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Abstract. A new method of normalization is used for the construc-
tion of the affine moment invariants. The affine transform is decomposed
into translation, scaling, stretching, two rotations and mirror reflection.
The object is successively normalized to these elementary transforms by
means of low order moments. After normalization, other moments of
normalized object can be used as affine invariant features of the origi-
nal object. We pay special attention to the normalization of symmetric
objects.

1 Introduction

Affine moment invariants as features for object recognition have been studied
for many years. They were introduced independently by Reiss [1] and Flusser
and Suk [2], who published its explicit forms and proved their applicability in
simple recognition tasks. In their work, they decomposed the affine transform
into translation, anisotropic scaling and two skews. The systems of invariants
were derived by direct solving Cayley-Aronhold differential equation [2], by ten-
sor method [3] or, equivalently, by graph method [4]). The invariants are in form
of polynomials of moments.

The normalization performs an alternative approach to deriving invariants.
First, the object is brought into certain ”normalized” or ”canonical” position,
which is independent of the actual position of the original object. In this way, the
influence of affine transformation is eliminated. Since the normalized position
is the same for all objects differing from each other just by affine transform,
the moments of normalized object are in fact affine invariants of the original
one. We emphasize that no actual spatial transformation of the original object
is necessary. Such a transformation would slow down the process and would
introduce resampling errors. Instead, the moments of normalized objects can be
calculated directly from the original one using the normalization constraints.
These constraints are often formulated by means of low-order moments.

The idea of normalization was successfully used in [5], but only normaliza-
tion to rotation was considered in that paper. Affine normalization was firstly

* This work has been supported by the grants No. 201/03/0675 and No. 102/04/0155
of the Grant Agency of the Czech Republic.



described in [6], where two different affine decompositions were used (XSR de-
composition, i.e. skew, anisotropic scaling and rotation , and XYS decomposi-
tion, i.e. two skews and anisotropic scaling). However, this approach leads to
some ambiguities, which were studied in [7] in detail.

Pei and Lin [8] presented a method similar to ours. Their paper contains
detailed derivation of the normalization to the first rotation and to anisotropic
scaling, but they do not consider the problems with the symmetric objects and
with the mirror reflection. This is a serious weakness because in many applica-
tions we have to classify man-made or specific natural objects which are very
often symmetrical. Since many moments of symmetrical objects are zero, the
normalization constraints may be not well defined.

Shen and Ip [9] used so called generalized complex moments computed in
polar coordinates and analyzed their behavior in recognition of symmetrical
objects. Heikkila [10] used Cholesky factorization of the second order moment
matrix to define the normalization constraints.

We present a new, simpler way of normalization to the affine transformation,
which is based both on traditional geometric as well as complex moments. The
method is well defined also for objects having n-fold rotation symmetry, which
is its main advantage.

2 Normalization of the image with respect to the affine
transform

The affine transform
' =ag + a1z + asy, (1)
y' =bo + bix + boy

can be decomposed into six simple one-parameter transforms and one non-
parameter

Horizontal and vertical translation : Scaling : First rotation :

U= — U=z U = wx U =2xcosa—ysinw
v=1y v=Y— Yo v =wy v=xsina+ ycos«
Stretching : Second rotation : Mirror reflection :

u=dx u=zxcosp—ysinp u==zx

v:%y v=axsinp+ycosp v==y.

(2)

Any function F' of moments is invariant under these seven transformations
if and only if it is invariant under the general affine transformation (1). The
ordering of these one-parameter transforms can be changed, but the stretching
must be between two rotations.

Each of these transforms imposes one constraint on the invariants. Traditional
approach to the problem of affine invariants consists on expressing constraints
in form of equations. Affine invariants are then obtained as their solutions.



Here we bring the object into normalized position. The parameters of the
”normalization transforms” can be calculated by means of some object mo-
ments. Below we show how to normalize the object with respect to all seven
one-parameter transforms.

2.1 Normalization to translation and scaling

We can easily normalize the image with respect to translation just by shifting it
such that its centroid

mio mo1
Te = , Ye = . (3)
moo moo

is zero. Practically, this is ensured by using central moments
co oo
fpg = / / (@ — )P (y — ye) ' f (2, y)dady, (4)
—o0 —o0
instead of geometric moments

Mpq = 7 7Ipy"f(x,y)dxdy- (5)

—00 —O0
The normalization to the scaling is also simple. The scaling parameter w can

be recovered from pigg
w =1/\/1igo- (6)

The scale-normalized moments are then defined as

ptq+2

Vpq = Hpg/Boo” - (7)

2.2 Normalization to the first rotation and stretching

Normalization to the rotation can advantageously be done by complex moments.
Complex moment is defined as

ow= [ [ i) s sy, ®)

where 7 denotes imaginary unit. Each complex moment can be expressed in terms
of geometric moments m,, as

Cpg = ij Zi: (2) (q) (=1)77 PRI g gk 9)

We can use normalized complex moments computed from the normalized mo-
ments vy, to get translation and scaling invariance.



