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Overview

1 a survey of proof systems

2 a lower bound for an algebraic proof system

3 on lower bounds for ILP proof systems
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Propositional Proof Systems

The idea of a general propositional proof system

1 it is sound;

2 it is complete;

3 the relation ‘D is a proof of tautology φ” is decidable in polynomial time.

Definition (Cook, 1975)

Let TAUT be a set of tautologies. A proof system for TAUT is any polynomial
time computable function f that maps the set of all binary strings {0, 1}∗ onto
TAUT .

Meaning:
Every string is a proof.
f (ā) is the formula of which ā is a proof.

Say that a proof system is polynomially bounded, if every tautology has a proof of
polynomial length.

Fact
There exists a polynomially bounded proof system iff NP = coNP.
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Meaning:
Every string is a proof.
f (ā) is the formula of which ā is a proof.

Definition
A proof system f1 polynomially simulates a proof system f2, if there exists a
polynomial time computable function g such that for all ā ∈ {0, 1}∗,
f1(g(ā)) = f2(ā).

Meaning:
Given a proof ā of f2(ā) in the second system, we can construct a proof g(ā) of
the same tautology in the first system in polynomial time.
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Frege Proof Systems

propositional variables p1, p2, . . .
any complete finite set of connectives.
any complete finite set of rules.
a Frege proof is a string of formulas (tautologies) that are axioms or derived from
previous ones using rules

Example. [Hilbert and Ackermann]
Connectives ¬,∨.
Axiom schemas

1 ¬(A ∨ A) ∨ A

2 ¬A ∨ (A ∨ B)

3 ¬(A ∨ B) ∨ (B ∨ A)

4 ¬(¬A ∨ B) ∨ (¬(C ∨ A) ∨ (C ∨ B))

Rule

From A and ¬A ∨ B derive B.

Theorem (Cook-Reckhow)

Frege systems polynomially simulate each other.
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Lower bounds for prop. proof systems

Exponential lower bounds imply:

separations of some fragments of bounded arithmetic,

impossibility of efficient algorithms of certain types,

exp. lower bounds on all systems would prove NP 6= coNP.

But we are able to prove lower bounds only for very restricted subsystems of
Frege proofs: where the depth of all formulas in the proof is bounded by a
constant, Bounded Depth Frege proof systems.
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Algebraic proof systems

Two types

1 proving unsolvability of systems of equations

2 proving polynomial identities

F a field
F [x1, . . . , xn] the ring of polynomials
algebraic circuits
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Proving unsolvablity of equations

Theorem (Hilbert’s Nullstellensatz)

A system of equations

f1(x1, . . . , xn) = 0, , . . . , fm(x1, . . . , xn) = 0

does not have a solution in the algebraic closure of F , iff there exist polynomials
g1, . . . , gm such that

m∑
i=1

figi = 1.

Note that

1 the “if” part is trivial;

2 the condition is equivalent to:

polynomials f1, . . . , fm generate the ideal of all polynomials.
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Nullstellensatz as a proof system

Call (g1, . . . , gm) such that
∑m

i=1 figi = 1 a proof of the unsolvability of
f1 = 0, . . . , fm = 0.

Measures of the complexity of such a proof:

1 maxi deg gi ;

2 the number of monomials in g1, . . . , gm;

3 the size of formulas/circuits computing g1, . . . , gm.

What if we are only interested in 0-1 solutions? Add equations

x2
1 = x1, . . . , x

2
m = xm.

Such a proof system is a propositional proof system.
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Polynomial Calculus

We can derive
∑m

i=1 figi = 1 sequentially.
Recall that ∅ 6= I ⊆ F [x1, . . . , xn] is an ideal, iff

1 g , h ∈ I ⇒ g + h ∈ I and

2 g ∈ F [x1, . . . , xn] ∧ h ∈ I ⇒ gh ∈ I .

The rules of the Polynomial Calculus

1 from g and h derive g + h

2 from h derive gh (where g is any polynomial)

A proof is
(f1, . . . , fm, h1, . . . , h`, 1),

where . . .
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Proving equations - equational calculus

Axioms

1 x = x ;

2 0 is zero, 1 is one, associativity and commutativity of × and +, distributivity.

Rules

1 reflexivity of =;

2 = is a congruence reaction w.r.t. + and ×.

(Horn formulas translate into rules.)
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ILP proof systems

Integer Linear Programing problem is given by

a rational matrix {aij} and

a rational vector ~B.

The task is to find an integral solution to the set of inequalities inequalities (or to
determine if it exists) ∑

j

aijxj ≤ Bi

Fact
The decision version of ILP is NP-complete.

By adding inequalities 0 ≤ xj ≤ 1 we may restrict the set of solutions to 0s and 1s.
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Cutting planes proof system

A proof line is an inequality ∑
k

ckxk ≥ C ,

where ck and C are integers.

The axioms are
∑

j aijxj ≤ Bi

The rules are

1 addition: from
∑

k ckxk ≥ C and
∑

k dkxk ≥ D derive∑
k(ck + dk)xk ≥ C + D;

2 multiplication: from
∑

k ckxk ≥ C derive
∑

k dckxk ≥ dC , where d is an
arbitrary positive integer;

3 division: from
∑

k ckxk ≥ C derive
∑

k
ck

d xk ≥
⌈

C
d

⌉
, provided that d > 0 is

an integer which divides each ck .

To prove the unsatisfiability of the inequalities we need to derive

0 ≥ 1
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Lovász Schrijver system

We want to prove unsatisfiability of linear inequalities in integers by deriving the
contradiction −1 ≥ 0

Proof lines are linear and quadratic inequalities.

Axioms

1 the given inequalities and

2 x2
i − xi = 0, for all variables xi .

Rules

1 positive linear combinations;

2 from linear inequality
∑

k ckxk + C ≥ 0 derive xi (
∑

k ckxk + C ) ≥ 0;

3 from linear inequality
∑

k ckxk + C ≥ 0. derive (1− xi )(
∑

k ckxk + C ) ≥ 0

Note that one has to get rid of quadratic terms before applying rules (2) and (3).
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Hybrid systems

Bounded depth Frege system with the parity gate.

Although exponential lower bounds for bounded depth circuits with parity gates
are known since 1986, for this proof system we do not have lower bounds. Only
the first step has been done: lower bounds on the Polynomial Calculus.
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Lecture 2: A lower bound on the degree for Polynomial Calculus proof of the
Pigeon-Hole Principle.12

Lecture 3: A lower bound on the size of Cutting-Plane proofs of the
Clique-Coloring tautology.3

1A.A. Razborov: Lower bounds for the polynomial calculus.
2R. Impagliazzo, P. Pudlak, J. Sgall: Lower bounds for the polynomial calculus and

the Groebner basis algorithm.
3P. Pudlak: Lower bounds for resolution and cutting planes proofs and monotone

computations.
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