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Multichannel Blind Iterative Image Restoration
Filip S̆roubek and Jan Flusser, Senior Member, IEEE

Abstract—Blind image deconvolution is required in many ap-
plications of microscopy imaging, remote sensing, and astronom-
ical imaging. Unfortunately in a single-channel framework, serious
conceptual and numerical problems are often encountered. Very
recently, an eigenvector-based method (EVAM) was proposed for
a multichannel framework which determines perfectly convolu-
tion masks in a noise-free environment if channel disparity, called
co-primeness, is satisfied. We propose a novel iterative algorithm
based on recent anisotropic denoising techniques of total variation
and a Mumford–Shah functional with the EVAM restoration con-
dition included. A linearization scheme of half-quadratic regular-
ization together with a cell-centered finite difference discretization
scheme is used in the algorithm and provides a unified approach
to the solution of total variation or Mumford–Shah. The algorithm
performs well even on very noisy images and does not require an
exact estimation of mask orders. We demonstrate capabilities of
the algorithm on synthetic data. Finally, the algorithm is applied
to defocused images taken with a digital camera and to data from
astronomical ground-based observations of the Sun.

Index Terms—Conjugate gradient, half-quadratic regular-
ization, multichannel blind deconvolution, Mumford–Shah
functional, subspace methods, total variation.

I. INTRODUCTION

B LIND restoration of an image acquired in an erroneous
measuring process is often encountered in image pro-

cessing but a satisfying solution to this problem has not been
yet discovered. The amount ofa priori information about
degradation, i.e., the size or shape of blurs, and the noise level,
determines how mathematically ill-posed the problem is. Even
nonblind restoration, when blurs are available, is in general an
ill-posed problem because of zeros in the frequency domain
of the blurs. The single-channel (SC) blind and nonblind
deconvolution in two-dimensional (2-D) have been extensively
studied and many techniques have been proposed for their
solution [1], [2]. They usually involve some regularization
which assures various statistical properties of the image or
constrains the estimated image and/or restoration filter ac-
cording to some assumptions. This regularization is required
to guarantee a unique solution and stability against noise and
some model discrepancies. SC restoration methods that have
evolved from denoising applications form a very successful
branch. Anisotropic denoising techniques play a prominent role
due to their inherent ability to preserve edges in images. Total
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variation (TV) has proved to be a good candidate for edge-pre-
serving denoising [3]. The TV solution is associated with highly
nonlinear Euler-Lagrange equations but several linearization
schemes were proposed to deal with this nonlinearity: the fixed
point iteration scheme [4], [5], the primal-dual method [6] or a
more general half-quadratic regularization scheme proposed in
[7]. Recently, a more sophisticated approach, which minimizes
the Mumford–Shah energy function [8], was successfully
applied to image denoising and segmentation [9]. A trivial
extension into the nonblind deconvolution problem exists for
all these iterative denoising techniques.

A breakthrough in understanding of blind deconvolution was
the method of zero sheets proposed by Lane and Bates [10].
They have shown that the SC blind deconvolution is possible in
a noise-free case. Their arguments rest on the analytical prop-
erties of the -transform in 2-D and on the fact that 2-D poly-
nomials are not generally factorizable. Although conceptually
the zero sheets are correct, they have little practical application
since the algorithm is highly sensitive to noise and prone to nu-
merical inaccuracy for large image sizes. A famous pioneering
work in blind deconvolution has been done by Ayers and Dainty
[11]. (Interesting also are enhancements proposed in [12]–[14].)
Their iterative method based on Wiener-like filters with the pos-
sibility to include all sorts of constraints is robust to noise but
lacks any reliability, since the problem of blind deconvolution is
ill-posed with respect to both the image and the blur. If the im-
ages are smooth and homogeneous, an autoregressive model can
be used to describe the measuring process. The autoregressive
model simplifies the blind problem by reducing the number of
unknowns and several techniques were proposed for finding its
solution [15]–[17]. Very promising results have been achieved
with a nonnegativity and support constraints recursive inverse
filtering (NAS-RIF) algorithm proposed by Kundur and Hatzi-
nakos [2] and extensions in [18], [19]. These methods, however,
work on images that contain objects of finite support and have a
uniform background. The area of the object support must be de-
termined in advance. A bold attempt [20] has been made to use
the TV-based reconstruction for the blind SC problems but with
dubious results as the problem is ill-posed with respect to both
the image and the blur. The alternating minimization algorithm
has been proposed for this purpose and Chanet al. [21] have
verified its convergence in case of the norm of the image
gradient, but not in case of the TV functional.

