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FINITE–DIMENSIONALITY OF INFORMATION STATES
IN OPTIMAL CONTROL OF STOCHASTIC SYSTEMS:
A LIE ALGEBRAIC APPROACH

Charalambos D. Charalambous1

In this paper we introduce the sufficient statistic algebra which is responsible for prop-
agating the sufficient statistic, or information state, in the optimal control of stochastic
systems. Certain Lie algebraic methods widely used in nonlinear control theory, are then
employed to derive finite-dimensional controllers. The sufficient statistic algebra enables
us to determine a priori whether there exist finite-dimensional controllers; it also enables
us to classify all finite-dimensional controllers.

1. INTRODUCTION

The DMZ equation of nonlinear filtering of diffusion processes is a linear, stochastic,
partial differential equation (PDE) which describes in a recursive manner the evolu-
tion of the unnormalized conditional distribution of the state process, {x(t); t ≥ 0},
given the observations, {y(t); t ≥ 0}. If this distribution has a density function, say,
{π(x, t); t ≥ 0}, then its Fisk–Stratonovich form evolves

d
dt

π(x, t) = L0π(x, t) + h(x)π(x, t) ◦ d
dt

y(t). (1)

Consequently, {π(x, s); 0 ≤ s ≤ t} evolves forward in time with initial condition
π(x, 0). Here, L0 is certain second-order differential operator related to the drift
and diffusion coefficients of the state process, the Kolmogorov forward operator, and
h(x) is a zero-order differential operator related to the signal in the observations.
Brockett and Clark [2] proposed that due to the analogy between (1) and the control
system ẋ(t) = f(x(t)) + g(x(t))u(t), the Lie algebraic methods might be applicable
to (1) as well. In particular, they proposed that the finite-dimensionality of solu-
tions to (1) can be deduced from the Lie algebra generated by the operators L0, h.
Moreover Ocone [8], noted that if the Lie algebra generated by the operators L0, h,
is finite-dimensional, then (under certain conditions) the Wei–Norman method can
be used to derive the structure of the recursive filters, (see [1, 7, 8, 9]. Recently,
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gauge transformations have been introduced in [3, 4, 6], to identify nonlinear control
problems with finite-dimensional controllers.

In the present paper we point out how the Lie algebraic methods can be used
to address the question of finite-dimensionality of optimal controllers in problems of
optimal control of partially observed stochastic systems. Note that in the absence
of control optimality, this framework can be used to address the question of finite-
dimensionality of optimal (in least-squares sense) observers for nonlinear stochastic
control systems. This framework would enable us to investigate the question of
classification and finite-dimensionality of optimal controls a priori, by investigating
the Lie algebra of certain operators associated with the model at hand. The Lie
algebra method yields new classes of nonlinear systems which are not a subset of
our earlier classes in [3, 4, 6].

In particular, the observation that leads to these developments is that for optimal
control problems (with usual integral cost function) affine in the control inputs, the
information state satisfies a controlled version of the DMZ equation, namely,

d
dt

πu(x, t) = L0π
u(x, t) + Lπu(x, t) u(t, y) + h(x)πu(x, t) ◦ d

dt
y(t), (2)

where u(·) is the control input and L is certain first-order differential operator.
Therefore, by analogy with finite-dimensional nonlinear affine control systems, we
view (2) as a bilinear equation with control inputs u(·), d

dty(·). This gives rise to the
investigation of the Lie algebra generated by the operators L0, L, h, which we call
sufficient statistic algebra. In fact, from certain results of realization theory, we de-
duce that if the sufficient statistic algebra, LS

.= {L0, L, h}L.A., is finite-dimensional,
then (under certain conditions) the optimal controller is finite-dimensional.

