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Multichannel Blind Iterative Image Restoration

Filip Sroubek and Jan Fluss&enior Member, IEEE

~Abstract—Blind image deconvolution is required in many ap- variation (TV) has proved to be a good candidate for edge-pre-
plications of microscopy imaging, remote sensing, and astronom- serving denoising [3]. The TV solution is associated with highly
ical imaging. Unfortunately in a single-channel framework, serious nonlinear Euler-Lagrange equations but several linearization

conceptual and numerical problems are often encountered. Very . . . o .
recently, an eigenvector-based method (EVAM) was proposed for schemes were proposed to deal with this nonlinearity: the fixed

a multichannel framework which determines perfectly convolu- Point iteration scheme [4], [5], the primal-dual method [6] or a
tion masks in a noise-free environment if channel disparity, called more general half-quadratic regularization scheme proposed in
go-pr(ijmeness, itS Sé}tiSIied-_ V\ée prPOS? at?o_vel iter?:ivtelalgqri:hm [7]. Recently, a more sophisticated approach, which minimizes
ased on recent anisotropic denoising techniques of total variation _ ;

and a Mumford—Shah functional with the EVAM restoration con- the .Mumfo.rd Shah en'e'rgy function 8], Was success.fu.lly
dition included. A linearization scheme of half-quadratic regular- appl'eq to_ Image den0|§|ng and segmentatlon (9. A trivial
ization together with a cell-centered finite difference discretization €xtension into the nonblind deconvolution problem exists for
scheme is used in the algorithm and provides a unified approach all these iterative denoising techniques.

to the solution of total variation or Mumford—Shah. The algorithm A breakthrough in understanding of blind deconvolution was
performs well even on very noisy images and does not require an the method of zero sheets proposed by Lane and Bates [10].

exact estimation of mask orders. We demonstrate capabilities of ) . L
the algorithm on synthetic data. Finally, the algorithm is applied They have shown that the SC blind deconvolution is possible in

to defocused images taken with a digital camera and to data from @ noise-free case. Their arguments rest on the analytical prop-
astronomical ground-based observations of the Sun. erties of thez-transform in 2-D and on the fact that 2-D poly-

Index Terms—Conjugate gradient, half-quadratic regular- nomials are not generally factorizable._AIthough concep_tua!ly
ization, multichannel blind deconvolution, Mumford—Shah the zero sheets are correct, they have little practical application
functional, subspace methods, total variation. since the algorithm is highly sensitive to noise and prone to nu-
merical inaccuracy for large image sizes. A famous pioneering
work in blind deconvolution has been done by Ayers and Dainty
[11]. (Interesting also are enhancements proposed in [12]-[14].)

LIND restoration of an image acquired in an erroneouheir iterative method based on Wiener-like filters with the pos-

measuring process is often encountered in image pibility to include all sorts of constraints is robust to noise but
cessing but a satisfying solution to this problem has not bekitks any reliability, since the problem of blind deconvolution is
yet discovered. The amount af priori information about ill-posed with respect to both the image and the blur. If the im-
degradation, i.e., the size or shape of blurs, and the noise leegjes are smooth and homogeneous, an autoregressive model can
determines how mathematically ill-posed the problem is. Evée used to describe the measuring process. The autoregressive
nonblind restoration, when blurs are available, is in general giodel simplifies the blind problem by reducing the number of
ill-posed problem because of zeros in the frequency domainknowns and several techniques were proposed for finding its
of the blurs. The single-channel (SC) blind and nonblingblution [15]-[17]. Very promising results have been achieved
deconvolution in two-dimensional (2-D) have been extensivelyith a nonnegativity and support constraints recursive inverse
studied and many techniques have been proposed for thgiering (NAS-RIF) algorithm proposed by Kundur and Hatzi-
solution [1], [2]. They usually involve some regularizatiomakos [2] and extensions in [18], [19]. These methods, however,
which assures various statistical properties of the image work on images that contain objects of finite support and have a
constrains the estimated image and/or restoration filter amiform background. The area of the object support must be de-
cording to some assumptions. This regularization is requireskrmined in advance. A bold attempt [20] has been made to use
to guarantee a unique solution and stability against noise anhe TV-based reconstruction for the blind SC problems but with
some model discrepancies. SC restoration methods that hauious results as the problem is ill-posed with respect to both
evolved from denoising applications form a very successftle image and the blur. The alternating minimization algorithm
branch. Anisotropic denoising techniques play a prominent rid@s been proposed for this purpose and Cétaal. [21] have
due to their inherent ability to preserve edges in images. Tot@rified its convergence in case of tlig norm of the image

gradient, but not in case of the TV functional.
The knowledge of the degradation process does not have
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inhomogeneous medium such as the atmosphere; elect8attion Ill provides mathematical preliminaries for the develop-
microscopy, where images of the same sample are acquineent of the algorithm, which is then described in Section IV. Re-
at different focusing lengths; or broadband imaging througults of three experiments conducted on artificial and real data,
a physically stable medium but which has a different transfand comparisons with the simple EVAM method are given in
function at different frequencies. The MC acquisition referSection V.

in general to two input/output models that differ fundamen-

tally, and from the mathematical point of view, should be II. NOTATION AND DEFINITIONS

distinguished: the single-input multiple-output (SIMO) model Throughout£2 will denote a rectangle iR? (although lower

and the multiple-input multiple-output (MIMO) model. Theor higher dimensions may be also considered) which is the def-

SIM.O model is typ_l_cal for one-sensor imaging under Varym%'{tion domain of image intensity functions. All the image in-
environment conditions, where individual channels represen

the conditions at time of acquisition. The MIMO model refer;[;ensr[y functions will be regarded as a bounded gray-levell func-
. . . lons of the formu : Q@ — [0,1]. x = (x,y) denotes location

to multi-sensor or broadband imaging, where the channels > 5 N

. in Qx| = /z2 + y2 denotes Euclidian norm, arlf- || de-

represent, for example, different frequency bands or resolutlrc])ntes the norm itL,(Q2). | E| stands for the Lebesgue measure

levels. Color images are the special case of the MIMO mode . :
. - C
An advantage of MIMO is the ability to model cross-chann £ C R* which could be considered to be equal to the area of

degradations which occur in the form of channel crosstalks,'_l_O be able to implement the ronosed alaorithm a prover dis-
leakages in detectors, and spectral blurs. Many techniques for P brop 9 brop

. cretization is necessary. We will follow the CCFD (cell-centered
solving the MIMO problem were proposed and could be fourﬁme difference) discretization scheme [5]. A square lattice is
in [22]-[25]. In the sequel, we confine ourselves to the SIM ' q

