g are non-decreasing functions with f(0) = g(0) = 0. When a more de-
tailed information about the perturbations in the data is available, the perturbation
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bounds are in the form
[AS] < fF(IAA[L JAB],...), [[AU] < g([AA][[AB],...). (1)

Two types of perturbation bounds are usually used. First, these are the asymp-
totic bounds, which are linear or homogeneous first order expressions in the pertur-

bation vector A = [||AA],||AB]|,...]T. The linear perturbation bounds have the
form
IAS|] < Ksal| AA| + Ks, 5| AB| + ...+ O(|A]1?) (2)
IAU|| < Ky, al AA|| + Kusl|AB|| + ... + O(|A[*), A — 0 3)

where K n are the absolute condition numbers of the problem. There also exist
improved first order perturbation bounds, which are not based on condition numbers
and are generally better than (2), (3), see [9].

The asymptotic perturbation analysis usually does not give estimates for the
O(||A]|?) terms (this is actually the goal of non-local perturbation analysis) and in
practice the asymptotic bounds are used simply neglecting the second and higher
order terms. The resulting chopped bounds often produce acceptable results. How-
ever, they are not rigorous and may severely be violated in some cases. Without
warning for the user, this may be a serious misleading.

These disadvantages of asymptotic perturbation bounds may be overcome using
the techniques of non-local perturbation analysis. As a result we get non-local (and
usually non-linear) rigorous perturbation bounds of type (1). They are valid for per-
turbations AD from certain domain D, which may be small but is nevertheless finite.
Moreover, the inclusion AD € D guarantees that the solution F(D + AD,U + AU)
of the perturbed problem exists. This is an important issue from both theoretical
and practical point of view. Note that chopped asymptotic bounds do not guarantee
such existence and they “work” when the perturbed solution is either too large or
is even non-existent.

To derive non-local perturbation bounds it is necessary to transform the initial
perturbation problem into an equivalent operator equation. Then an application of a
fixed point principle would produce the desired bound. The first phase — constituting
the equivalent operator equation for problems involving unitary transformations,
is done by the technique of splitting operators [7, 10, 13]. The second phase —
application of fixed point principles [4, 12], is done by the technique of Lyapunov
majorants [1, 10].

Writing U + AU as U(I + X), where X = UX AU, we see that the matrix I + X
is unitary, i.e. X + X + X X = 0. An additional equation for X is obtained by
the technique of splitting operators, see e. g. Sections 4 and 5 for two such examples.
As a result we get an operator equation

X =II(X,AD), II(0,0) = 0. (4)

Let |X| = [&1,....&]"T € RE, Ry

= [0,00), be a generalized norm of X, i.e.
|X] = 0, [aX]| = [af[X] and [X + Y] =< |

X| 4+ |Y|. Here < is the partial order
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relation in R*, such that X <Y means Y — X € Rf‘;_ Let for instance Py, ..., Py be
projectors in C™*™ such that P, + ...+ P, = I. Then we may choose &; = || P, X]||F.

Suppose that we can find a Lyapunov majorant function [1, 10] for equation (4).
This is a differentiable function (£, A) +— h(£,A), h = [h1,..., h]T, € = [&1, ..., &7
such that

ITI(X, AD)| = h(|X],A).

In addition h(0,0) = 0 and the components h; of h are non-decreasing functions
in all their arguments. Under these conditions there exists A = 0, such that for
A =< AY the vector equation & = h(£,A) has a solution ¢ = ¢(A), tending to zero
together with A. Hence for A < AP the operator II(-, A) maps the closed convex
set

Ba ={X :|X| 2 (A} cCcmm

into itself. Then, according to the Schauder fixed point principle, there exists a
solution X € Ba to the operator equation (4), such that

IX| < p(A), 0<A<A° (5)

This is the desired non-local perturbation bound for the generalized norm of X.
Now the estimates for |AU|| = | X|| and ||AS|| are straightforward.

In problems with unique solution it is possible to show that for A < A the
operator II(-,A) is a contraction on the set Ba Then applying the Banach fixed
point principle we see that the solution X of equation (4), for which the estimate
(5) holds, is unique.