The knowledge of the degradation process does not have
to be the only source of usefula priori information. Multiple
acquisition that generates several differently blurred versions
of one scene may provided the information. Examples of
such multichannel (MC) measuring processes are not rare and
include remote sensing and astronomy, where the same scene
is observed at different time instants through a time-varying
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inhomogeneous medium such as the atmosphere; electron
microscopy, where images of the same sample are acquired
at different focusing lengths; or broadband imaging through
a physically stable medium but which has a different transfer
function at different frequencies. The MC acquisition refers
in general to two input/output models that differ fundamen-
tally, and from the mathematical point of view, should be
distinguished: the single-input multiple-output (SIMO) model
and the multiple-input multiple-output (MIMO) model. The
SIMO model is typical for one-sensor imaging under varying
environment conditions, where individual channels represent
the conditions at time of acquisition. The MIMO model refers
to multi-sensor or broadband imaging, where the channels
represent, for example, different frequency bands or resolution
levels. Color images are the special case of the MIMO model.
An advantage of MIMO is the ability to model cross-channel
degradations which occur in the form of channel crosstalks,
leakages in detectors, and spectral blurs. Many techniques for
solving the MIMO problem were proposed and could be found
in [22]–[25]. In the sequel, we confine ourselves to the SIMO
model exclusively and any reference to the term MC denotes
the SIMO model.

Nonblind MC deconvolution is potentially free of the prob-
lems arising from the zeros of blurs. The lack of information
from one blur in one frequency is supplemented by the informa-
tion at the same frequency from others. It follows that the blind
deconvolution problem is greatly simplified by the availability
of several different channels. Moreover, it is possible to esti-
mate the blur functions directly by a simple one-step procedure
and reduce the blind problem to the nonblind one if certain con-
ditions are met. Harikumar and Bresler proposed in [26], [27]
a very elegant one-step subspace procedure (EVAM) which ac-
complishes perfect blind restoration in a noise-free environment
by finding a minimum eigenvector of a MC condition matrix.
One disadvantage of EVAM is its vulnerability to noise. Even
for a moderate noise level the restoration may break down. Pillai
et al.[28] have proposed another intrinsically MC method based
on the greatest common divisor which is, unfortunately, even
less numerically stable. A different, also intrinsically MC, ap-
proach proposed in [29] first constructs inverse FIR filters and
then estimates the original image by passing the degraded im-
ages through the inverse filters. Noise amplification also occurs
here but can be attenuated to a certain extent by increasing the
inverse filter order, which comes at the expense of deblurring.

The above reasoning implies that the combination of the
anisotropic denoising technique with the subspace procedure
could provide both the numerical stability and the necessary
robustness to noise. In the paper, we thus propose an MC alter-
nating minimization algorithm (MC-AM) which incorporates
the EVAM condition matrix into the anisotropic denoising tech-
nique as an extra regularization term. We derive the algorithm
for two different denoising approaches: total variation and
Mumford–Shah functional; and discuss in detail linearization
and discretization schemes which lead in both cases to simple
equations that differ only in the construction of one particular
matrix.

The rest of this paper is organized as follows. Used notation
and few numerical considerations are presented in Section II.

Section III provides mathematical preliminaries for the develop-
ment of the algorithm, which is then described in Section IV. Re-
sults of three experiments conducted on artificial and real data,
and comparisons with the simple EVAM method are given in
Section V.