. constructed on top of2 with a constant step. Let m andn

model exclusively and any reference to the term MC denotgs . : S
enote the minimum number of cells in theandz directions,

the SIMO model. . )

) L . respectively, that covers the total areafbfA cell ¢;; C Q2 is

Nonblind MC deconvolution is potentially free of the prob-,_«

- . . defined as

lems arising from the zeros of blurs. The lack of information

from one blur in one frequency is supplemented by the mforr.ngz—j ={(z,y): (i—1/2)h <y < (i+1/2)h,

tion at the same frequency from others. It follows that the blind G—1/2h << (j+1/2)h}

deconvolution problem is greatly simplified by the availability J =T=U

of several different channels. Moreover, it is possible to esfj;s, arealc;;| = h2. The cell centers are given Iy ;, ;) and

mate the blur functions directly by a simple one-step procequﬁjexed(i.j) where

and reduce the blind problem to the nonblind one if certain con- /

ditions are met. Harikumar and Bresler proposed in [26], [27] z;=(G—1/2h, j=1,...,n

a very elegant one-step subspace procedure (EVAM) which ac- yi=(i—1/2)h, i=1

complishes perfect blind restoration in a noise-free environment - ’ '

by fino!ing a minimum eigenv_egtor of a MC_ _Conditior_1 matrixThe cell middle edge points are given 0812, Yiz1/2) and

One disadvantage of EVAM is its vulnerability to noise. Evefhdexed(i + 1/2, j + 1/2), where

for amoderate noise level the restoration may break down. Pillai

et al.[28] have proposed another intrinsically MC method based Tir172 = 2 * (h/2)

on the greatest common dlylsor which is, upfqrtunately, even Yiz12 = yi £ (h/2).

less numerically stable. A different, also intrinsically MC, ap-

proach proposed in [29] first constructs inverse FIR filters artlinction«(x) is then approximated by a piecewise constant

then estimates the original image by passing the degraded famction U(x) which has a constant valug; inside the cell

ages through the inverse filters. Noise amplification also occuis. u;; is often calculated as the mean wfx) over the cell

here but can be attenuated to a certain extent by increasing dfjeor simply the value of: at the cell cente(i, ). The set of

inverse filter order, which comes at the expense of deblurring,;; values fully defines the piecewise constant functiofx)

The above reasoning implies that the combination of thehich can be thus regarded as a discrete maifix= {u;;}
anisotropic denoising technique with the subspace procedofesize (mm,n). The 2-D discrete:-transform ofU is defined
could provide both the numerical stability and the necessaaglU (z1,22) = > i, Z?:l wijzy ‘75’ , wherezy, zo € C. Fi-
robustness to noise. In the paper, we thus propose an MC altally, u € R™"™ denotes the discrete vector representation of
nating minimization algorithm (MC-AM) which incorporatesthe image function.(x) and is obtained by lexicographically
the EVAM condition matrix into the anisotropic denoising techerderingu;; with respect to the index pai, j). Any linear op-
nique as an extra regularization term. We derive the algorithenator K ( - ) and operatiork (u)(x) can be thus approximated
for two different denoising approaches: total variation angly a discrete matri¥K and matrix-vector multiplicatioi& u, re-
Mumford—Shah functional; and discuss in detail linearizatiospectively.
and discretization schemes which lead in both cases to simplén the sequel, the symba! will denote 2-D convolution.
equations that differ only in the construction of one particuldysing the vector-matrix notation, the convolutign* v is
matrix. approximated byCgu, whereCy is a block Toeplitz matrix

The rest of this paper is organized as follows. Used notatianith Toeplitz blocks. If spatial periodicity of functions is
and few numerical considerations are presented in Sectiondssumed, standard convolution could be replaced with circular
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convolution, which is represented in the discrete space bywaere) andy are positive parameters which penalize the regu-

block circular matrix with circular blocks. The Fourier transtarity of the solutions: andh,,. Constraint (3) is automatically

form (FT) simplifies circular matrices to diagonal matricessatisfied under certain conditions as it will be clear later. For

and clearly, this is a very useful property which justifies theow, the crucial question is how the function@l&ind R should

periodic assumption. look like. We proceed the discussion first with possible choices
Before we proceed on, it is crucial to investigate théor Q(u) and then forR(h,).

discretization of flux variables. Let us consider the

amountv of image gradientVu flowing in the direction A. Regularization Terng)(u)

no(x,n) = (((Qu)/(97)(x),(9u)/(dy)(x)),n), where  Regularization of (1) with respect to the image function
(-,-) denotes the scalar product. The discretizatioVe{x) can adopt various forms. The classical approach of Tichonov
follows th_e _CCFD scheme._ Ho_weve_r, the n_ormal VeCilQhoosesQ(u) = J,IVul?. The corresponding nonblind
n has a finite number of directions in the discrete spacginimization problem can be easily solved using FT and is
The most simplified approximation  (four-connectivity)eqyivalent to Wiener filtering. However, this advantage is only
defines only two main directions (1, 0), (0, 1) and the Cogomputational, because the obtained results are poor. The func-
responding discrete flux is defined at the cell middle tiona| assumes is smooth and any discontinuities increate
edge points as/((z;,4:),(0,1)) ~ vit1/2; = |uit1; = ringing artifacts. In the space of bounded variation functions
wi | /h, v((25, i), (1,0)) N Vijti/2 = |wi g1 —_%J'Vh- where TV serves as seminorm, it is possible to define correctly
A more accurate approximation (eight-connectivity) woulghage gradient together with discontinuities. Therefore, the

include, apart from the two main directions, additional twg;/ convex functional was proposed by Rudinal. [3] as the
diagonal directions (1, 1)—1, 1) that define flux values at the 5nhrqpriate regularization functional

cell corners as; 124172 = |wiy1,41 — wij|/V2h? and
Vig1/2,5-1/2 = |wiv1,j-1 — wij|/V2h2. Qrv(u) E/ V. (5)
Q

lll. M ATHEMATICAL PRELIMINARIES The associated Euler-Lagrange equations of (4) with respect to

Consider the MC (SIMO) model that consistsidimeasure- u are
ments of an original image. The relation between recorded