3. SPLITTING OF THE EQUIVALENT OPERATOR

Denote by Low, Diag and Up the projectors from C™*™ on the subspaces of strictly
lower, diagonal and strictly upper n x m matrices, respectively.
In the considered perturbation problems, the perturbed resulting n x m matrix

F(D+ AD,U + AU) = F(D,U)+ Fp(D,U)[AD] + Fy(D,U)[AU] 4+ O(p?)
= F(D,U)+G(D,U,AD,AU), p=+/||AD|? + AU |2

where Fz(D,U)[-] is the Fréchet derivative of F in the argument Z at the point
(D,U), is again upper triangular, and we may write

Low(F(D + AD,U + AU)) = Low(G(D, U, AD, AU)) = 0. (6)

The perturbed n x n transformation unitary matrix U + AU may be written as
U(I 4+ X), where the matrix I + X is unitary and the norm of X is small (of the
order of the perturbations in the data). We may represent the matrix X in a splitted
form as

X = X; + X3 + X3 = Low(X) + Diag(X) + Up(X).
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The crucial fact in application of the splitting operator technique is that the main
(linear) part in (6), usually in the form Low(SX — X S), depends only on the strictly
lower part X; of X rather on the whole matrix X. Then equation (6) yields

L(X1) = ©(X,AD) (7)

where L is a linear operator and [|©(X,AD)| = O(p?), p — 0.

Under certain natural assumptions, the restriction L; of the operator L on the
n(n — 1)/2- dimensional subspace of strictly lower triangular matrices is invertible
and hence we may write

X, =1L (X,AD) := L' (6(X,AD)). (8)

We need two more equations for the diagonal X5 and strictly upper X3 parts of
X. Due to the unitarity of I + X we have

X4 X+ XX =x+Xx" XX =0 (9)
Applying the Diag and Up operators to (9) we get

X, = ,(X) = —Diag(X 7 X)/2 (10)
and
X3 = I03(X) = ~Up(X™) — Up(X"X). (11)

Equations (8), (10) and (11) constitute an operator equation
X =II(X,AD), II = (I, I, II5) (12)
for X. In view of (10) and (11) we have
I ()| < 0.5X13

Ms(OllF < [XillF + V(0= 1)/@n) | X%

These inequalities together with (8) show that, for [|[AD|| sufficiently small, the
operator II transforms a set of diameter O(||AD||) into itself and we may apply the
method of Lyapunov majorants, see [1, 10] and Section 2. For this purpose we use
the generalized norm

|1X| = [€1,6.86]" = [IXu]lp. [IXallr, | Xs]|r]" € RE

in C"*™. In certain cases (e. g. problems with unique solution) we can even show that
the operator II is a contraction, thus claiming the existence of an unique solution X
of the operator equation (12).

In the next two sections we demonstrate the technique of splitting operators for
solving two basic perturbation problems in control theory: the perturbation analysis
of orthogonal canonical forms [11, 15, 17] and of the feedback synthesis problem
[8, 16].
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4. ORTHOGONAL CANONICAL FORMS
Consider first the controllable single-input system
z(t) = Azx(t) + Bu(t) (13)

where z(t) € R", u(t) € R! and A € R™ ", B € R". Further on system (13) is
identified with the matrix pair S = (A4, B).

As it is well known [6], the canonical form of S relative to the orthogonal trans-
formations group O, is

Se = (A¢, Be) = (UTAU7 UTB)? U € On,

a1 G2 @13 ‘c Glnp-1 Gl a0
az1 @G22 0A23 “*° Q2,1 Q24q 0
A, = 0 a32 a3z -+ a3n-1 Ga | B = 0 (14)
0 0 0 vt OApn—1  Onp 0
where a; ;1 >0;i=1,...,n.

Let a,b be positive constants such that the pair S+ AS := (A+ AA, B + AB)
remains controllable provided ||AA|r < a, ||AB|| < b. Denote by (S + AS). =
((A4+AA)., (B+AB).) the orthogonal canonical form of the perturbed pair S+ AS
and let U + AU € O,, be the corresponding transformation matrix.