II. NOTATION AND DEFINITIONS

Throughout, will denote a rectangle in (although lower
or higher dimensions may be also considered) which is the def-
inition domain of image intensity functions. All the image in-
tensity functions will be regarded as a bounded gray-level func-
tions of the form . denotes location
in denotes Euclidian norm, and de-
notes the norm in . stands for the Lebesgue measure
of which could be considered to be equal to the area of

.
To be able to implement the proposed algorithm a proper dis-

cretization is necessary. We will follow the CCFD (cell-centered
finite difference) discretization scheme [5]. A square lattice is
constructed on top of with a constant step. Let and
denote the minimum number of cells in theand directions,
respectively, that covers the total area of. A cell is
defined as

with area . The cell centers are given by and
indexed , where

The cell middle edge points are given by and
indexed , where

Function is then approximated by a piecewise constant
function which has a constant value inside the cell

. is often calculated as the mean of over the cell
or simply the value of at the cell center . The set of
values fully defines the piecewise constant function

which can be thus regarded as a discrete matrix
of size . The 2-D discrete -transform of is defined
as , where . Fi-
nally, denotes the discrete vector representation of
the image function and is obtained by lexicographically
ordering with respect to the index pair . Any linear op-
erator and operation can be thus approximated
by a discrete matrix and matrix-vector multiplication , re-
spectively.

In the sequel, the symbol will denote 2-D convolution.
Using the vector-matrix notation, the convolution is
approximated by , where is a block Toeplitz matrix
with Toeplitz blocks. If spatial periodicity of functions is
assumed, standard convolution could be replaced with circular
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convolution, which is represented in the discrete space by a
block circular matrix with circular blocks. The Fourier trans-
form (FT) simplifies circular matrices to diagonal matrices,
and clearly, this is a very useful property which justifies the
periodic assumption.

Before we proceed on, it is crucial to investigate the
discretization of flux variables. Let us consider the
amount of image gradient flowing in the direction

, where
denotes the scalar product. The discretization of

follows the CCFD scheme. However, the normal vector
has a finite number of directions in the discrete space.

The most simplified approximation (four-connectivity)
defines only two main directions (1, 0), (0, 1) and the cor-
responding discrete flux is defined at the cell middle
edge points as

.
A more accurate approximation (eight-connectivity) would
include, apart from the two main directions, additional two
diagonal directions (1, 1), that define flux values at the
cell corners as and

.

III. M ATHEMATICAL PRELIMINARIES

Consider the MC (SIMO) model that consists ofmeasure-
ments of an original image. The relation between recorded
images and the original image is described by

(1)

where is the point spread function (PSF) of the-th channel
blur, and is signal independent noise. Note, that the only
known variables are . As the blind deconvolution problem is
ill-posed with respect to bothand , a constrained minimiza-
tion technique is required to find the solution of (1). Constraints
considered here are very common in real acquisition processes
and thus widely accepted. Assuming white noise (with diagonal
correlation matrix) of zero mean and constant variance, and
PSF’s preserving energy, the imposed constraints take the fol-
lowing form:

(2)

(3)

Let and denote some regularization functionals
of the estimated original image and PSFs , respectively.
The constrained minimization problem is formulated as

subject to (1)–(3). The unconstrained
optimization problem, obtained by means of the Lagrange
multipliers, is to find and which minimize the functional

(4)

where and are positive parameters which penalize the regu-
larity of the solutions and . Constraint (3) is automatically
satisfied under certain conditions as it will be clear later. For
now, the crucial question is how the functionalsand should
look like. We proceed the discussion first with possible choices
for and then for .

A. Regularization Term

Regularization of (1) with respect to the image function
can adopt various forms. The classical approach of Tichonov
chooses . The corresponding nonblind
minimization problem can be easily solved using FT and is
equivalent to Wiener filtering. However, this advantage is only
computational, because the obtained results are poor. The func-
tional assumes is smooth and any discontinuities increate
ringing artifacts. In the space of bounded variation functions
where TV serves as seminorm, it is possible to define correctly
image gradient together with discontinuities. Therefore, the
TV convex functional was proposed by Rudinet al. [3] as the
appropriate regularization functional

(5)

The associated Euler-Lagrange equations of (4) with respect to
are

(6)

where and denotes the adjoint oper-
ator, which is in our case . In the second
equation, is the directional derivative in the direc-
tion of the vector normal to the domain boundary. Let us
assume that the PSFs are known. It was mentioned in the in-
troduction that this equation is highly nonlinear, and moreover,
not defined for . Several techniques were proposed
to solve (6). We follow the linearization scheme described in
[30] which is similar to the half-quadratic regularization scheme
of Geman [7] and which could be easily applied to more com-
plex functionals of the Mumford–Shah kind. The scheme intro-
duces “an auxiliary variable” which transfers the problem to a
more feasible one. Note that for every

and the minimum is reached for
. For numerical reasons, it is necessary to restrict

on a closed set . Substituting the above
relation into (5), we obtain a functional of two variables