. .. s ) . oF Vu
imagesz,, and the original image is described b - = * — ) = R
gesz, 9 9 y o §p Ci, (Cn,(w) = 2) = AV (W)
2p(X) = (hy, * u)(X) + n,(X), X € Q, =1,...,P
p(x) = (hp * u)(x) + np(x) P du _ oo ©)
Q) on

whereh,, is the point spread function (PSF) of theh channel whereCy, (-) = (hy ) a*ndC;jP( ) denotes the adjoint oper-
blur, andn, is signal independent noise. Note, that the onI@tor' Wh'Ch SN our(-:aséhp(.-) :_(hp(_x>,* ')j In f[he secqnd
known variables are,. As the blind deconvolution problem is €9uation,(9u)/(9n) is the directional derivative in the direc-
ill-posed with respect to bothandk,,, a constrained minimiza- ion of the vector normal to the domain boundai§). Let us
tion technique is required to find the solution of (1). Constrain@SSUMe that the PSkg are known. It was mentioned in the in-
considered here are very common in real acquisition procesi@guction that this equation is highly nonlinear, and moreover,
and thus widely accepted. Assuming white noise (with diagorf3ft defined for[Vu| = 0. Several techniques were proposed
correlation matrix) of zero mean and constant variareand to solve (6). We follow the linearization scheme described in

PSF's preserving energy, the imposed constraints take the {31 whichiis similar to the half-quadratic regularization scheme
lowing form: of Geman [7] and which could be easily applied to more com-

plex functionals of the Mumford—Shah kind. The scheme intro-
9 9 duces “an auxiliary variable” which transfers the problem to a
./Q(hf’ *u—z) dx=[2o% p=1....P (2 e feasible one. Note that for everye R,z # 0,|z] =
: min,~o((v/2)z2? + (1/(2v))) and the minimum is reached for
/Q(Zp —u)dx=0, p=1,...,P. B = 1/]x|. For numerical reasons, it is necessary to restrict
' on a closed sek. = {v: ¢ < v < 1/e}. Substituting the above
Let Q(u) and R(h,) denote some regularization functionalgelation into (5), we obtain a functional of two variables
of the estimated original image and PSFs:,, respectively.
The constrained minimization problem is formulated as Qc(u,v) = 1/ <v|Vu|2 + 1) (7)
min,, », Q(u) + R(h,) subject to (1)—(3). The unconstrained 2 Jo v

Op“r_"'z.a“o’? proplem, obtalneq by means of the I__agran%ehd the algorithm consists of alternating minimizations of
multipliers, is to findu andh,, which minimize the functional (1, 0) = AQ(u,0) + (1/2) 3 [Ch. (1) — 2,||2 overu and
e\, - e\, P 1y §4

| F v. For any starting values’ andv?, the steps, > 1 are
E(uhy,....hp) = 5 > b+ u = 2|12

n __ . n—1
s u" = argmin Fo(u,v" ™)

+ /\Q(u) + FYR(hlv sy hP) (4) and
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™ = arg min F.(u",v) = min(max(e, 1/|Vu™|), 1/e). minimization procedure. We may therefore combine (11) with
veEK, . . .
) (10) and obtain a functional of two variables
P(V(x,h

The minimization over is trivial and the minimization overis  Qn(U,V) = h* Z Z Mw
also simple, sincé(u, v) is convex and quadratic with respect xeCo  ge7?
to u. Convergence of the algorithm to the minimizerof F. is x+hee )
proved in [30]. Moreover, it is proved thadf. converges to the Ux)—U(x+ h§)
original functionalf (u, v) = Qv (u) +(1/2) 3, |ICs, () — + V(% he) i o(&) (12)

zp||? ase — 0 but in a weak sense. This weaker notion of con-
vergence, called’-convergencewas introduced for studying whereV : Cq x hZ?> — [0,1]. The minimization algorithm
the limit of variational problems. It states that if the sequendg similar to (8) and consists of alternating minimizations of
(or a subsequence) of minimizersconvereges to somethen  F,(U,V) = AQx(U,V) + (1/2) 3 [[Cn, (U) — Zp||? with
w is a minimizer forF andF,(u.) — F(u). For each caseyis respecttd/ andV'. The iteration steps are as follows:
given by the second equation in (8). . _ -

In the late 80s, Mumford and Shah [8] have proposed a very U™ = argmin Fj (U, V")
complex energy function designed for image segmentatignq
which depends on the image functianand the size of dis- . ,((U(x) = U(x + hé))?
continuity set. In order to study the energy function, a weak Vi(x,h€) = f < ) > .
formulation which depends solely anwas introduced. The

regularization term of the weak Mumford—Shah energy is thehhe minimization ove#” is straightforward and the minimiza-
tion overU is a simple problem, sincE, (U, V) is convex and

guadratic with respect to'.

— 2 1
Quis(u) = /Q [Vul” + pH(Su) © B. Regularization Tern&(h,,)

) ) We show regularization of (1) with respect to the blags
where7{" denotes the 1-D Hausdorff measure a#de Q2 is  The discrete noise-free representation of (1) that conforms to
the 1-D set on which is not continuous. The gradieRtu is  the discretization scheme in Section Il is given as follows:
defined everywhere outside,. What follows is derived from

(13)

Chambolle [9]. LetU(x) denotes the piecewise constant ap- Z,=H,«U, p=1,...,P (14)
proximation ofu(x) as described in Section Il. Let the set of cell

centers b&y = {(zj,y;):i=1,...,m;j =1,...,n} C Q. Where matrice€,, H,, andU are of size(m.,n.), (mn,nn),
Consider a functional and (m.,,n, ), respectively, regardless of the channel ingex

The assumption that sizes Hf, are equal, is not really restric-
tive, since amyH,, with a smaller size can be padded with zeros

Qn(U) up to the size of the largest one. Clearty, = m;, + m, — 1
U(x) — Ulx + hé))? andn. = ny + n,, — 1if full convolution is considered.
=0 >y %f <( &) ;L ) ) P(£) It was mentioned earlier, that an exact solution exists for
x€Ca  ¢ez? # noise-free MC blind systems (using the subspace method) if cer-

x+hees tain disparity of channels is guaranteed. The following assump-

tion clarifies the disparity notion and is fundamental to the MC
blind deconvolution problem.

Assumption Al:Let H, be the discrete-transform ofH,.
Asetof2-D polynomials{ﬁp(zl, z9),p=1,...,P}isweakly
co-prime.