Our purpose is to estimate the perturbations in the canonical form S,

An = [(A+AA)e = Acllr, Ap, = [|(B+AB). — Bl

as functions of the perturbations A 4 := [[AA||p, Ap := ||AB| or Ag := /A% + A%.
The estimate for Ap, is immediate:

Ap, = [[(B+AB)c| = [IBelll < [AB]| = Ap (15)
with equality if AB is proportional to B.
Denoting X := AUTU, E := (U+AU)TAA(U+AU), F := (U+AU)T AB we get
(A+AA), —A.=E+ (XA, — AX)(I, + XT) (16)
(B+AB).— B.=F + XB.. (17)
It follows from (16) that
Au, < |EBllF + X Ac — AcX||F < Ay + wAy (18)
where Ay = ||AU||r = || X||F and
w = w(A) = max{ [VA— AY|lp: [Vip =1} = 1o © A~ AT @ L.

Below we derive bounds for Ay which are nonlinear functions in Ag.
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Let L be the linear operator mapping the subspace of strictly lower matrices
Low(R™ ™) into Low(R"™*("+1)) and defined from

L(Y) := Low[Y B, YA, — AY], Y € Low(R™™).
Then
L(Low(X)) = —Low[F, E] — Low[0, (X A, — A.X)XT]. (19)

The restriction Ly of L into Low(R™ ("+1) is invertible if and only if the dimension
of the controllable subspace of S is not less than n — 1. In this case

Low(X) =, (X) := —L;* (lw(Low[F, E] + Low[0, (X A, — ACX)XT])) (20)

— T —1)/2
where IW(Z) i [Z2,l7 ce 3 Rn,19R3,25 00053 20,25 0 0y zn,n—l] € Rn(n )/ .

The general form of the block lower triangular matrix L; € R**%, s:=n(n—1)/2,
of the operator L; is given in [15]. We have Ly = [Ly, ;]; i,j = 1,...,n — 1, where

Ly, ; = [0m—i)x(i—j) @ji—1In—i] — Dijr1Ac(i+1:n,j+1:n) € R(=0x(n=)

if i > jand L1, ; = Oy—i)x(n—y) if @ < j. In particular Ly, , = a;;—11n—-
Equation (19) together with

X+XT+XX"=0 (21)

constitute a system of matrix equations for determining X. We shall rewrite this
system as an operator equation X = II(X), where IT : R™*"™ — R"™*™ is a nonlinear
operator [7].

Let X; = Low(X), X2 = Diag(X), X3 = Up(X). Determine Xo, X3 via (21)
and X; — via (19). Then we have

X = X1 4 Xo + X3 = II(X) = I (X) + Ia(X) + I5(X) (22)
where the operator II is defined as follows: II; (X)) is the right-hand side of (20) and
(X)) := — Diag(X* X)/2
M3(X) == —X{ — Up(XTX).
Set & := [€1,62,&]", & = | XillF, 7= [|¢]|* and
v = (8) = max{Low[0, (Y A, — AV)Y T [¥]|p = 1}.

The maximization for determining v may be done by the direct optimization tech-
nique proposed in [3].
It may be shown that

T (X)||F < f1(§,As) = ¢1(r, Ag) == M\/(l — a?)A% + (aAg +vr)?

M2 (X)[lr = f2(£) =

2
IT3(X)||r < f3(8) ==&

+ A7
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where o := Ay /As < 1 and A2 := (n — 1)/(2n). Note that in the above estimates
v may be replaced by the greater quantity

g = VO(S) = H(In ®Az - Ac ®In)(2n+ 1: n2’ L: HZ)HQ'

Consider now the vector equation
¢ = f(c,Ag) (23)

where ¢ := [c1, ¢, c3]T, fle,As) = [fi(c,As), f2(c), f3(c)]T. As follows from the
analysis below, equation (23) has a positive solution ¢ = ¢(Ag) for Ag > 0 suffi-
ciently small. The equivalent equation in r:

r=¢(r,Ag) := (b%(n Ag) + irz + (d1(r, Ag) + Ap1)? (24)

may be written as an algebraic equation of fourth order.

Since ¢(r, A) is increasing in both  and A then applying the method of majorant
Lyapunov functions [1] it may be shown that there exists a positive constant A*
(depending on u, o and n) such that:

— For 0 < Ag < A* there exist two positive solutions rmin = rmin(Ag) < Mmax =
Pmax(Ag) of (24)) (for Ag = 0 one has ryin = 0, rmax = 2/(a2 + 82), see (27)
for notations);

— For Ag = A* there exist one (double) positive solution r* := 1y, (A*) =
Tmax(A*) of (24);

— For Ag > A* there are no real solutions of (24).
The pair (r*, A*) is obtained as a solution of the nonlinear system of equations
r=¢(r,A), 1=4¢.(r,A).