2. MATHEMATICAL CONSTRUCTS

Consider the Ito stochastic differential system

dx(t) = f(x(t)) dt +
∑̀

j=1

gj(x(t)) uj(t, y) dt +
m∑

j=1

σj(x(t)) dwj(t), x(0) ∈ <n, (3)

dyj(t) = hj(x(t)) dt + dbj(t), yj(0) = 0 ∈ <, 1 ≤ j ≤ d. (4)

Here {wi(t); t ∈ [0, T ]} and {bj(t); t ∈ [0, T ]}, are mutually independent standard
Brownian motion processes, for all 1 ≤ i ≤ m, 1 ≤ j ≤ d, which are also independent
of the random variable x(0). u(·) = [u1, u2, . . . , u`]′(·) is a vector of control processes.
All stochastic processes are defined on a probability space (Ω,F , Pu) equipped with
a complete filtration, {F0,t; t ∈ [0, T ]}, and a finite-time interval, [0, T ].

The usual optimal control problem addresses the minimization over the controls
u(·) ∈ Uad, (see Definition 2.3), of the integral cost criterion J(u):

J(u) = Eu

{∫ T

0

`(x(t), u(t, y)) dt + ϕ(x(T ))

}
. (5)
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Notation 2.1.
“′′′ denotes transposition of a matrix, Ik denotes k × k identity matrices, {αj}n

j=1,
{αi,j}n

i,j=1 denote finite sequences in <;

C∞(M) denotes the vector space of all infinite differentiable real-valued functions
defined on an n-dimensional differentiable manifold M ;

g(x) = [g1(x), g2(x), . . . , g`] (x), [g]i,j(x) = gi,j(x), h(x) = [h1, h2, . . . , hd]′(x),
y(t) = [y1, y2, . . . yd]′(t);

Φ : <n → < is C2 with compact support;

{Fy
0,t; t ∈ [0, T ]} denotes the complete filtration generated by the observations σ-

algebra, σ{y(s); 0 ≤ s ≤ t}, Eu, E denote expectations w.r.t. measures Pu, P ,
respectively.

Assumption 2.2.
U is a compact subset of <`;
f : <n → <n, gi : <n → <n, σj : <n → <n, 1 ≤ i ≤ `, 1 ≤ j ≤ m, are C∞(<n) vector
fields, hj : <n → <, 1 ≤ j ≤ d, are C∞(<n) functions, and

|f |+ |σj |+ |gi|+ |hk| ≤ k1 (1 + |x|) , ∀ i, j, k;

` : <n × U → <, ϕ : <n → <, ` ≥ 0, ϕ ≥ 0, and

|`(x, u)| ≤ k2 (1 + |x|+ |u|)k3 , |ϕ(x)| ≤ k4 (1 + |x|)k5 ;

The random variable x(0) has distribution Π0(dx) = π0(x) dx, with π0(·) ∈ L2(<n).

Definition 2.3. The set of admissible controls denoted by Uad is defined by

Uad
.=

{
u(·); u(·) ∈ L2

y([0, T ];<`), u(t, y) ∈ U ⊂ <`, a. e. t, P -a. s.
}

.

2.1. Sufficient statistic

Let Πt(Φ) .= Eu
[
Φ(x(t))|Fy

0,t

]
denote a measure-valued process; let

Λ0,t = exp




d∑

j=1

∫ t

0

hj(x(s)) dyj(s)− 1
2

d∑

j=1

∫ t

0

h2
j (x(s)) ds


 .

Introduce the Radon–Nikodym derivative, (see [4, 5]), dP u

dP |F0,T
= Λ0,T . By a version

of Bayes formula we have:

Πt(Φ) =
E

[
Φ(x(t))Λ0,t|Fy

0,t

]

E
[
Λ0,t|Fy

0,t

] .=
πt(Φ)
πt(1)

. (6)

Here Πt(·) and πt(·) are measure-valued processes; the latter is the unnormalized
version of the former.
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Theorem 2.4. [5, 4] Let Φ ∈ C2(<n) and suppose πt(·) has a density function
π : <n × Ω× [0, T ] → <. Then

πt(Φ) = E
[
Φ(x(t))Λ0,t|Fy

0,t

]
=

∫

<n

Φ(z) π(z, t) dz, (7)

where π(·) is a solution of the controlled version of the DMZ equation (Fisk–
Stratonovich form):