(10)

where¢ : 72 — R* is even, satisfieg(0) = 0, andg(e;) > 0
for anyi = 1,2 where{ey, es} is the basis oRR?; f : Rt —
R is a nondecreasing bounded function that satisfigy =
0, f(+00) = 1, and f'(0) = 1. A good candidate fof iS,  the polynomialsi, (21, 2») are weakly (factor) co-prime

for example,f(t) = (2/m)arctan((w?)/2). According to [9], it and only if the greatest common divisor is scalar, i.e.,
QrI-converges to a close approximation of the weak Muny; (21,20) = C(zl.zQ)FI’ (21,22),Yp = 1,...,P hold
ford—Shah energy (9). The proximity is chiefly influenced b¥rtfe only for a scalar fa’étOC(Z1222) — . A similar

the course of functiog. Due to the high nonconvexity in (10), hotion known as strong (zero) co-primeness is defined as
the numerical computation of an exact minimizer is not guafsjows. The polynomials are strongly co-prime if and only
anteed. If, in addition to the previous assumptions afoute it \hey do not have common zeros, i.e., there does not exist

assume thaf is concave and differentiable, we may write (¢1, ) - i (C1,G) = 0,¥p =1 P. Clearly, both notions
? - p ? - ? - LA . 1

are equivalent for 1D polynomials. However, for 2-D polyno-
) mials weak co-primeness is much less restrictive than strong
fla) = s v + () 1) co-primeness. Strong co-primeness of two 2-D polynomials is
o an event of measure zero, since two zero lines on(thez,)
and the minimum is reached for= f’(z). We do not have to plane intersect with probability one, but weak co-primeness in
be concerned about the shapeib), sincey will vanish in the practice holds for many common deterministic filters. Strong
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co-primeness is almost surely satisfied for> 3, since three of the convolution arguments is not fully defined, i.e., the result
or more zero lines pass through one common point on tbéfull convolutionZ«H is of size(m, +mp, —1,n, +n, —1),
(21, z2) plane with probability zero. while the result of cropped convolution is of sige. — m;, +
The following proposition proved in [26] is regarded as thé,n, — ny, + 1) if m, > my,n. > ny,. Cropped convolution
core stone of the subspace method. is thus well defined even for cropped images and the results of
Proposition 1: If p > 2, Al holds andU has at least one Proposition 1 hold. By using cropped convolution, we get for
nonzero element, then solutiofi&;(my, ny)} to free another advantage that the Neumann boundary condition in
the Euler-Lagrange equation (6) will be automatically satisfied
for the convolution term in this equation. A slight computational
drawback is the fact that cropped convolution cannot be diago-
nalized with FT anymore. Nevertheless, we will assume cropped
convolution in the following discussion for the reasons given

ZZ*GJ—Z]*Gz:O/ 1<i<j3<P (15)

have the form
H; «K, formg >mpAng>ny,

Gi = | oH;, for mg = mp Ang =ny above and show efficient computation of resulting matrices.
0, for mg < mp Vg < mny
whereK is some factor of sizém, — my, + 1,n, — nj + 1) IV. MC-AM A LGORITHM

anda is a scalar. From the above discussion follows that the unveiled ener
In the presence of noise, the situation is different and for t%e 9y

correct suppor{my,ny) system (15) is not equal to zero but hction  from (4) becomes

rather to some measurement of noise. The strategy in this case 1 E )
is to find the least-squares solution of (15) @r. In the frame- £ (w, h1,... . hp) = 2 Z 1y *u = 2|
work of our proposed MC blind deconvolution algorithm, we 11’:1
can thus define the regularization lof as +/\/Q V| _I_,YE Z I1C.. () —Czj(hi)IIQ (18)
1 1<i<j<P
R(ha,..shp) =5 D IIC(hy) = Csy (h)I? (26) e o .
1<ici<P forthe TV regularization and we would obtain a similar equation

whereC.,(-) = (z * -). Itis clear that a correct estimation offor the Mumford-Shah regularization. Note tifatu, h,) as a

the PSF supportis crucial, since the support overestimation agﬁ%cno_na_l (.)f several varla_b les is not convex eyerywhere and
some spurious factdK to the true solution, and even WOI’th,a ows infinitely many solutions. I(u./_h,,)_ is a solution, then so
the support underestimation does not have any solution. It i@r_e(au, (1/)hy) (mean-value ambiguity}u(x £ £), hy(x F
plies, that with respect to (15), the solutio@s for different

) (shift ambiguity) for anyn € R and¢ € R2. On the other
overestimated supports are indistinguishable, i.e., (16) is convneafd’ for fixedu or h,, E(u, hy) is a convex functional o,
but far from strictly convex. It will be clear later, that the term

or u, respectively. The AM algorithm, for some initial valu@,
> ||hi xu — 2| in (4) penalizes the overestimated solutiondIternates between the following two steps:

After substituting forR in (4), the Euler-Lagrange equations h, = argmin E(u™, h,) by (17)
with respect tah, are hy
OF u" = argmin F(u, h;) by (8) or (13) (19)

o C*(Culhy) — =
Oh, u(Culhy) = 2p) forn > 1. Aminimizer of the first minimization equation can be

p determined by directly solvingpE')/(0h,,) = 0, i.e., (17). The
— Z(C;Czi(hp) —C:C., (hi)), second minimization equation can be solved via (8) if the TV
i=1 functional is considered or via (13) if the Mumford—Shah func-
oh tional is considered. The mean-value ambiguity is removed by
~—2 =0 ondQ, p=1,...,P (17) constraint (3). It will be explained at the end of this section, that

on . . this constraint is automatically satisfied in the AM algorithm.

whereC,(-) = (u *-) and the adjoint operator 5;(-) = A correct setting of the blur sizén,,, ;) alleviates the shift
(.“(fx) * ). .Th's IS a S|mp|e_ set of linear equations and th“§mbiquity. In the noise-free case, the AM algorithm transforms
finding solutionsk,, is a straightforward task. The Neumanny,, yhe EvAM method: the first step in (19) becomes perfect
poundary condition could be omitted since the suppor,of p,r restoration and the second step calculates the least-squares
is assumed to be mgch smaller then t,h,e suppout of . solution of the image. When noise is present, any convergence

It should be. meptloned that Proposm.on 1_ holds only IN Canalysis is difficult to carry out but results of our experiments
that the acquired images, are of full size, i.e., convolution 50 gatisfying and illustrate a strong stability of the algorithm.
in (14) is full and thusZ,, are not cropped. This is, however, - c,ngjder the discretization scheme described in Section II.

seldom true in real applications. For the cropped scenario, asipp]—e P-channel acquisition model (1) becomes in the discrete

ilar proposition holds which is also derived in [26]. We will no% ace

discussed this proposition in detail. For our purpose, it will suf-

fice to note that the full convolution operator in (15) must be z=Hu+n=Uh+n (20)
replaced with a cropped convolution operator. Cropped convo-

lution differs from full convolution only in the size of the defi-whereh = [hf,... hL]T andz = [zT,...,2zL5]T denote

nition domain. It is not defined at image boundaries where onectors of sizePm,n; andPm._.n. representing discrete, con-
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catenated and lexicographically ordetgdandz,,, respectively. where bothl, and Lg are block tridiagonal matrices formed