We note that in general the critical value A* and the corresponding solution of (23)
c* = ¢(A*) are obtained via the nonlinear system [1]

c= f(C’ A)a det(I3 - fé(ch)) =1

where fl(c, A) = [0fi(c, A)/Oc;] is the Jacobi matrix of f in the argument c.
The square root of the smallest positive root ryi, of (24)) has the following
expansion in Ag:

= V/Tuin(As) = V2pAs(1+ (A, + 200) A g (25)
3 5
—|—(§ %—FQ,u V2 4 S8apv, + 60212Vt A%) + O(AY).

For Ag < A* denote by ¢min = [Cmin, 15 Cmin.2, Cmin,3)’ = Ccmin(Ag) the solution of
(23) corresponding to the root ry;, of (24), and consider the set

B= B(As) = {X € R HXZHF < Cmin,i(AS); 1= 1,2,3} C R,
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Since
(I (X) || 7, ITT2(X) ||, 1T (X)) 2) T = £(6, A8) = f(Crnin, AS) = Canin

then the operator II maps the bounded closed convex set B into itself and hence
there is a fixed point X € B of II [4] for which the estimate

[X[|r = IT(X)||F < [lemin(As)]| = p(As)
holds. Thus
AAc <Ay + wp(As). (26)

An explicit, although less sharp estimate of the norm of X may be derived as
follows. Indeed, B
fl(é.a AS) S fl(fa AS) = /’L(AS + I/T)
and solving the system
c= 7(07 AS) = [?1 (Ca AS)» f2(c)7 fS(C)]T
instead of (23), we obtain the equation

27?2 — 2(1 — 2uB, Ag)T + 4u* A% =0 (27)

where a2 := 1 — 5= + 2, 8, := 2uv + A,. Hence if

1
Ag < o7~
2p(an + Bn)
then equation (27) has a positive root
— — 1 —2uB,As —/D(As) 4P A%,
Tmin = Tmin(AS) = 5 =
an 1- Q,UBHAS + vV D(AS)
where D(Ag) := (1 — 2u83,As)? — 4u*a? A%. Now the bound for || X | is
| X|lF < P(As) = V/Tmin(As)
and according to (18)
AAC <Ay + u)ﬁ(As) (28)

Note that the linear perturbation bound (the first order term in Ag) for || X||F
is v2uAg. The quantity v/2u is the absolute condition number of the problem of
computing the matrix U transforming the pair S into orthogonal canonical form S..

The extension of the above results to the multi-input case is straightforward.

Consider the controllable multi-input system

z(t) = Ax(t) + Bu(t)

where z(t) € R", u(t) € R™ and A € R™"*", B € R"*"™.
Denote by (mq,...,m,) the collection of conjugate Kronecker indices of S =
(A, B). Then the orthogonal canonical form of S is

S,:=(A., B.) = (UTAU,UTB), U €0,
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Ain Ao Az oo Alpor Al Ao
A1 Ao Az - Asp1 Asy 0
A= O Az Asz - Agpa Azp | po=| O (29)
0 0 0 T Apmfl Ap,p 0
where the matrices A; ;1 € R™>*™i-1; {=1,...,p; mo = m are upper trapezoidal

and of full row rank. The detailed structure of the matrices A, ;_1 which corresponds
to the precise definition of a canonical set in the set of controllable systems is given
in [6].

Let a, b be positive constants such that perturbations AS := (AA, AB) in (A, B)
preserve controllability provided |AA|r < a, ||AB||r < b. Denote by (S + AS).
the orthogonal canonical form of the perturbed pair S + AS and let U + AU be
the corresponding (unique) orthogonal matrix transforming S + AS into orthogo-
nal canonical form. Similarly to the single-input case, the perturbation analysis of
multi-input orthogonal canonical forms is aimed at estimating the F-norms of the
perturbations

(A+AA).—A., (B+AB).— B,

as functions of the F-norms of AA, AB or AS.