(7)

and the algorithm consists of alternating minimizations of
over and

. For any starting values and , the steps are
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(8)

The minimization over is trivial and the minimization over is
also simple, since is convex and quadratic with respect
to . Convergence of the algorithm to the minimizerof is
proved in [30]. Moreover, it is proved that converges to the
original functional

as but in a weak sense. This weaker notion of con-
vergence, called -convergence, was introduced for studying
the limit of variational problems. It states that if the sequence
(or a subsequence) of minimizersconvereges to somethen

is a minimizer for and . For each case, is
given by the second equation in (8).

In the late 80s, Mumford and Shah [8] have proposed a very
complex energy function designed for image segmentation
which depends on the image functionand the size of dis-
continuity set. In order to study the energy function, a weak
formulation which depends solely on was introduced. The
regularization term of the weak Mumford–Shah energy is then

(9)

where denotes the 1-D Hausdorff measure and is
the 1-D set on which is not continuous. The gradient is
defined everywhere outside . What follows is derived from
Chambolle [9]. Let denotes the piecewise constant ap-
proximation of as described in Section II. Let the set of cell
centers be .
Consider a functional

(10)

where is even, satisfies , and
for any where is the basis of

is a nondecreasing bounded function that satisfies
, and . A good candidate for is,

for example, . According to [9],
-converges to a close approximation of the weak Mum-

ford–Shah energy (9). The proximity is chiefly influenced by
the course of function . Due to the high nonconvexity in (10),
the numerical computation of an exact minimizer is not guar-
anteed. If, in addition to the previous assumptions about, we
assume that is concave and differentiable, we may write

(11)

and the minimum is reached for . We do not have to
be concerned about the shape of , since will vanish in the

minimization procedure. We may therefore combine (11) with
(10) and obtain a functional of two variables

(12)

where . The minimization algorithm
is similar to (8) and consists of alternating minimizations of

with
respect to and . The iteration steps are as follows:

(13)

The minimization over is straightforward and the minimiza-
tion over is a simple problem, since is convex and
quadratic with respect to .

B. Regularization Term

We show regularization of (1) with respect to the blurs.
The discrete noise-free representation of (1) that conforms to
the discretization scheme in Section II is given as follows:

(14)

where matrices , and are of size ,
and , respectively, regardless of the channel index.
The assumption that sizes of are equal, is not really restric-
tive, since any with a smaller size can be padded with zeros
up to the size of the largest one. Clearly,
and if full convolution is considered.

It was mentioned earlier, that an exact solution exists for
noise-free MC blind systems (using the subspace method) if cer-
tain disparity of channels is guaranteed. The following assump-
tion clarifies the disparity notion and is fundamental to the MC
blind deconvolution problem.

Assumption A1:Let be the discrete-transform of .
A set of 2-D polynomials is weakly
co-prime.

The polynomials are weakly (factor) co-prime
if and only if the greatest common divisor is scalar, i.e.,

hold
true only for a scalar factor . A similar
notion known as strong (zero) co-primeness is defined as
follows. The polynomials are strongly co-prime if and only
if they do not have common zeros, i.e., there does not exist

. Clearly, both notions
are equivalent for 1D polynomials. However, for 2-D polyno-
mials weak co-primeness is much less restrictive than strong
co-primeness. Strong co-primeness of two 2-D polynomials is
an event of measure zero, since two zero lines on the
plane intersect with probability one, but weak co-primeness in
practice holds for many common deterministic filters. Strong
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co-primeness is almost surely satisfied for , since three
or more zero lines pass through one common point on the

plane with probability zero.
The following proposition proved in [26] is regarded as the

core stone of the subspace method.
Proposition 1: If , A1 holds and has at least one

nonzero element, then solutions to

(15)

have the form

where is some factor of size
and is a scalar.