π(x, t) = π(x, 0) +
∫ t

0

L0π(x, s) ds +
∑̀

j=1

∫ t

0

Ljπ(x, s) uj(s, y) ds

+
d∑

j=1

∫ t

0

hj(x)π(x, s) ◦ dyj(s), (8)

A(Φ) (x) .=
1
2

n∑

i,j=1

∂2

∂xi∂xj

(
[σσ′]i,j Φ

)
(x)−

n∑

j=1

(
fj

∂

∂xj
+

∂

∂xj
(fj)

)
(Φ) (x),

Lj(Φ) (x) .= −
n∑

i=1

(
gi,j

∂

∂xi
+

∂

∂xi
(gi,j)

)
(Φ) (x), 1 ≤ j ≤ `,

L0(Φ) (x) =


A− 1

2

d∑

j=1

h2
j


 (Φ) (x).

(9)

Moreover, for u ∈ Uad the cost function (5) has the representation

J0,T (u) = E

{∫ T

0

∫

<n

`(z, u(t, y))π(z, t) dzdt +
∫

<n

ϕ(z)π(z, T ) dz

}
. (10)

In the formulation of Theorem 2.4, the conditional density is assumed to be an in-
formation state. Therefore, by construction (8) propagates the information available
to the controller. In the sequel we assume the measure-valued process πt(·) has a
unique density π(·) satisfying (8).

Definition 2.5. Let X, Y : C∞(M) → C∞(M), be differential operators with C∞

coefficients. The vector space of all differential operators (with C∞ coefficients) is a
Lie algebra with the Lie bracket of X, Y defined by

[X, Y ] (Φ) .= X (Y (Φ))− Y (X(Φ)) , ∀Φ ∈ C∞(M).

Definition 2.6. The estimation algebra LE of the filtering problem (3), (4) (with
uj = 0, 1 ≤ j ≤ `), is the Lie algebra generated by, {L0, h1, h2, . . . , hd}, defined by

LE
.= {L0, h1, h2, . . . , hd}L.A. . (11)
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The sufficient statistic algebra LS of the control problem (3) – (5) is the Lie algebra
generated by, {L0, L1, L2, . . . , L`, h1, h2, . . . , h`}, defined by

LS
.= {L0, L1, L2, . . . , L`, h1, h2, . . . , hd}L.A. . (12)

3. SUFFICIENT STATISTIC ALGEBRAS

Assumptions 3.1. Assumption 2.2 hold, m = n, and [σ1, σ2, . . . , σn] [σ1, σ2, . . .
. . . , σn]′(x) = In, that is, σ(x) is orthogonal; in the scalar case it is assumed that
σ = 1. To avoid trivial situations let

∑n
j=1 h2

j 6= 0.

Define

Di
.=

∂

∂xi
− fi, 1 ≤ i ≤ n, η

.=
n∑

i=1

∂

∂xi
fi +

n∑

i=1

f2
i +

d∑

i=1

h2
i . (13)

Then

L0 =
1
2

(
n∑

i=1

D2
i − η

)
. (14)

We shall need the following calculations.

Lemma 3.2. Let

wi,j(x) =
∂

∂xi
fj(x)− ∂

∂xj
fi(x), 1 ≤ i, j ≤ n.

Then

[Di, Dj ] = wj,i, 1 ≤ i, j ≤ n;

[Di, hj ] = ∂
∂xi

hj , 1 ≤ i ≤ n, 1 ≤ j ≤ d;
[
D2

i , hj

]
= ∂2

∂x2
i
(hj) + 2 ∂

∂xi
(hj)Di, 1 ≤ i ≤ n, 1 ≤ j ≤ d;

[Li, hj ] = −
n∑

k=1

gk,i
∂

∂xk
(hj), 1 ≤ i ≤ `, 1 ≤ j ≤ d;

[
D2

i , Dj

]
= 2wj,iDi +

∂

∂xi
(wj,i), 1 ≤ i, j ≤ n;