In studying the sensitivity of multi-input orthogonal canonical forms, only the
generic case is considered, when the first n columns of the controllability matrix
Q(S) € R™"*P™ of S are linearly independent. This is not a restrictive assumption
since the lack of genericity could make the perturbation analysis of S. meaning-
less. Indeed, in the nongeneric case the orthogonal canonical form S. may even be
discontinuous as a function of Ap := ||AB||r, A4 := ||AA| F, see Example 1 below.

For the generic pair S let again a, b be positive constants such that S+AS remains
generic when Ay < a, Ag < b. We shall study only perturbations AS satisfying the
last two inequalities. Then all main relations for single-input orthogonal canonical
forms are valid formally for the multi-input case with some minor changes.

For the input matrix perturbation Ap,, instead of (15) we have the bound [11]

V2| B

A <Ap |1+ —F—"—
Be = B ( + Umin(B) _AB

) =1+ \/§C0nd2(B)) Ap + O(AQB) (30)

where condy(B) = ||B||2/|Bf|l2 = 0max(B)/0min(B) is the condition number of the
matrix B in the 2-norm, and omax(B) and oy (B) are the maximal and minimal
singular values of B.

For the state matrix perturbation A 4_, the bounds (26), (28) may be used, noting
that the operator L; : Low(R"™*") — Low(R"*("+™)) is formally determined by the
expression for L. We stress that in the nongeneric case the operator L; is usually not
invertible. More precisely, L, is invertible if and only if the first n — 1 columns of
the controllability matrix Q(S) are linearly independent. However, the expressions
for the blocks Ly, ; of the matrix L; of L; are different in the multi-input case. If
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e.g. n=5m=m; =mg=2,mg=1and

a1 G2k * * big b1

az1 a2 * * * 0 b2,2
Ac=| az1 asz * * * |, Be= 0 0
0 a42 as3 ass a45 0 0
0 0 as3 asa4 0as5 0 0

then the blocks Ly, ; € R1O~9* (=) of the upper triangular matrix Ly = [L1, ,]; 4,j =

1,...,4 of the operator L; are determined from
Ly, , =b11ly, Ly,, = bool3, L1, , = az1la, L1, , = as2, L1, , = [03x1,b1,213]
Ly, , = [02x2,a1,112] — Ac(4: 5,2:5), L1, , = [02x1,0a2,115]
Ly, , = [01x3,a12], L1, , = [O1x2,a22] — Ac(5:5,3:5), L1, , = [0,a32].
In the definition of the quantity v one has to replace [0, A.] = [Onx1,4 €
R7L><(n+1) with [Onxvac] c Rnx(7L+7rz)_

Example 1. Consider the nongeneric system with matrices

000 0 1
A=|1001|, B=|0 0
01 0 00

for which p = 3 and m; = ms = mg3 = 1. Since the system is already in orthogonal
canonical form, we have U = I3. Let AB be a matrix with a single nonzero element
8 > 0 in position (2,1). Then the orthogonal canonical form of the perturbed pair
(A, B + AB) has matrices

0 1 0 6 0
Ac=1|10 0 0|, (B+AB).=]| 0 1
1 00 0 0
and
01 0
U+AU=1]1 0 0
0 0 1
Hence
0 1 0 8 -1
A.—A=| —1 0 0|, (B+AB),—B=| 0 1
1 -1 0 0 0
and
-1 1 0
AU = 1 -1 0
0 0 0
Thus

Ay =2,A4 =2, A, =1/2+ A% =/2+ 2

and the orthogonal canonical form S, is discontinuous with a jump Ag, = /6 since
AAC :0, ABC =0 for AS =0.
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Example 2. Consider a fifth order system with m = m; = mg =2, m3 =1 and
matrices
—2.00 1.00 0.00 —9.00 17.00 -5 1
—1.00 3.00 2.00 5.00 8.00 0 2
A= 0.01 0.00 —4.00 -7.00 —6.00 |, B= 0 0
0.00 0.01 —-3.00 -1.00 5.00 0 0
0.00 0.00 0.20  0.00 1.00 0 0
Let the perturbations in the data be
AA =101 , AB=10"""

= O OO
N O NO O
o O o oo
S oo oo
(v el e B e )
WO == O
S o N OO

The quantity v 10.99 was obtained by the procedure mdsmax from [3]. The
estimate v of v is 22.00.