When rotating the image, its complex moments preserve their magnitudes
while their phases are shifted. More precisely,
’ i(p—
Cpq = e!? q)acpq» (10)
where « is the rotation angle measured counterclockwise.

The simplest normalization constraint is to require c;q to be real and positive.
This is always possible to achieve (provided that ¢, # 0) by rotating the image

by angle «
S(Cpq)>
arctan , 11
(%(Cpq) (1

where R(cpq) and (cpq) denote real and imaginary parts of ¢,q, respectively.
Generally, any non-zero c,, can be used for this kind of normalization. Be-
cause of stability, we try to keep its order as low as possible. Since c¢1g was already
used for translation normalization, the lowest moment we can employ is cog. It
leads to well known ”principal axes normalization”, where the angle is given as

1 R 1 2
o = —— arctan (6(620)) = —— arctan (Mll) . (12)
2 R(c20) 2 H20 — 02

If the coq is zero, we consider the object is already normalized and set a = 0.

Normalization to stretching can be done by imposing an additional constraint
on second order moments. We require that phy, = pge. The corresponding nor-
malizing coefficient ¢ is then given as

a=—

p—q

_ _ 2 4 2
5\/M2o+#02 \/(Nzo fo2)? + 4ps, (13)

2v/ 2o tioz — 13,

(this is well defined because uaopo2 — p3, is always non-zero for non-degenerate
2-D objects).

After this normalization the complex moment ¢4, becomes zero and cannot
be further used for another normalization.

The moments of the normalized image to the first rotation and stretching
can be computed from the moments of the original by means of (9) and (10) as

P g
_ p\[(q . p—k+j —j
Hpg = 0771 E E <k:) <]>(1)k sin? " cosF I o vy prgok—j - (14)

k=0 j=0

2.3 Normalization to the second rotation

Normalization to the second rotation is a critical step, namely for symmetric
objects. We propose a normalization by one complex moment, which must be
of course nonzero. However, many moments of symmetric objects equal zero.
The selection of the normalizing moment must be done very carefully, especially
in a discrete case where some moments which should be theoretically zero may



appear in certain positions of the object as nonzero because of quantization
effect.

Let us consider an object having n—fold rotation symmetry. Then all its
complex moments with non-integer (p — q)/n equal zero. To prove this, let us
rotate the object around its origin by 27 /n. Due to its symmetry, the rotated
object must be the same as the original. In particular, it must hold ¢jo" = cpq
for any p and ¢. On the other hand, it follows from eq. (10)) that

C;gt — e~ 2mi(p—q)/n Cpq-
Since (p — ¢)/n is assumed not to be an integer, this equation can be fulfilled
only if ¢,q = 0. Particularly, if an object has circular symmetry (i.e. n = 00),
the only nonzero moments can be cpp’s.

The moment we use for normalization is found as follows. Let us consider a
set of complex moments {cpq|p > ¢,p+¢q < r} except those moments which were
used in previous normalization steps. We sort this set according to the moment
orders and, among the moments of the same order, according to p —q. We get a
sequence of Complex moments C21, C30, C31, C40, C32, C41, C50, C42, C51, C60, etc. The
first nonzero moment in this sequence is selected for normalization. (In practice,
"nonzero moment” means that its magnitude exceeds some threshold.) If all the
moments in the sequence are zero, we consider the object circular symmetric
and no normalization is necessary.

Thanks to the proper ordering of moments, co; is always selected for non-
symmetric objects. For symmetric objects the order of the selected moment is
kept as low as possible. This is a favorable property of the method because
low-order moments are more robust to noise than the higher-order ones.

Once the normalizing moment is determined, the normalizing angle p is cal-
culated similarly as (11)

p= —p%q arctan (;EZZD . (15)

Finally, the moments of the object normalized to the second rotation are
calculated by means of a similar formula as in the case of the first rotation

p q
P\ (q k op—k+j k—j
=35 () ()t e e 10

k=0 35=0

but here the moments normalized to the first rotation and stretching j;,, must
be used on the right-hand side.

The moments 7,, are new affine moment invariants of the original object.
Note that some of them have " prescribed” values due to normalization, regardless
of the object itself:

To0 =1, 710 =0, 701 =0, To2 = 720, 711 =0, To3 = —7o1. (17)

All other moments (and also 799 and 721) can be used as features for invariant
object recognition.



2.4 Normalization to mirror reflection

Although the general affine transform (1) may contain mirror reflection, nor-
malization to the mirror reflection should be done separately from the other
transformations in (2) for practical reasons. In most affine deformations occur-
ring in practice, any mirror reflection cannot be present in principle and we
want to classify mirrored images into different classes (in character recognition
we certainly want to distinguish capital S and a question mark for instance).
Normalization to mirror reflection is not desirable in those cases.

