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Department of Mathematics and Didactics of Mathematics
Technical University in Liberec, Hálkova 6, Liberec 461 16, Czech Republic

vaclav.finek@vslib.cz

Abstract. A nonstoichiometric approach to the solution of the problem of the chemical
equilibrium and kinetics consists in the functional minimization of the Gibbs free energy
subject to linear, nonlinear and inequality constraints. Linear constraints represent a
system of mass-balance equations with an electroneutrality equation added, if necessary.
Nonlinear constraints arise from implicit discretization of kinetics (ordinary differential)
equation. And finally inequality constraints correspond to physical considerations requiring
quantities of components to be non-negative. Main modeling problems are caused by the
strong non-linearity of activity coefficients. In some cases it even produces non-convexity
of the Gibbs free energy. In this paper two approaches to activity coefficients are compared.
Numerical examples are given.
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1 DEFINITION OF THE GIBBS FREE ENERGY

Assuming the solution contains 1 kilogram of water (it means 55.5 mol)
and that the amount of water is basically constant during reaction. Then
molality mr and the amount of substance (the amount of mol) nr numer-
ically agrees and the Gibbs free energy of k-component system is
given by the formula

G(m) =
k∑

r=1

µrnr =
k∑

r=1

µrmr,

where m denotes k-component vector of molalities mr. To determine a
function describing the Gibbs free energy it is necessary to establish chemi-
cal potentials of all present components (species). The complete expression
for the chemical potential of the species i by using the standard state
of unit mole fraction at infinite dilution is:

µr = µ∞x,r +RT lnxr +RT ln γ[x]
r .
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In this expression, µ∞x,r is the chemical potential (defined on the basis
of mole fraction) of the pure species r in the same state of aggregation
as the solution. Further R = 8.314 denotes universal gas constant, T =
298.15 temperature in K, xr mole fraction of rth components, γ

[x]
r activity

coefficient defined on the basis of mole fraction. Since our input data will
be in molality, we convert the above mentioned formula for the chemical
potential on the standard state of unit molality. We use following two
relations

µ∞m,r = µ∞x,r −RT lnn, γ[m]
r = γ[x]

r xn,

where γ
[m]
r is activity coefficient and µ∞m,r is chemical potential. Both of

them are defined on the basis of unit molality. Further n is an amount
of substance of solvent in 1 kilogram and xn is a mole fraction of solvent.
After conversion we obtain the chemical potential of dissolved substance
by using standard state of unit molality at infinite dilution expressed by
the relation

µr = µ∞m,r +RT lnmr +RT ln γ[m]
r .

Now we have some possibilities how to choose coefficients of aqueous
species. We employ here two approaches. Initially we define them with
the Extended Debye-Hückel Equation

ln
(
γ[m]

r

)
= −z2

r A

( √
I

1 +B
√
I

+
2

B
ln
(

1 +B
√
I
))

,

where A is a parameter dependent on temperature, pressure and on a
solvent. For water at temperature 25◦ C is A = 0.391475 (kg/mol)1/2. A
parameter B is constant and is equal to 1.2 (kg/mol)1/2.

The second approach consists in defining them with the Davies Equa-
tion

ln
(
γ[m]

r

)
= −z2

r A

( √
I

1 +
√
I
−BI

)
,

where A and B are parameters dependent on temperature, pressure and on
a solvent. For this task we pick A = 1.17 and B = 0.3 both in (kg/mol)1/2.
I is the ionic strength of the aqueous solution defined by

I =
1

2

∑
r

mrz
2
r .

The ionic strength is a function of the molality of all ions present in a
solution. zr is the integer charge of the ion (1 for H+, 2 for Mg2+ etc.).



The chemical potential of the solvent (water in our case) is given by the
following formula

µr = µo
m,r +RT lnxn,

where µo
m,r is the chemical potential by using standard state of the pure

species r. The chemical potential of suspended solids is given by the fol-
lowing relation

µr = µo
m,r.

For further details see [1, 3, 4, 7, 8].

Constraining conditions:

• Molality of all components have to be non-negative - then
m ≥ 0 (the amount of any species can not be negative).

• Equations of mass-balance - represent an accounting of material
entering and leaving a system. Fundamental to the balance is the
conservation of mass principle, i.e. that matter can not disappear
or be created. These conditions are described by a system of linear
equations.