Matricesl/ and’H are defined as from v; 41,5 j+1/2 andc(v) is a sum of inverse values of.
More precisely, the diagonal blocks are tridiagonal in bo'th
CU 0 CHI . . . . .
_ . _ . 2 and the off-diagonal blocks if4 are just diagonal matrices,
U= E ’ = : (21) while in Lg they are tridiagonal as well. Almost identical dis-
. 0 Cu B Cu, crete equations can be obtained for the Mumford—Shah regu-
P larization by means of (12). For instancegif= 0 except for

£ € {(07 1)7 (17 0)7 (07 _1)(_170)} Where¢(f) = 1/2 then
(12) takes the form of (23) and, if in addition(n) = 1/(2v/2)
forn e {(1,1),(-1,-1),(1,-1),(—1,1)} then (12) takes the
(m.,n.) then the minimum size of the original imageris, — orm of (24). We should not forget, however, that the difference
=E ! between TV and Mumford—Shah still resides in the calculation

m, +mp —1,ny =n, +np — 1. : _
Suppose tha€ is a matrix defined by the iterative prescrip-Of the flux variables = ¢(u), €.g., from (8) follows that for TV

whereCy and Cy, denote cropped convolution witti and
H,,, respectively. The size @f is (Pm.n., Pmyn;) and of
H is (Pm.n,,m,n,). If the size of the recorded images i

tion Vix1/2 j+1/2 = min(max(e, 1/[uix1 541 — uijl),1/€)
25
Sp-1=(Cz, —Cz,_,), (25)
Cy —Cy and from (13) for Mumford—Shah
t+1 t
— 1
Cz,.. Cz, Vit1/2,j+1/2 = ( N2 (26)
. . T \Uit+1,j+1 Ui, j
S = 1+ (T)
Cz, —-Cz, In the vector-matrix notation, the total energy function (18)
o | Sii1 for some overestimated blur size,, ny,) is
t=P=2P=3...1, B, n,(wh) = u"Lu+q]Zh|* +[[Hu-2]* (27)
Z=8; (22) where£ stands forC,, Lg, or any other matrix of similar form

resulting from a different approximation. The flux variablés
neglected to simplify notation. Using this equation, the mini-
mization algorithm in (19) reduces to a sequence of solutions of
simple linear equations. The discrete MC-AM algorithm thus
consist of the following steps.

whereCz, denotes cropped convolution with the ima@ethen
the right-hand side of (16) becomgls/2)||Zhl|? and the size
of Zis((P(P-1))/2)(m.—mp+1)(n. —np+1), Pmynyg).
We assume thatupp(Z,) > supp(H,) forp = 1,...,P.
From Proposition 1 follows, that for the noise-free cadéhas
full column rank(rank(Z) = Pmyny,) only if the blur size is
underestimated, i.em;, < m} V n;, < n}, where(mj},n})is
the correct blur size. For the overestimated blur size> mj A
ny > ni,rank(Z) = Pmyng, — (mp, —mj +1)(ny —nj +1).

Require: initial valueu®, blur size(m,,, n,), wherem, > m;,n, > nj,
and regularization parameteys> 0 andA > 0
1. forn > 1do

In case of the modified TV functional (7), we need to considef: 1" sobve (" =H)TU" = 45 ST Zh = U= T, {U" "1 is
the discretization scheme of the flux variableFor the simple constructed by}
four-connectivity approximation, one obtains (23) and for thd ~ Set8’ = u"~' andv® = p(u"™)
more elaborated eight-connectivity approximation (24) 4. fork = 1ldo

5: gh «— solve [(H™)TH™ + AL(vF—Y)]gh = (H")T=, {H™ is con-
1 ; isn s — ‘|2 . s structed byh™ }
9 Lz it 5,51 %i+1,g 1,3 ij+5 1% +1 6: v* = p(g*), {for ¢ use (25) or (26)
i=1j=1 7:  end for
1 1 8: u"’ «— g’"
s 2
uij|° + y + ”LH%) 9: end for
1 T
=34 La(v)u+ c(v) (23) The linear equation at line 2 can be solved directly since
Lo the symmetric square matrfg/" 1)Tun1 + vZT Z] is of
5 > (vi+%7j|ui+17j — i |? v 1 fui relatively small sizePmy,n;,, and is almost surly regular due
i=1 j=1 to full column rank of the convolution matrié. Any reason-
2 1 o 2 able imageu is “persistently exciting,” i.e.u « h # 0 for
— il + EU’H%J%'U’L“J“ — i j] every FIR filterh of size much smaller than. It was already
1 1 mentioned that for the noise-free case, the dimension of the

null space ofZ is proportional to the overestimated blur size
(mp, ny,), more precisely the dimension is equalte;, —m}, +
n 1 n 1 n 1 ) 1)(np, — n} + 1), and anyg € null(Z) takes the fornmg =

Vi iy 1 [vec{K « H}7T,..., vec{K * Hp}T], whereK is some spu-

’ ’

2
+ —=vipt ot o1 — wig]t +
V2 el Viplj
LT3 5]

I=

Vitgity  Vitgi-:

S

b

1 rious factor andd, are correct PSFs of size:; , n} ). The spu-
T . . . v v . .
S Ls(v)u+c(v) (24)  rious factor spoils the correct solution but cannot be avoided if
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the exact size of blurs is not known in advance and if ofily values of a circular convolution matrix are Fourier coefficients
is considered. It is the fundamental constraint (2) included attthe convolution mask.
line 2 which penalizes the spurious factor. To see this, consideiConstraint (3), which was left aside at the beginning, is au-
min, Y, [|[U" = K * H; — U % H;||* which is strictly greater tomatically satisfied in the algorithm if the mean values of the
than zero, unlesK is a factor ofU, which cannot happen al- acquired imageg, and the initial estimata’ are all equal,
most surely. Hence, the minimum is reached onlyisr = U ie., @’ = z; = --- = Zp. To see this, we first approxi-
andK reduced to the 2-D delta function. mate at line 2 cropped convolution with circular convolution
Due to the large size of each matrix, it is not feasible tand then apply FT to the equation. From the definitionzof
compute the productaT/ and ZTZ by first constructing in (22) and from the assumption of zero-mean noise follow, that
U and Z and then doing the matrix multiplication. Fortu-the transformedZ? Z vanishes at the spatial frequency (0, 0).
nately, there exists a very fast direct construction meth@&ince the (0, 0) frequencies refer to mean values, according to
for both products. Moreover, the latter product is corthe the definition of FT, the solutioh™ satisfies]ﬁ; = 1if
structed only once at the beginning. It is easy to observ@—! = z,. Likewise, if Bg = 1, the solutiong” at line 5
that the products consist dP? square blocksB;; of size satisfiesg® = (1/P) 25:1 7, = 2,, sinceL(v*~1) has zero
mpnn,i,j = 1,...,P.In case of"U, only the diagonal column-wise sums and hence vanishes at spatial frequencies
blocks are nonzero and defined Bs; = CCy. In case of (0,-) and(-,0).
21 2, the off-diagonal blocks are defined Bs; = —~C7 Cgz, The AM algorithm is a variation on the steepest-descent algo-
and the diagonal blockB;; = 3}, C%kCzk. We as- rithm. Our search space is a concatenation of the blur subspace
sume that C denotes cropped convolution. After somend the image subspace. The algorithm first descends in the blur
consideration, one would derive that the elementsBaf subspace and after reaching the minimum, Ng,F = 0, it
are calculated agy, = Sty memmtln + advances in the image subspace in the directigr? orthog-
p(l),n + v(l))zj(m + p(k),n + v(k)), wherez; and z; onal to the previous one, and this scheme repeats. To speedup
are elements oZ; andZ;, respectively, and index shifts arethe minimization, one may be tempted to implement direct set
wu(k) = [(k — 1)modmy],v(k) = [(k — 1)/(ms)]. Like- methods like Powell's that descend in arbitrary directions but
wise, if z;, z; are replaced withu we get the elements of thethis would require to solve nonlinear equations and the effi-
diagonal blocks iri/Ti{. This way, one block is computed inciency of such approach becomes problematic. Convergence is
O((mpnp)m.n. log(m,n.)) multiplies. On contrary, the full assured if the descentis restricted to a convex region of the func-
matrix multiplication require®((Pmyn;)?>m.n.) multiplies. tional which means that the Hessian matrix is positive semidefi-
The second linear equation at line 5 contains the symmetriite in the region. The Hessian &fu, h) is a symmetric matrix
positive semidefinite matri(H™)?H" + AL(v*~1)] of size
m,n,. Most of the common PSFs have zeros in the frequency Viar Vhu
domain and/or very small values at higher frequencies and the VI, Vauu
resulting convolution matrice®( are strongly ill-conditioned.
Hence, the problem at line 5 is ill-posed and contains too mawnereVyy, = UTU + vZTZ, Ve = HTH + AL and the
unknowns to be solvable by direct methods. A common apross second derivative€,,, is a combination of convolution
proach, which we have also adopted, is to use conjugate gaad correlation matrices with, h, z. Let Vy;,, andV,,, be pos-
dient (CG) or preconditioned CG methods, see [5], [31]. Thtve definite, which is true ifu is persistently exciting ant,
flux variablewv is calculated directly by means of (25) if TV isare strongly coprime. The Hessian is then positive semidefi-
considered or by means of (26) if Mumford—Shah regularizatianite if and only if (x7 V%) (yT Vuuy) > X7 Viay|? for all
is considered. The relaxation parametier(25) influences both x € RP™+m» and ally € R™«"«. If we assume that the con-
the converge speed of the algorithm and accuracy of solutionsatution matrices can be block diagonalized with FT then the
line 5. Refer to [4] for a discussion about hewlters the conver- above semidefinite condition is satisfied if is satisfied for each
gence rate and for comparison of different numerical methodgatial frequency alone. The multichannel teyi” Z is sin-
In our experiments, we have found values aroLdic? the most gular for each frequency and can be thus omitted. This leads
appropriate. The parametgrin (26) acts as a weighting factorus to a conclusion that this multichannel term does not directly
of the discontinuity term in the Mumford—Shah functional (9)enlarge the region of convexity. Instead, by defining mutual re-
There is no straightforward estimation of the parameter’s cdations between the channel blurs, it penalizes any diversion of
rect value and an evaluation by trial and error is probably tloge blur from the rest. The necessary condition of convexity
only choice. In our implementation, we alternate between ming thus expressed for each spatial frequency in each channel
mizations oveg andv only five times before returning back toas|u|?(|h|? + A|l]?) > |uh + uh*—Z|?, where(-) denotes a
line 2. Fourier coefficient of the corresponding signiak a simplified
expression that approximates eigenvaluesCofFundamental
constraint (2) for a zero noise level takes the farin= Z in the
Fourier domain. After substituting the constraint into the above
Convergence of the algorithm cannot be fully resolved oncandition, we geta|?(|h|? + A|I|?) > |u|?|h]? which is always
purely theoretical basis. Nevertheless, we have made severatiine. In general, the condition is not satisfied only for the funda-
teresting observations that rely on the fact that cropped convoinental constraint but generates a periodic manifold that is dif-
tion can be approximated by circular convolution and that eigeficult to visualize. It is important to note that the manifold size

A. Convergence Properties
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Fig. 1. (a) Original 100« 100 cameraman image used for simulations; (b) three7convolution masks; and (c) blurred and noise-free images.

grows with ), i.e., with increasing noise, convexity is guaranbottom limit is in general zero. Now, sin¢igt{” (Hu — z)||* ~

teed on a larger neighborhood @k = Z. ||Ih||202m.,n., we obtain the approximated bottom limit bfis
> [|h||o /My
B. Estimations of Parametersand \ |Al & BT (29)

To calculate precisely the regularization parameters is Npie product of the parameters
only a tedious task but it also gives results that are of not much 1 P
help in practical applications, since both parameters depend on a [v|[A] > \/ hh (30)
noise level which we usually do not know. Expressions derived _ o(P B DV mune .
here are very loose approximations that do not provide eng&pends pnly on the dimensions of the problem and thus defines
values but rather give a hint on the mutual relation of the p8-fix relation between the parameters.
rameters. Consider the equation at line 2 and let the values of
andh be equal to the original image and correct PSFs, respec- V. EXPERIMENTAL RESULTS
tively. Under the squarefl” norm, we obtaifji/” (Uh—z)||> = |n this section, we demonstrate the performance of our
v?||Z" Zh|]?, where|th — z||> = ||n|> ~ Pm.n.o”. Itis MC-AM approach on three different sets of data: simulated,
easy to verify that, it is white Gaussian noise ad#fldenotes real indoor and astronomical data. First, the simulated data
convolution withu, [[/™ (Uh — z)||* ~ Pmyny||lul[*a°. Since  for different SNR are used to compare results of MC-AM and
h stands for the correct PSFs, it must be a linear combinatigiyAM. Second, the performance of MC-AM is evaluated on
of ZT Z eigenvectors that correspond to a cluster of minimugut-of-focus data acquired by a standard commercial digital
eigenvalues. HencgZ” Zh||*> = A||h||*, where); denotes camera. Last but not least, we demonstrate capabilities of the

the minimum eigenvalue &7 Z. From the definition ofZ and pMcC-AM approach on data from astronomical ground-based
Proposition 1 follow that\; =~ o%(P — 1)m,n.,,. Finally, we gpservations of the Sun.