[L0, Dj ] =
1
2

n∑

i=1

(
2wj,iDi +

∂

∂xi
(wj,i)

)
+

1
2

∂

∂xj
(η), 1 ≤ j ≤ n;
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[Di, Lj ] = −
n∑

k=1

(
∂2

∂xi∂xk
(gk,j)− gk,j

∂

∂xk
(fi) +

∂

∂xi
(gk,j)

∂

∂xk

)
,

1 ≤ i ≤ n, 1 ≤ j ≤ `;

[
D2

i , Lj

]
= −

n∑

k=1

{
∂3

∂x2
i ∂xk

(gk,j)

+2
∂2

∂xi∂xk
(gk,j)

[
∂

∂xi
− fi

]
+

∂2

∂x2
i

(gk,j)
∂

∂xk

+2
∂

∂xi
(gk,j)

∂2

∂xi∂xk
− 2fi

∂

∂xi
(gk,j)

∂

∂xk

+gk,j
∂2

∂xi∂xk
(fi) + 2gk,j

∂

∂xk
(fi)

[
∂

∂xi
− fi

]}
,

1 ≤ i ≤ n, 1 ≤ j ≤ `;

[Li, Lj ] =
n∑

m=1

n∑

k=1

{
gm,i

∂2

∂xm∂xk
(gk,j)

−gk,j
∂2

∂xk∂xm
(gm,i) + gm,j

∂

∂xm
(gk,j)

∂

∂xk
−gk,j

∂

∂xk
(gm,j)

∂

∂xm

}
,

1 ≤ i, j ≤ `.

P r o o f . Use the definition of Lie bracket. 2

Definition 3.3. The sufficient statistic LS (resp. LE) is said to have maximum
rank if xi ∈ LS (resp. LE), ∀1 ≤ i ≤ n.

3.1. The linear case

Here we analyze the linear control system

dx(t) = Fx(t) dt +
∑̀

j=1

Bjuj(t, y) +
n∑

j=1

Gj dwj(t),

dyj(t) =
n∑

i=1

Hj,ixi(t) dt + dbj(t), 1 ≤ j ≤ d.

(15)

Lemma 3.4. (Scalar case). Suppose n = ` = d = m = 1. The sufficient statistic
algebra has dimension 4 with basis

LS = Span

{
L0 =

1
2
(D2 − η), x, D =

∂

∂x
− Fx, 1

}
. (16)
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The non-zero commutative relations are

[L0, x] = D, [L0, D] = D +
1
2

∂

∂x
(η), [D, x] = 1.

Moreover, LS = LE .

P r o o f . See Theorem 3.5. 2

Theorem 3.5. (Multidimensional case). The sufficient statistic (resp. estimation)
algebra has dimension at most 2n + 2 and

LS ⊆ L .= Span

{
L0 =

1
2

(
n∑

i=1

D2
i − η

)
,

x1, x2, . . . , xn, D1, D2, . . . , Dn, 1
}

, (resp. LE ⊆ L).

(17)

The non-zero commutative relations are

[L0, xj ] = Dj , [L0, Dj ] =
n∑

i=1

(Fi,j − Fj,i)Di +
1
2

∂

∂xj
(η),

1 ≤ j ≤ n; [Di, xj ] =

{
1, if i = j,

0, if i 6= j.

Moreover, if LE is maximum rank the LE = LS = L.

P r o o f .

Yj
.= [L0, hj ] =

1
2

n∑

i=1

[
D2

i , hj

]
=

n∑

i=1

Hj,iDi, 1 ≤ j ≤ d;

Xj,i
.= [Yj , hi] =

n∑

k=1

n∑

`=1

Hj,kHi,`; [Dk, x`] =
n∑

k=1

Hj,kHi,k, 1 ≤ i, j ≤ d;

Therefore, D1, D2, . . . , Dn may all be elements of LS , and 1 ∈ LS . Also, from the
computation