The results for A4, and Ap, are shown in Table 1 for different values of 7. In
the case denoted by * the estimate (28) does not exist since the quadratic equation

for 7 has no real roots.

Table 1.

) HAACHF Est. (28) Est. (28) ||ABC||F Est. (30)

with v with v
11122x1078 | 6.16 x 1078 | 6.16 x 1078 || 4.47 x 10713 | 2.58 x 10~ 11
21122x1077 | 6.16 x 1077 | 6.16 x 10~7 || 4.47 x 10712 | 2.58 x 10~10
311.22x10°%]6.16x107% | 6.17x 1078 || 447 x 10710 | 2,58 x 10~8
411.22%x107% | 6.19x107° | 6.23x107° || 447x107° | 258 x 1077
511.22x107%* | 6.53 x107* | 7.02x 10~* || 447 x 1078 | 2.58 x 106
6| 1.22x10°3 * * 447 x 1078 | 2.58 x 1076

5. FEEDBACK SYNTHESIS
Consider the controllable and observable system
i(t) = Ax(t) + Bu(t), y(t) = Cxz(t) (31)

where z(t) € F*, u(t) € F™,y(t) € F" and A € F"*" B € F**™ C € F™*". We
assume that rank(B) = m < n,rank(C) = r < n and identify system (31) with the
matrix triple S = (C, A, B).
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The general feedback synthesis problem for system (31) is formulated as follows
[8]. Let I" be a subgroup of GL,,. The matrix F € F™*™ is said to be a I'-attainable
form for (31) if there exists a gain matrix K € F™*" and a matrix U € I' such that

®(S;U,K):=U ' (A+BKC)U=F (32)

or, equivalently
(S, F;UK):=(A+ BKC)U-UF =0. (33)

For a given I'-attainable form F, the problem is to find K (and eventually U) such
that (32) or (33) is valid.

The most important particular case of the feedback synthesis problem is the
pole assignment problem: For a given set {1, ..., A\, } of complex numbers (for real
systems this set must be symmetric about the real axis) find a gain matrix K which
preassigns the spectrum of the closed-loop system matrix, i.e. spect(A + BKC) =
{1, - A

From computational point of view it is preferable to reformulate the pole assign-
ment problem as a problem of synthesis of an U,,-attainable upper triangular matrix
F with spect(F) = {A1,..., A\ }:

®o(S;U, K) := (Low + Diag)(U” (A + BKCO)U) = A (34)

where U € U,, and A := diag(\q,..., \p).

Let the matrix F' be GL,-attainable and (U, K) be a solution of (32). Sup-
pose that AS = (AC,AA,AB) and AF are perturbations in S and F', such that
IAC|, [|AA], |AB||, |]AF]| < p, p > 0. For sufficiently small p the perturbed matrix
F 4+ AF is also GL,-attainable and the perturbed equation of type (32)

(S + AS;U*, K*) = F + AF (35)

has a solution U* = U 4+ AU, K* = K + AK.

The perturbation analysis of the feedback synthesis problem consists in finding
estimates for the perturbation Ag := |AK||r in the solution for the gain matrix
(and eventually for the corresponding perturbation in the transformation matrix U)
as function of the perturbations Az := [|[AZ||p in the data Z = C, A, B, F.

Consider the linear operator L(-,-) : F™*" x F™*" — F**" defined from

L(Xl,Xg) = FX1 — XlF + GXQH (36)

Whgre X, := U'AU, Xy := AK, G := U™'B, H := CU. Denote by L €
FXs s = mr + n?, the matrix representation of the operator L(-,):

L=[L1,Ly); L1 =, F—FT @I, e F*"' " Ly:=H @G e F"*m (37)

corresponding to the columnwise vector expansion of its arguments. In view of the
controllability and observability of (31) and the assumptions made, the operator
L(-,-) is surjective, i.e. rank(L) = n? [2].
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The perturbed version of (33)
U(S+AS,F+AF;U+ AU, K+ AK)=0

may be rewritten as
L(X1, X2) = O(X1, X2) (38)
where
@(Xth) = (In + X1)AF —F - (GXQH + E)Xl

E:=U1'AAU + G(K + X2)ACU + U *AB(K + X3)H + U ' AB(K + X5)ACU.