If we still want to normalize objects to mirror reflection, we can do that, after
all normalization mentioned above, as follows. We find the first non-zero moment
(normalized to scaling, stretching and both rotations) with an odd ¢-index. If it
is negative, then we change the signs of all moments with odd g¢-indices. If it is
positive or if all normalized moments up to the chosen order with odd ¢-indices
are zero, no action is required.

3 Numerical experiments

To illustrate the performance of the method, we carried out an experiment with
simple patterns having different number of folds. In Fig. 1 (top row), one can see
six objects whose numbers of folds are 1, 2, 3, 4, 5, and oo, respectively. In the
middle row you can see these patterns being deformed by an affine transformation
with parameters ag = 0, a1 = —1, as = 1, bg = 0, by = 0, and b, = 1. For the
both sets of objects the values of the normalized moments were calculated as
described in Section 2. The moment values of the original patterns are shown in
Table 1. The last line of the table shows which complex moment was used for
the normalization to the second rotation. The moment values of the transformed
patterns were almost exactly the same — the maximum absolute error was 3 -
10—, which demonstrate an excellent performance of the proposed method even
if the test objects were symmetric.

In the bottom row of Fig. 1 the normalized positions of the test patterns are
shown. We recall that this is for illustration only; transforming the objects is
not required for calculation of the normalized moments.

The last line of Table 1 illustrates the influence of spatial quantization in the
discrete domain. Theoretically, in case of the three-point star we would need to
use csg, in case of the five-point star csg should be used, and the circle would
not require any normalization. However, in the discrete domain the symmetry is
violated. That is why the algorithm selected other moments for normalization.

In the second experiment, we tested the behavior of the method in a difficult
situation. The cross (see Fig. 2 left) has four folds of symmetry, so one would
expect to choose c49 for the normalization to the second rotation. However,
we deliberately set up the proportions of the cross such that ¢y = 0. Since
in the discrete domain it is impossible to reach exactly c49 = 0, we repeated
this experiment three times with slightly different dimensions of the cross. The
cross deformed by an affine transform is shown in Fig. 2 right. In all three cases



moment|Letter F|Compass|3-point star|Square|5-point star| Circle
T30 -0.5843 0 0.6247 0 -0.0011 0
T21 0.2774 0 0.1394 0 0.0024 0
Ti2 0.5293 0 -1.2528 0 -0.0038 0
T40 1.3603 1.013 1.4748 1.2 1.265 1
T31 -0.0766 0 -0.0002 0 -0.0068 0
T22 0.9545| 0.9371 1.4791 0.6 1.2664(0.9999
T13 0.1270 0 -0.0001 0 0.0106 0
To4 1.0592| 0.8972 1.48 1.2 1.2641 1
C21 C31 C21 €40 C21 C40

Table 1. The values of the normalized moments of the test patterns. (The values
were scaled to eliminate different dynamic range of moments of different orders.) The
complex moment used for the normalization to the second rotation is shown in the last
line.
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Fig. 1. The test patterns: the originals Fig.2. The cross: the original (left) and
(top row), the distorted patterns (middle distorted (right).

row), the patterns in the normalized posi-

tions (bottom row).

the method performed very well. A proper non-zero moment was selected for
normalization (c51 once and ¢49 twice) and the values of the normalized moments
of the original and deformed crosses were almost the same.

4 Conclusion

We presented a new way of image normalization with respect to unknown affine
transform. In addition to simplicity, the main advantage of the method is their
ability to handle symmetric as well as non-symmetric objects. Unlike the Shen
and Ip’s method [9], which was also developed for symmetric objects and has
been considered as the best one, our method does not require prior knowledge
of the number of folds. This is a significant improvement because its detection
(either by autocorrelation or by polar Fourier analysis) is always time-consuming
and sometimes very difficult.

The experiments in the paper show the performance of our method on artifi-
cial binary images to demonstrate the main features of the method. In practice,



the method can be applied without any modifications also to graylevel images
regardless of their symmetry/non-symmetry. The only potential drawback of our
method is that in certain rare situations it might become unstable, which means
that a small change of the image results in a significant change of its normalized
position. This is, however, a common weakness of all geometric normalization
methods.

Once the image has been normalized, its moments can be used as affine invari-
ants for recognition. Comparing to traditional affine moment invariants [2], [3],
the presented method has a big theoretical advantage. The construction of the
invariants is straightforward and their structure is easy to understand. Thanks
to this, we can immediately resolve the problem of finding minimum complete
and independent set of invariants. For the invariants [2] and [3], this problem has
not been resolved yet. Here, each moment which was not used in normalization
constraints, generates just one affine invariant. Independence and completeness
of such invariants follow from the independence and completeness of the mo-
ments themselves. Using minimum complete and independent set of invariants
yields maximum possible recognition power at minimum computational cost.
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