Zj
.= [L0, Yj ] =

n∑

i=1

[L0,Hj,iDi] =
n∑

i=1

n∑

k=1

Hj,k

(Fk,i − Fi,k)Dk +
1
2

n∑

i=1

Hj,i
∂

∂xi
(η), 1 ≤ j ≤ d,

we deduce that x1, x2, . . . , xn may all be elements of LS . Now,

Yj,k
.= [Yj , Yk] =

n∑

i=1

n∑

`=1

[Hj,iDi,Hk,`D`] =
n∑

i=1

n∑

`=1

Hj,iHk,`w`,i, 1 ≤ j, k ≤ d.
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Proceeding we calculate

L0,j
.= [L0, Lj ] =

1
2

[
n∑

i=1

D2
i − η,−

n∑

k=1

Bk,j
∂

∂xk

]

= −
n∑

i=1

n∑

k=1

{
Bk,j

∂

∂xk
(fi)

(
∂

∂xi
− fi

)}
− 1

2

n∑

k=1

Bk,j
∂

∂xk
(η), 1 ≤ j ≤ `.

Hence, L0,j is a linear combination of elements D1, D2, . . . , Dn, x1, x2, . . . xn, 1. In
addition,

[Lj , hi] = −
n∑

k=1

Bk,jHi,k, 1 ≤ j ≤ `, 1 ≤ i ≤ d;

[Lj , Di] = −
n∑

k=1

Bk,jFi,k, 1 ≤ j ≤ `, 1 ≤ i ≤ d;

[Lj , Yi] = −
n∑

k=1

Bk,jHi,k, 1 ≤ j ≤ `, 1 ≤ i ≤ d.

Therefore, we deduce that LS ⊆ L. If L is maximum rank then xi ∈ LS ,∀ 1 ≤ i ≤ n,
hence LS = L (similarly for LE). 2

3.2. The nonlinear drift case

Here we investigate the nonlinear control system

dx(t) = f(x(t)) dt +
∑̀

j=1

Bjuj(t, y) dt +
n∑

j=1

σj(x(t)) dwj(t),

dyj(t) =
n∑

i=1

Hj,ixi dt + dbj(t), 1 ≤ j ≤ d.

(18)

Lemma 3.6. (The two-dimensional case). Suppose n = 2, m = 2, ` = d = 1,
and

f1 =
∑n

j=1 F1,jxj , f2 = f2(x1, x2), B2,1 = 0. (19)

1. If wi,j = constant, for i 6= j and

η =
2∑

i=1

∂

∂xi
fi +

2∑

i=1

f2
i + h2

1 = Quadratic function of (x1, x2) ≥ 0, (20)

then the sufficient statistic (resp. estimation) algebra has dimension at most 6 and

LS ⊆ L .= Span

{
L0, x1, x2,

∂

∂x1
, D2 =

∂

∂x2
− f2, 1

}
(resp. LE ⊆ L). (21)
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If LS (resp. LE) is maximum rank then LS = L (resp. LE = L).

2. If h1 = H1,1x1 and η = A nonnegative quadratic function of x1 + γ(x2) for some
γ ∈ C∞(<), then the sufficient statistic algebra is

LS = Span
{

L0, x1,
∂

∂x1
, 1

}
.

The non-zero commutative relations are

[L0, xi] = Di, 1 ≤ i ≤ 2;
[
L0,

∂

∂x1

]
= w1,2D2 +

1
2

∂

∂x1
(η) +

2∑

i=1

F1,iDi;

[L0, D2] = w2,1D1+
1
2

∂

∂x2
(η);

[
∂

∂x1
, D2

]
= −

(
∂

∂x2
(f1)+w1,2

)
;

[
∂

∂x1
, xi

]

=

{
1, if i = 1,

0, if i = 2.

P r o o f . From Theorem 3.5 we have Y1
.= [L0, h1] =

∑2
i=1 H1,iDi, X1,1

.= [Y1, h1]
=

∑2
k=1 H2

1,k; Hence, ∂
∂x1

, x1, x2, D2, 1 may be elements of LS . Also,

Z1
.= [L0, Y1] =

2∑

`=1

2∑

i=1

H1,`

(
w`,iDi +

∂

∂xi
(w`,i)

)
+

1
2

2∑

`=1

H1,`
∂

∂x`
(η).