Denote & = vec(X1) € F"', & = vec(Xa) € F™r, ¢ = [¢F, 17 € Fo,s =
n? + mr and let

R= [ i } € F Ry € FUX Ry € Fr
R2 ) )
be a matrix such that LR = I,2. Then it follows from (38) that & satisfies the
operator equation & = II(¢):
&1
5 - [

=1(¢) = (39)

&2

For p1, p2 > 0 denote
B(p1,p2) :={ & |&ll2 < pis i =1,2} C F°.

We shall show that under some conditions there exist a domain D C Ri and
functions f1, fo : D — R4 with the properties of the function f from Section 2
and such that for A := [Ag,A4,Ap,Ar]T € D the operator Il maps the set
Ba := B(f1(A), f2(A)) into itself. Since Ba is convex and compact then according
to the Schauder fixed point principle there exists a solution & € Ba of the operator
equation & = II(¢) for which the estimate

Rovec(©(X1, X2))

Ryvec(O(X1, X2)) ]

1€2ll2 = Ax := [AK]F < fa(A), A €D (40)
holds.
Let £ € B(p1, p2)- Then (38),(39) yield
L&) ll2 < | Rill2|©(X1, Xo)||lp < rila + apy + bpa + cp1pa) (41)
where r; := ||R;||2 and

a=a(A):=Ap +conda(U)A4 + b(A)|| K| |2
b=0b(A) = [[Gll2|Ul2Ac + [ H|2|U 245 + conds (U) AcAp
¢ = c(A) = b(A) + Gl H]z-

If the quantities p; satisfy the system of algebraic equations

pi =ri(a+apy +bpa +cpipa); i =1,2
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then it follows from (41) that |IL;(€)|l2 < ps, i.e. II(B(p1, p2)) C B(p1, p2)-
The system of equations for p; yields

ricps — (1 —r1a — 19b)pa + r2a = 0. (42)
Denote by D the set of all A satisfying the inequality
r1a(A) + rob(A) + 2¢/rira(A)e(A) < 1 (43)
and define fo(A) as the smaller root of (42):

where
d(A) := (1 —r1a(A) — rob(A))? — driraa(A)c(A). (45)

Since po 1= fa(A) satisfies (42), we see that if the vector A of perturbation norms
satisfies (43) then inequality (40) in view of (44), (45) gives a nonlinear nonlocal
perturbation bound for the solution of the general feedback synthesis problem. If
only state feedback synthesis problem is considered, one must set Ac = 0 and
C = I, in the corresponding expressions.

Consider now the sensitivity analysis of the pole assignment problem for system
(31).

As shown in the beginning of this section, the pole assignment problem may be
stated as a feedback synthesis problem for an U,-reachable upper triangular form
F = [f; ;] of the closed-loop system matrix A+ BKC with spect(F') equal to the set
of desired poles: f;; = \;. Let AC,AA, AB and A)q, ..., A\, be perturbations in
the system matrices and in the preassigned poles of the closed-loop system. Similarly
to (35), we obtain from (34)

Bo(S + AS; U*, K*) = A+ AA (46)

where A = diag(\1, ..., \,), AA =diag(AXy, ..., AN,).
We define the linear pole assignment operator Lg(,-) from

Lo(Xl, X2) = (LOW + Dlag)(F LOW(Xl) - LOW(Xl)F + GXQH)

where F := U¥(A+ BKCO)U, X, := URAU, X, := AK, G :=U"B, H .= CU
and U € U,.

Let 501 = PVGC(Xl) = [1’21, ey L1y L3250y L2y .. ,‘Tn,n_l]T € fn(nil)/Q be
the columnwise vector representation of the lower part of X; = [z; ;|, where

J 0 -~ 0 0
0 Jz -+ 0 0

pP= . .3 ) c fn(nfl)/ZXnQ
o 0o - J, 0

and Jy, := [0, I, _py1] € FOktDxn =9 p,
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Denote by Lo the matrix representation of the pole assignment operator Lg(-,-):
Lo := diag(I,, Jo, ..., Jp)[L1 PT Ly € Frnt1)/2xt

where £ :=n(n —1)/2 + mr and the matrices L, Ly are determined as in (37) with

U~ replaced by UH. As in the general feedback synthesis problem, the assumptions

made guarantee that the operator Lo(:,-) is surjective, i.e. rank(Lg) = n(n + 1)/2.
Let

RO 1

Ry = |: R :| c ]:-an(nJrl)/Q; Ro1 € fn(nfl)/2><n(n+1)/2, Ros € fmrxn(n+1)/2
02

be a matrix such that LoRg = I,,(n+1)/2- Then the nonlocal perturbation bound for
the pole assignment problem is obtained via (40) replacing r; by ||Ro:||2 and setting
to 1 the 2-norms of U and U 1.