• An electroneutrality equation - ensures that a total charge re-
mains constant during reactions. This condition is again described by
a linear equation.

• Kinetic reactions - are described by ordinary differential equations.
These equations are discretized ahead of minimization of the Gibbs
free energy (differential equations are replaced by non-linear equa-
tions).

Our aim is to find a constrained minimum of the Gibbs free
energy (satisfying all constraining conditions).

2 NUMERICAL METHODS

To discretize kinetic equation y′ = f(t, y) Crank-Nicholson method

yn+1 − yn = h
f(t+ h, yn+1) + f(t, yn)

2
is used. It is the A-stable second order method. To minimize the Gibbs
free energy two methods are employed. First we linearize kinetic constrain-
ing conditions and afterwards we use variable metric method (BFGS).



Minimization methods from this class are commonly used for either un-
constrained or linearly constrained optimizations. In the second phase se-
quential quadratic programming method is employed. Initial values for the
second method was set to obtained results from the first method. In case
of minimization without kinetic equations both methods solve the same
problem. In opposite case first method solves simplified problem. This
approach was employed for reasons to increase reliability of obtained re-
sults. Both above mentioned methods were assumed from the optimization
package UFO (see [5, 6]).

3 EXAMPLE OF NON-CONVEXITY OF THE GIBBS ENERGY

Now we will present here a very simple (real life) example of dissolution
of CaSO4, where the choice of the Extended Debye-Hückel Equation for
activity coefficients causes non-convexity of the Gibbs free energy and it is
non-physical. We assume, that we have three unknown molalities of species
m3 = CaSO4, m2 = SO−2

4 , m1 = Ca2+ and the constant amount of water
equal to 55.5 mol. For the sake of simplicity we choose initial molalities
of both dissolved substances equal to zero. Then from the mass-balance
equations we obtain two linear constraints

m1 = m2, m1 +m3 = K

where K is the positive constant representing initial molality of CaSO4.
The formula for the Gibbs free energy with the Davis Equation for

activity coefficients is

G = m1

(
RT ln

(
m1γ

[m]
)
− 552790

)
+m2

(
RT ln

(
m2γ

[m]
)
− 744540

)
−1321830m3 + 55.5

(
−237130 +RT ln

55.5

m1 +m2 + 55.5

)
,

where

ln
(
γ[m]

)
= −z2A

( √
I

1 +
√
I
−BI

)
,

√
I =
√

2m1 + 2m2, z = ±2, R = 8.314, T = 298.15, A = 1.17, B = 0.3.



And after simplification we obtain

G = m1

(
24500 + 2RT ln

(
m1γ

[m]
))
− 1321830K

+55.5

(
−237130 +RT ln

55.5

2m1 + 55.5

)
.

This is relatively simple function and we can find optimality condition.
The solution of optimality condition matches the output of program. The
Gibbs free energy of this system is in this case the convex function with
only one solution. See Figure 1.

Figure 1: The Gibbs free energy of dissolution of CaSO4 without constant terms (Davis).

Similarly we will proceed also in the case of the Extended Debye-Hückel
Equation for activity coefficients. Now we obtain the following formula for
the Gibbs free energy

G = m1

(
RT ln

(
m1γ

[m]
)
− 552790

)
+m2

(
RT ln

(
m2γ

[m]
)
− 744540

)
−1321830m3 + 55.5

(
−237130 +RT ln

55.5

m1 +m2 + 55.5

)
,

where

ln
(
γ[m]

)
= −4A
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I
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√
I

+
2

B
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(
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√
I
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,

√
I =
√

2m1 + 2m2, R = 8.314, T = 298.15, A = 0.391475, B = 1.2.

After simplification we have



G = m1

(
24500 + 2RT ln

(
m1γ

[m]
))
− 1321830K

+55.5

(
−237130 +RT ln

55.5

2m1 + 55.5

)
.

However in this case the function of the Gibbs free energy is decreasing
so that it has no relative minimum. It would mean that arbitrary the
amount of CaSO4 dissolve and this result does not correspond to reality.
See Figure 2.

Figure 2: The Gibbs energy of dissolution of CaSO4 without constant terms (Debye-
Hückel).