Since wi,j are constants and η is a quadratic function of (x1, x2), we conclude that
Z1 = α1x1 + α2x2 +α3

∂
∂x1

+ α4D2 + α5.

1. Proceeding we calculate

L0,1
.= [L0, L1] = −1

2

2∑

i=1

2∑

k=1

{
2Bk,1

∂

∂xk
.(fi)

(
∂

∂xi
− fi

)
+ Bk,1

∂2

∂xi∂xk
(fi)

}

−1
2

[η, L1] .

Since Bk,1 = 0, for k = 2 and f1 =
∑2

j=1 F1,jxj we have

L0,1 = −1
2

{
2B1,1F1,1

(
∂

∂x1
− f1

)
+ 2B1,1

∂

∂x1
(f2)

(
∂

∂x2
− f2

)
+ B1,1

∂2

∂x2∂x1
(f2)

}
− 1

2
B1,1

∂

∂x1
(η).

If we now substitute ∂
∂x1

f2 = ∂
∂x2

f1 + w1,2, then L0,1 is a linear combination
of x1, x2,

∂
∂x1

, D2, 1; also, [L0,1, h1] , [L0,1, L1] , [L0,1, Y1], are linear combinations of
these elements as well. Hence, we deduce that LS ⊆ L. If LS is maximum rank then



734 C.D. CHARALAMBOUS

LS = L and similarly for the estimation algebra.

2. If we now let h1 = H1,1x1 we have

Y1 = h1,1D1; X1,1 = H2
1,1; Z1 = H1,1w1,2D2 +

1
2
H1,1

∂

∂x1
(η).

If η = Qx2
1 + δ + γ(x2), for some Q ≥ 0, σ ∈ (<2)′, δ ∈ <, γ ∈ C∞(<), then Z1 is a

linear combination of elements x1,
∂

∂x1
, 1. Tracing our earlier steps we deduce that

LS has basis L0,
∂

∂x1
, D1, x1, 1. 2

Theorem 3.7. (Multidimensional case). Suppose n = m, `, d are arbitrary, and

fi =
n∑

j=1

Fi,jxj , 1 ≤ i ≤ k,

fk+1 = fk+1(x1, x2, . . . , xk),
...

fn = f1(x1, x2, . . . , xn),

Bi,j = 0, ∀ i > k, 1 ≤ j ≤ `.

1. If wi,j = constant, ∀ 1 ≤ i ≤ k, k + 1 ≤ j ≤ n and

η =
n∑

i=1

∂

∂xi
fi +

n∑

i=1

f2
i +

d∑

i=1

h2
i

= Quadratic function of (x1, x2, . . . , xn) ≥ 0,

(22)

then the sufficient statistic algebra has dimension at most 2n + 2 and

LS ⊆ L .= Span

{
L0, x1, x2, . . . , xn,

∂

∂x1
,

∂

∂x2
, . . .

. . . ,
∂

∂xk
, Dk+1, Dk+2, . . . , Dn, 1

}
.

(23)

If LS is maximum rank then LS = L.

2. If hi =
∑k

j=1 Hi,jxj , 1 ≤ i ≤ d, wi,j = 0, ∀ 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, and

η = A nonnegative quadratic function of

(x1, x2, . . . , xk) + γ(xk+1, xk+2, . . . , xn),
(24)

for some γ ∈ C∞(<n−k), then the sufficient statistic algebra has dimension at most
2k + 2 and

LS ⊆ L .= Span

{
L0, x1, x2, . . . , xk,

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xk
, 1

}
.

If LS is maximum rank then LS = L.

P r o o f . Follow the derivation of Lemma 3.6. 2
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3.3. The nonlinear drift and observations case

Next we investigate the correlated nonlinear control system

dx(t) = f(x(t)) dt +
∑̀

j=1

gj(x(t)) uj(t, y) dt +
n∑

j=1

Gj dwj(t),

dyj(t) = hj(x(t)) dt +
n∑

i=1

aj,i dwi(t) +
d∑

i=1

N
1
2
j,idbi(t), 1 ≤ j ≤ d.