In the presence of noise, the situation is different and for the
correct support system (15) is not equal to zero but
rather to some measurement of noise. The strategy in this case
is to find the least-squares solution of (15) for. In the frame-
work of our proposed MC blind deconvolution algorithm, we
can thus define the regularization of as

(16)

where . It is clear that a correct estimation of
the PSF support is crucial, since the support overestimation adds
some spurious factor to the true solution, and even worth,
the support underestimation does not have any solution. It im-
plies, that with respect to (15), the solutions for different
overestimated supports are indistinguishable, i.e., (16) is convex
but far from strictly convex. It will be clear later, that the term

in (4) penalizes the overestimated solutions.
After substituting for in (4), the Euler-Lagrange equations

with respect to are

(17)

where and the adjoint operator is
. This is a simple set of linear equations and thus

finding solutions is a straightforward task. The Neumann
boundary condition could be omitted since the support of
is assumed to be much smaller then the support of.

It should be mentioned that Proposition 1 holds only in case
that the acquired images are of full size, i.e., convolution
in (14) is full and thus are not cropped. This is, however,
seldom true in real applications. For the cropped scenario, a sim-
ilar proposition holds which is also derived in [26]. We will not
discussed this proposition in detail. For our purpose, it will suf-
fice to note that the full convolution operator in (15) must be
replaced with a cropped convolution operator. Cropped convo-
lution differs from full convolution only in the size of the defi-
nition domain. It is not defined at image boundaries where one

of the convolution arguments is not fully defined, i.e., the result
of full convolution is of size ,
while the result of cropped convolution is of size

if . Cropped convolution
is thus well defined even for cropped images and the results of
Proposition 1 hold. By using cropped convolution, we get for
free another advantage that the Neumann boundary condition in
the Euler-Lagrange equation (6) will be automatically satisfied
for the convolution term in this equation. A slight computational
drawback is the fact that cropped convolution cannot be diago-
nalized with FT anymore. Nevertheless, we will assume cropped
convolution in the following discussion for the reasons given
above and show efficient computation of resulting matrices.

IV. MC-AM A LGORITHM

From the above discussion follows that the unveiled energy
function from (4) becomes

(18)

for the TV regularization and we would obtain a similar equation
for the Mumford–Shah regularization. Note that as a
functional of several variables is not convex everywhere and
allows infinitely many solutions. If is a solution, then so
are (mean-value ambiguity),

(shift ambiguity) for any and . On the other
hand, for fixed or is a convex functional of
or , respectively. The AM algorithm, for some initial value,
alternates between the following two steps:

(19)

for . A minimizer of the first minimization equation can be
determined by directly solving , i.e., (17). The
second minimization equation can be solved via (8) if the TV
functional is considered or via (13) if the Mumford–Shah func-
tional is considered. The mean-value ambiguity is removed by
constraint (3). It will be explained at the end of this section, that
this constraint is automatically satisfied in the AM algorithm.
A correct setting of the blur size alleviates the shift
ambiquity. In the noise-free case, the AM algorithm transforms
into the EVAM method: the first step in (19) becomes perfect
blur restoration and the second step calculates the least-squares
solution of the image. When noise is present, any convergence
analysis is difficult to carry out but results of our experiments
are satisfying and illustrate a strong stability of the algorithm.

Consider the discretization scheme described in Section II.
The P-channel acquisition model (1) becomes in the discrete
space

(20)

where and denote
vectors of size and representing discrete, con-
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catenated and lexicographically orderedand , respectively.
Matrices and are defined as

...
... (21)

where and denote cropped convolution with and
, respectively. The size of is and of
is . If the size of the recorded images is

then the minimum size of the original image is
.

Suppose that is a matrix defined by the iterative prescrip-
tion

...
...