4 ONE MORE COMPLICATED EXAMPLE

We will solve the same task as in [4] with two kinetic equations

dmC2Cl3H

dt
= −0.67m−MnO4

mC2Cl3H and
dmC2Cl4

dt
= −0.045m−MnO4

mC2Cl4.

In the following two tables ”Output 1” contains results of computation
without kinetics, ”Output 2” contains results of computation with kinetics
in time t = 1s and finally ”Output 3” contains results of computation with
kinetics in time t = 1000s. The first table contains results of computa-
tions performed with the Extended Debye-Hückel activity coefficients and
the second with the Davies activity coefficients. The computations accom-
plished with the Davies activity coefficients were approximately three times
faster. At the end I would like to point out that results are strongly influ-
enced by the choice of activity coefficients. Some mutually corresponding
items in tables differ up to 30%.



Component Input Output 1 Output 2 Output 3

CaCO3 10−1 0.11314D + 00 0.11314D + 00 0.11314D + 00

CaSO4 10−1 0.95250D − 01 0.95249D − 01 0.95249D − 01

MgCa(CO3)2 10−1 0.91605D − 01 0.91607D − 01 0.91607D − 01

MnCO3 10−1 0.96789D − 01 0.96785D − 01 0.96785D − 01

MnO2 10−1 0.99999D − 01 0.10000D + 00 0.10000D + 00

H2O 55.5 55.5 55.5 55.5

CO3
2− 10−6 0.68589D − 02 0.68594D − 02 0.68594D − 02

Ca2+ 10−6 0.53936D − 05 0.53924D − 05 0.53924D − 05

SO4
2− 10−6 0.47514D − 02 0.47518D − 02 0.47518D − 02

Mg2+ 10−6 0.83959D − 02 0.83939D − 02 0.83939D − 02

Mn2+ 10−6 0.32143D − 02 0.32136D − 02 0.32136D − 02

OH− 10−6 0.34282D − 06 0.43141D − 06 0.43139D − 06

H+ 10−6 0.54677D − 07 0.43430D − 07 0.43431D − 07

CL− 10−6 0.10000D − 04 0.30000D − 05 0.30011D − 05

C2Cl3H 10−6 0.10000D − 11 0.10000D − 05 0.99967D − 06

Cl2 10−6 0.10000D − 11 0.10000D − 11 0.10000D − 11

CO2 10−6 0.66441D − 05 0.41940D − 05 0.41942D − 05

MnO4
− 10−6 0.10000D − 11 0.10000D − 11 0.10000D − 11

C2Cl4 10−6 0.10000D − 11 0.10000D − 05 0.99998D − 06
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Component Input Output 1 Output 2 Output 3

CaCO3 10−1 0.10976D + 00 0.10976D + 00 0.10976D + 00

CaSO4 10−1 0.96474D − 01 0.96473D − 01 0.96473D − 01

MgCa(CO3)2 10−1 0.93767D − 01 0.93768D − 01 0.93768D − 01

MnCO3 10−1 0.97617D − 01 0.97612D − 01 0.97612D − 01

MnO2 10−1 0.99999D − 01 0.10000D + 00 0.10000D + 00

H2O 55.5 55.5 55.5 55.5

CO3
2− 10−6 0.50921D − 02 0.50929D − 02 0.50929D − 02

Ca2+ 10−6 0.40049D − 05 0.40039D − 05 0.40039D − 05

SO4
2− 10−6 0.35275D − 02 0.35280D − 02 0.35280D − 02

Mg2+ 10−6 0.62341D − 02 0.62326D − 02 0.62326D − 02

Mn2+ 10−6 0.23867D − 02 0.23861D − 02 0.23861D − 02

OH− 10−6 0.31843D − 06 0.40116D − 06 0.40115D − 06

H+ 10−6 0.50711D − 07 0.40251D − 07 0.40252D − 07

CL− 10−6 0.10000D − 04 0.30000D − 05 0.30011D − 05

C2Cl3H 10−6 0.10000D − 11 0.10000D − 05 0.99967D − 06

Cl2 10−6 0.10000D − 11 0.10000D − 11 0.10000D − 11

CO2 10−6 0.66339D − 05 0.41805D − 05 0.41807D − 05

MnO4
− 10−6 0.10000D − 11 0.10000D − 11 0.10000D − 11

C2Cl4 10−6 0.10000D − 11 0.10000D − 05 0.99998D − 06