(25)

Let

L0 = A− 1
2

d∑

k=1

M2
k , Mk =

d∑

i=1

hi[C−1]i,k + Yk,

Yk = −
n∑

i=1

[Ga′C−1]i,k
∂

∂xi
, C = aa′ + N, N = N

1
2 N

1
2 , ′ > 0,

Â =
1
2

n∑

i,j

[GG′]i,j
∂2

∂xi∂xj
−

n∑

i=1

(
[Fx]i

∂

∂xi
+ Fi,i

)
,

M̂k =
n∑

i=1

[Hx]i[C−1]i,k −
n∑

i=1

[Ga′C−1]i,k
∂

∂xi
,

1 ≤ k ≤ d, where A, Lj are defined earlier. The sufficient statistic and estimation
algebras are given by

LS = {L0, L1, L2, . . . , L`,M1,M2, . . . ,Md}L.A. , LE = {L0,M1, M2, . . . , Md}L.A. .

Let φ ∈ C∞(<n) and set

fi =
n∑

j=1

(
Fi,jxj + [GG′]i,j

∂

∂xj
φ

)
, 1 ≤ i ≤ n,

hi =
n∑

j=1

(
Hi,jxj + [aG′]i,j

∂

∂xj
φ

)
, 1 ≤ i ≤ d.

(26)

Theorem 3.8. [4]. Suppose (26) holds and

gj = Bj , 1 ≤ j ≤ `, (i. e., independent of x). (27)

1. If φ ∈ C∞(<n) is a solution of

1
2

n∑

i,j=1

(
[GG′]i,j

∂2

∂xi∂xj
(φ) + [GG′]i,j

∂

∂xi
(φ)

∂

∂xj
(φ) + 2Fi,jxj

∂

∂xi
(φ)

)

+
n∑

i=1

∑̀

j=1

Bi,juj
∂

∂xi
(φ) =

1
2

(x′Q(u)x + 2m(u)x + δ(u)) ,
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for some Q(u) = Q′(u) ≥ 0, m(u), δ(u), then LS is isomorphic to the Lie algebra

L̂S =

{
Â0 − 1

2

d∑

k=1

M̂2
k −

1
2

(x′Q(u)x + 2m(u) x

+ δ(u)) , L1, L2, . . . , L`, M̂1, M̂2, . . . , M̂d

}
L.A.

.

Moreover, if Q(u), m(u), δ(u) are independent of the control u then L̂S is finite-
dimensional and

L̂S ⊆ L .= Span

{
Â0 − 1

2

d∑

k=1

M̂2
k −

1
2

(x′Qx + 2mx + δ) ,

∂

∂x1
,

∂

∂x2
, . . . ,

∂

∂xn
, x1, x2, . . . , xn, 1

}
.

(28)

If LS is maximum rank then L̂ = L.

2. If φ ∈ C∞(<n) is a solution of

1
2

n∑

i,j=1

(
[GG′]i.j

∂2

∂xi∂xj
(φ) + [GG′]i,j

∂

∂xi
(φ)

∂

∂xj
(φ) + 2Fi,jxj

∂

∂xi
(φ)

)

=
1
2

(x′Qx + 2mx + δ) ,

for some Q(u) = Q′ ≥ 0,m, δ, then LE is finite-dimensional isomorphic to the Lie
algebra

L̂E =

{
Â0 − 1

2

d∑

k=1

M̂2
k −

1
2

(x′Qx + 2mx + δ) , M̂1, M̂2, . . . , M̂d

}

L.A.

,

with basis given by (28).