get the approximation For the evaluation of the simulated data, we use the per-
1 Pmann |l 1 centage mean squared errors of the estimated R@Rd of the
|y| = 71 ||h||L : p—— (28) estimated original imagg®, respectively, defined as follows:
o [[a —u|

The L2 norms ofu andh are of course not known in advance PMSE(u) = 100

but||u|| can be successfully approximated|ky|| and ifh > 0 Ih — h]|
then(P/(muny)) < ||h|* < P. PMSE(h) = 100——
If we apply a similar procedure to the equation at line 5, [l
we derive only the bottom limit of the regularization paramBoth 4 and h are the outputs of MC-AM. In general, the
eter)\. The uncertainty resides in the tefiu||?, which cannot mean squared errors do not correspond to our visual evaluation
be simplified, since it totally depends on local behavior of thef image quality and visual comparison is often the only
image functiorn:. We may only formulate a generous upper limiteliable evaluation technigue. Nevertheless, the mean squared
which is || £u]|? < ¢?||ul|?, where the constant depends on errors give us a hint how successful the restoration task was
the used approximation and the regularization term, i.e., for TAhd therefore we present the calculated errors together with
with £4,¢4 = 4 and for TV withLg,cs = 4 + 4(1/\/5). The estimated images. In cases of the camera and astronomical

[[ull

(1)
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Fig. 2. Estimation of the cameraman image and blurs from thi&e = 50 dB degraded images [(a) degradation witH using (b) the MC-AM algorithm and
(c) the EVAM algorithm.
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Fig. 3. Estimation of the cameraman image and blurs from thi&e = 40 dB degraded images [(a) degradation whth using (b) the MC-AM algorithm and
(c) the EVAM algorithm.

data, we use a wavelet-based focus measure [32] to compsedes of degraded images, z, andzs. The signal-to-noise
results. It is necessary to remark that all the focus measunegio is calculated as usual
which have been proposed in the literature, are easily deceived ZP_I lzi — |2
by possible artifacts which often occur in the reconstruction SNR = 10log| =5 -——— | . (32)
process. Artifacts are features (details) that were not present in ) e
original images and have been added to the images later du8@h algorithms, our MC-AM and Harikumar's EVAM, were
erroneous image processing. applied to the degraded data. The MC-AM algorithm was
All the experiments were conducted for the TV regularizatidi§t to iterate over the main loop (lines 1 to 9) ten times, and
with the eight-connectivity discretization scheme. The MunyVithin each iteration, the inner loop (lines 4 to 7) was iterated
ford-Shah regularization was found to produce similar resufté® times; The input parameters were initialized as follows:
with one advantage of having a good edge detector in the fldx = >_;—1 %i/P; (mn,nn) = (7,7); A was calculated from
variablev. Less advantages is the presence of the new pard?). Since we know ; andy was estimated from the parameter
eter ;. which influences the amount of edges. Since we weRsoduct (30). Results fdfNR = 50 dB, SNR = 40 dB, and
not interested in segmentation properties of the Mumford—Shal R = 30 dB are shown in Figs. 2, 3, and 4, respectively.

functional, the flexibility provided by: was redundant. Noise gets amplified in the EVAM reconstruction since it is
not considered in the derivation of this method. The results for

SNR = 30 dB illustrate vividly this drawback. On contrary, the
A. Simulated Data MC-AM algorithm is still stable even for lower SNRs (20 dB,
10 dB) as Fig. 5 demonstrates. The percentage mean squared
Cameraman image of size 180100 in Fig. 1(a) was first errors of the results are summarized in Table I.
convolved with three % 7 masks in Fig. 1(b) and then white
Gaussian noise at five different leveBNR. = 50, 40,30,20, B- RealIndoor Data
and10 dB) was added. This way we simulated three acquisition Four images of a flat scene were acquired with a standard dig-
channelg P = 3) with a variable noise level that produced atal camera focused to 80 (objects in focus), 40, 39, and 38 cm
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(b)

Fig. 4. Estimation of the cameraman image and blurs from thile = 30 dB degraded images [(a) degradation vhtfj using (b) the MC-AM algorithm and

(c) the EVAM algorithm.

@

(b)

[—u—ﬁ. T A :H-|.91
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Fig.5. Estimation of the cameraman image and blurs from degraded images with low SNR using the MC-AM algorithmh (aje@aded image witBNR, =
20 dB and restored image-blur pair; (c)—@) degraded image witiNR = 10 dB and restored image-blur pair.

PERFORMANCE OF THEEVAM AND

TABLE |

MC-AM A LGORITHMS ON SYNTHETIC DATA IN FIG. 1

SNR EVAM MC-AM
PMSE(h) | PMSE(u) | PMSE(h) | PMSE(u)
50dB 2.15 2.31 3.12 229
40dB 633 6.90 7.95 4.04
30dB 51.75 20.92 15.25 7.03
20dB n/a n/a 27.3 12.93
10dB n/a n/a 44.88 21.86

rithm. The parametex = 1.6 x 10~* was estimated experimen-
tally by running the algorithm with different’s and selecting
the most visually acceptable results. The parameteas calcu-
lated from (30). A defocused camera causes image degradation
that is modeled by cylindrical blurs. A cepstrum analysis [33]
was used to estimate diameters of these blurs, which were deter-
mined to be around 8 pixels. The size of blurs was then enlarged
to 10x 10 to assure inclusion of the whole cylinder. Obtained
results after 10 iterations are shown in Fig. 6(b). Further iter-
ations did not produce any visual enhancement. Simple visual
comparison reveals that the letters printed on book covers are
more readable in the restored image but still lack the clarity of
the focused image, and that the reconstructed blurs resemble the
cylindrical blurs as it was expected.

A quantitative evaluation of the amount of image blurring
was done by wavelet-based focus measure [32]. The measured
values, which rate the focus or the sharpness of images, are

distance, respectively. The aperture was set at F2.8 and the exqumamarized in Table Il. The three defocused images differ only
sure atl /320 s. The acquired data were stored as low resolutiglightly from each other and the difference is not visually de-
480x 640 24-bit color images and only the central rectangulsgctable. However, the focus measure was able to distinguish
part of the green channel of size 20@50 was considered for different focus levels. It decreases as the difference from the
reconstruction. The central part of the first image, which caperrect focus distance increases. The focus measure of the re-
tures the scene in focus, is shown in Fig. 6(a). Three remainisigpred image is significantly higher than the measures of the
images, Fig. 6(c), were used as the input for the MC-AM alg@put images. It is remarkable how successful the restoration
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Fig. 6. Real indoor images: (a) 260250 image acquired with the digital camera set to the correct focus distance of 80 cm; (b) MC-AM estimated image and
10x 10 blurs obtained from three images (c) of false focus distances 40 cm, 39 cm, and 38 cm, after 10 iteraticaslafidx 10 4.