In particular for pole assignment by state feedback (C' = I,,, Ac = 0,A, =0,U €
U,,) the expressions for a, b, ¢ are simplified as a(A) = A4 + | K||2AB, b(A) = Ap,
¢(A) = ||B|2 + Ap. Here the domain D C R is bounded by the nonnegative
semi-axes and a parabola (or a straight line).

Example 3. Consider the state pole assignment problem for the real pair (A, B),

—6.9 5.8 =79 -164 5.1 30.0 —6.2 —-10.5

109 -10.8 9.9 264 6.1 —-50.0 12.4 12.6

A— —-4.9 59 -39 -136 =31 24.3 B —6.2 —6.3
—-4.9 4.8 —-19 -144 09 25.0 |’ -3.1 =21

49 -38 49 104 3.1 -20.0 6.2 6.3

—6.9 6.8 —49 -184 -21 33.0 —6.2 —6.3

For the set of desired poles {—0.1 + 0.2¢,—0.1 — 0.2¢, —0.3, —0.4, —0.5, —0.6} the
pole assignment algorithm from [14] produces the gain matrix

K= 0.3845 —14.80 —7.226 23.25 12.17 -—20.11
B 9.668 —32.81 —9.619 65.31 9.660 —85.96 |

The perturbations are taken as AA =0 and AA = 1074y, AB = 1077 By,

0.1 -0.8 04 -0.7 0.1 0.2 1.0 —-0.6

—0.2 1.0 —-0.6 1.0 -0.2 0.3 -2.0 0.9

Ay — 0.3 —-04 0.2 0.0 -0.2 0.2 B 0.1 0.0
0.5 —-0.3 2.0 -3.0 0.5 =09 |’ 5.0 —-2.0

2.0 -3.0 0.9 0.9 -2.0 2.0 -0.3 0.1

1.0 3.0 -2.0 5.0 -2.0 3.0 -70 4.0

where j is an integer. The results are given in Table 2, where Ak /|| K || is the exact
relative perturbation in K and fo(A)/|| K || F is its non-local estimate. For j <9 the
non-local estimate does not exist since (43) is violated, which is denoted by x*.
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Table 2.

i Ar/|IKllF fa(A)/ 1K F

13 7.599 x 10712 115.1 x 10712
12 7.599 x 101! 115.2 x 10~11
11 7.599 x 10~10 115.9 x 1010
10 7.599 x 1079 123.8 x 107°
9 7.599 x 10~8 *

6. CONCLUSION

The technique of splitting operators is essential in the perturbation analysis of matrix
problems involving unitary transformations. For such problems, a preliminary step
is the splitting of certain linear operator and its arguments into strictly lower, diag-
onal and strictly upper parts. This gives a majorant system of algebraic equations.
The desired perturbation bounds follow directly from the solution of this majorant
system. In order to obtain easily computable bounds, a modified majorant system
may be constructed, whose solution produces less sharp but computationally efficient
explicit estimates.

The technique of splitting operators makes possible to obtain perturbation bounds
for basic problems in control theory and linear algebra. In this paper we have
used the splitting operator technique to derive non-local perturbation bounds for
the problem of computing orthogonal canonical forms of linear control systems and
for the general feedback synthesis problem and the pole assignment problem in
particular.

In the last decade, the technique of splitting operators has been also applied in
the perturbation analysis of a number of linear algebra problems: Schur system of a
matrix, QR decomposition of a matrix, generalized Schur form of a pair of matrices,
polar decomposition of a matrix, and Hamiltonian Schur form of a Hamiltonian
matrix [5, 7, 18, 19].

Other important and still unsolved problems in control theory and matrix analysis
that can be addressed via the technique of splitting operators are the synthesis of
state observers and dynamic compensators, block-Schur and Jordan-like forms of a
matrix, and Hamiltonian matrix pencils.

(Received December 23, 2003.)
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