4. ADDITIONAL GENERALIZATIONS

Consider the nonlinear control system (3), (4). Here we are interested in minimizing
(over u(·) ∈ Uad) the exponential-of-integral cost function Jθ(u):

Jθ(u) = Eu

{
exp

(
θ

∫ T

0

`(x(t), u(t, y)) dt + θϕ(x(T ))

)}
,

where θ > 0. Similar to Theorem 2.4, the information state approach to this control
problem yields:

Jθ(u∗) = inf
u∈Uad

E

{∫

<n

exp (θϕ(x)) πθ(x, T ) dx

}
. (29)
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Here, {πθ(x, s); 0 ≤ s ≤ t}, is an information state; it is a solution of a certain
controlled Feynman–Kac stochastic PDE. In particular, when

`(x, u) = `0(x) +
∑̀

j=1

`j(x)u2
j , (30)

we have

πθ(x, t) = π(x, 0) +
∫ t

0

(L0 + θ`0) πθ(x, s) ds +
∑̀

j=1

∫ t

0

Ljπ
θ(x, s) uj(s, y) ds

+
∑̀

j=1

∫ t

0

θ`jπ
θ(x, s)u2

j (s, y) ds +
d∑

j=1

∫ t

0

hjπ
θ(x, s) ◦ dyj(s).

(31)

The sufficient statistic algebra is

Lθ
S

.=
{
Lθ

0, L1, L2, . . . , L`, θ`1, θ`2, . . . , θ``, h1, h2, . . . , hd

}
L.A.

, (32)

where Lθ
0 = L0 + θ`0. Clearly, Lθ

S , can be used to classify nonlinear systems with
finite-dimensional controllers. An important observation announced in [6], is that
we can solve the so-called inverse control problem, by choosing the zeroth order
differential operators, `0, `1, `2, ``, to force Lθ

S , to be finite-dimensional. When
`0 =polynomial in (x1, x2, . . . , xn) of degree at most two, and `j = Constant,
1 ≤ j ≤ `, we obtain finite-dimensional controllers for the classes of nonlinear
systems discussed in earlier sections.

(Received April 8, 1998.)
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[1] V. Beneš: Exact finite-dimensional filters for certain diffusions with nonlinear drift.
Stochastics 5 (1981), 65–92.

[2] R. Brockett and J. Clark: Geometry of the conditional density equation. In: Pro-
ceedings of the International Conference on Analysis and Optimization of Stochastic
Systems, Oxford 1978.

[3] C. Charalambous: Partially observable nonlinear risk-sensitive control problems: Dy-
namic programming and verification theorems. IEEE Trans. Automat. Control, to
appear.

[4] C. Charalambous and R. Elliott: Certain nonlinear stochastic optimal control prob-
lems with explicit control laws equivalent to LEQG/LQG problems. IEEE Trans. Au-
tomat. Control 42 (1997), 4. 482–497.

[5] C. Charalambous and J. Hibey: Minimum principle for partially observable nonlinear
risk-sensitive control problems using measure-valued decompositions. Stochastics and
Stochastics Reports 57 (1996), 2, 247–288.

[6] C. Charalambous, D. Naidu and K. Moore: Solvable risk-sensitive control problems
with output feedback. In: Proceedings of 33rd IEEE Conference on Decision and
Control, Lake Buena Vista 1994, pp. 1433–1434.



738 C.D. CHARALAMBOUS

[7] J. Chen, S.-T. Yau and C.-W. Leung: Finite-dimensional filters with nonlinear drift
IV: Classification of finite-dimensional estimation algebras of maximal rank with state-
space dimension 3. SIAM J. Control Optim. 34 (1996), 1, 179–198.

[8] M. Hazewinkel and J. Willems: Stochastic systems: The mathematics of filtering
and identification, and applications. In: Proceedings of the NATO Advanced Study
Institute, D. Reidel, Dordrecht 1981.

[9] S. Marcus: Algebraic and geometric methods in nonlinear filtering. SIAM J. Control
Optim. 26 (1984), 5, 817–844.

Prof. Dr. Charalambos D. Charalambous, Department of Electrical & Computer Engi-

neering, McGill University, 3480 University Street, Montréal, P.Q. Canada H3A 2A7.
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