TABLE I the perturbations of the wavefronts in the Earth’s atmosphere.
FOCUSMEASURESCALCULATED FOR THE REAL INDOORIMAGES IN FIG. 6 Different parts Of the solar atmosphere are observed in different
spectral bands. The lower part called photosphere is usually
observed in visible light oA = 590 nm while the medium part
called chromosphere is best to observéfin (A = 656.3 nm)

(focus distance) || (80cm) | (40cm) (39cm)  (38cm) wavelength. In visible light the effects of fluctuations in the
Focus Measure || 0.3040 | 0.1064 0.0947 0.0859 | 0.2494 refracuye !qdex of the.alr caqsed by temperature variations are
more significant than irf{,,. Since the atmospheric conditions
may change very quickly, the acquired image sequence usually
) o _contains images of different quality from almost sharp to
was, since one would expect that the similarity of blurs will Viheavy blurred ones. Such sequence, which is a result of one
olate the co-primeness assumption. Itis believed that the alg@servation session, may consist of several tens (or even
rithm would perform even better if a wider disparity betweeqngreds) of images. Multichannel blind deconvolution is the
blurs was assured. Another interesting observation is the fq\yéy how to fuse the individual images of low quality to obtain
that the restored image gives a smaller response than the focysgd (or a few) “optimal” images which can be used for further
image. This is of course in agreement with our visual evaluati%/estigation of astronomical phenomena.
but it also supports a_hypothesis that our restoration techniqugy, this experiment, we processed a sequence of images of
produces only few artifacts. a sunspot. Since the images were taken shortly one after an-
other they are almost perfectly registered. The random nature of
the atmospheric turbulence provides the necessary co-primeness
of the individual PSFs. The least degraded image from the se-
The last test which we have conducted was on real astouence, which is shown in Fig. 7(a), was selected as a reference
nomical data obtained in the observation of the Sun. In timage. Two other images of medium degradation, Fig. 7(b) and
ground-based observations, the short-exposure images fr@) were used as the input of the algorithm. The size of blurring
the telescope are corrupted by “seeing.” This degradation leadasks was set to 12 12 which was believed to be large enough
to image blurring, where the actual PSF is a composition tif contain the original blurring functions. The parametavas
the intrinsic PSF of the telescope (which is constant over tsettol0~* which corresponds t8NR ~ 40 dB and which is the
observation period) and of a random component describiegpected noise level for this type of images. The restored image

Image focused out of focus restored

C. Astronomical Data
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(@) (b) ©

Fig. 7. Astronomical data: (a) the least degraded 5@D0 image of the sunspot from the sequence acquired with the terrestrial telescope (reference); (b)—(c)
two blurred images from the sequence used for the reconstruction.

measure of the reference image. Along with the visual assess-
ment, this illustrates a good performance of our method in this
case.

VI. CONCLUSION

We have developed the algorithm for multichannel blind
image restoration which combines the benefits of the edge
preserving denoising techniques and the one-step subspace
(EVAM) reconstruction method. This has been achieved by
utilizing the multichannel EVAM constraint as a regularization
term in the anisotropic denoising framework of total variation
or the Mumford—Shah functional. The fundamental assumption
is the weak co-primeness of blurs which guarantees the appro-
priate level of channel disparity and assures perfect restoration
in a noise-free environment. The only input parameters, that are
required, are the minimum order (size) of blurs and the noise
level in the acquisition system. However, exact values of these

, ) parameters are not really needed and a rough estimate by trial
Fig. 8. Astronomical data: MC-AM reconstructed sunspot anck 112 blurs . e
with A = 10— and error is usually sufficient.
It was shown that the proposed algorithm gives satisfying
TABLE Il results, compared to EVAM, even for low SNRs around 30 dB.
Focus MEASURESCALCULATED FOR THE SUNSPOTIMAGES INFIGs. 7aND 8 This indicates that the denoising scheme significantly stabilizes
the restoration process. The channel co-primeness is a mild
condition especially in real applications, since the necessary
channel disparity is probably always satisfied by random
Focus Measure || 0.0149 | 0.0102 0.0112 0.0184 processes intrinsic to a given acquisition system. For example
in case of the astronomical data, atmospheric turbulence is
often modeled by Gaussian masks. In theory, any two Gaussian
in Fig. 8 was obtained after three iterations of the MC-AM almasks have a common nontrivial factor, but the algorithm was
gorithm. It is worth noting that the used data are far from beirgjill able to recover the image, since small fluctuations in PSFs
“ideal” for the application of the MC-AM algorithm—there areassured the co-prime condition.
only two channels, and their degradations are of similar nature Although we have not addressed the question of computa-
Nevertheless, the results are encouraging. By visual assessmenial complexity directly, we have demonstrated the ability of
the restored image is clearly sharper than the two input imagtee algorithm to recoverimages of moderate sizeXs@D0 with
contains no (or few) artifacts and its quality is comparable taurs up to 20x 20.
the reference image. As in the previous experiment, we asse¥Ve have not explored the influence of the blur order over-
the quality also by quantitative focus measure (see Table ll8stimation on image reconstruction and on convergence of the
The focus measure of the restored image is significantly highegorithm. A crucial issue for successful reconstruction, which
than that of the input images and even slightly higher than theour knowledge has not been so far discussed in the literature,

Image reference | 2 blurred (input) | restored (output)
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is the spatial alignment of channels. In real applications, thg3] B. Tom, K. Lay, and A. Katsaggelos, “Multichannel image identifica-
channel m|Sallgnment occurs very frequently and therefore tion and restoration using the expectation-maximization algorithm,”

. . . Opt. Eng, vol. 35, no. 1, pp. 241-254, Jan. 1996.
channel registration must precede the MC restoration taSIf24] A. Katsaggelos, K. Lay, and N. Galatsanos, “A general framework for

Clearly by shifting the mask centers, we can compensate to frequency domain multi-channel signal processingEE Trans. Image
a certain extent for small translation misalignments. It is ex-__ Processingvol. 2, pp. 417-420, July 1993.

. . 25] M. Kang, “Generalized multichannel image deconvolution approach and
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