(22)

where denotes cropped convolution with the image, then
the right-hand side of (16) becomes and the size
of is .
We assume that for .
From Proposition 1 follows, that for the noise-free case,has
full column rank only if the blur size is
underestimated, i.e., , where is
the correct blur size. For the overestimated blur size

.
In case of the modified TV functional (7), we need to consider

the discretization scheme of the flux variable. For the simple
four-connectivity approximation, one obtains (23) and for the
more elaborated eight-connectivity approximation (24)

(23)

(24)

where both and are block tridiagonal matrices formed
from and is a sum of inverse values of.
More precisely, the diagonal blocks are tridiagonal in both’s,
and the off-diagonal blocks in are just diagonal matrices,
while in they are tridiagonal as well. Almost identical dis-
crete equations can be obtained for the Mumford–Shah regu-
larization by means of (12). For instance, if except for

where then
(12) takes the form of (23) and, if in addition,
for then (12) takes the
form of (24). We should not forget, however, that the difference
between TV and Mumford–Shah still resides in the calculation
of the flux variable , e.g., from (8) follows that for TV

(25)

and from (13) for Mumford–Shah

(26)

In the vector-matrix notation, the total energy function (18)
for some overestimated blur size is

(27)

where stands for , or any other matrix of similar form
resulting from a different approximation. The flux variableis
neglected to simplify notation. Using this equation, the mini-
mization algorithm in (19) reduces to a sequence of solutions of
simple linear equations. The discrete MC-AM algorithm thus
consist of the following steps.

Require: initial valueu , blur size(m ;n ), wherem > m ;n > n ,

and regularization parameters
 > 0 and� > 0

1: for n � 1 do

2: h  solve [(U ) U + 
Z Z ]h = (U ) z; fU is

constructed byu g

3: setg = u andv = '(u )

4: for k � 1 do

5: g  solve [(H ) H + �L(v )]g = (H ) z; fH is con-

structed byh g

6: v = '(g ); ffor ' use (25) or (26)g

7: end for

8: u  g

9: end for

The linear equation at line 2 can be solved directly since
the symmetric square matrix is of
relatively small size , and is almost surly regular due
to full column rank of the convolution matrix . Any reason-
able image is “persistently exciting,” i.e., for
every FIR filter of size much smaller than. It was already
mentioned that for the noise-free case, the dimension of the
null space of is proportional to the overestimated blur size

, more precisely the dimension is equal to
, and any takes the form

, where is some spu-
rious factor and are correct PSFs of size . The spu-
rious factor spoils the correct solution but cannot be avoided if
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the exact size of blurs is not known in advance and if only
is considered. It is the fundamental constraint (2) included at
line 2 which penalizes the spurious factor. To see this, consider

which is strictly greater
than zero, unless is a factor of , which cannot happen al-
most surely. Hence, the minimum is reached only for
and reduced to the 2-D delta function.

Due to the large size of each matrix, it is not feasible to
compute the products and by first constructing

and and then doing the matrix multiplication. Fortu-
nately, there exists a very fast direct construction method
for both products. Moreover, the latter product is con-
structed only once at the beginning. It is easy to observe
that the products consist of square blocks of size

. In case of , only the diagonal
blocks are nonzero and defined as . In case of

, the off-diagonal blocks are defined as
and the diagonal blocks . We as-
sume that denotes cropped convolution. After some
consideration, one would derive that the elements of
are calculated as

, where and
are elements of and , respectively, and index shifts are

. Like-
wise, if are replaced with we get the elements of the
diagonal blocks in . This way, one block is computed in

multiplies. On contrary, the full
matrix multiplication requires multiplies.

The second linear equation at line 5 contains the symmetric
positive semidefinite matrix of size

. Most of the common PSFs have zeros in the frequency
domain and/or very small values at higher frequencies and the
resulting convolution matrices are strongly ill-conditioned.
Hence, the problem at line 5 is ill-posed and contains too many
unknowns to be solvable by direct methods. A common ap-
proach, which we have also adopted, is to use conjugate gra-
dient (CG) or preconditioned CG methods, see [5], [31]. The
flux variable is calculated directly by means of (25) if TV is
considered or by means of (26) if Mumford–Shah regularization
is considered. The relaxation parameterin (25) influences both
the converge speed of the algorithm and accuracy of solutions at
line 5. Refer to [4] for a discussion about howalters the conver-
gence rate and for comparison of different numerical methods.
In our experiments, we have found values around the most
appropriate. The parameterin (26) acts as a weighting factor
of the discontinuity term in the Mumford–Shah functional (9).
There is no straightforward estimation of the parameter’s cor-
rect value and an evaluation by trial and error is probably the
only choice. In our implementation, we alternate between mini-
mizations over and only five times before returning back to
line 2.

A. Convergence Properties

Convergence of the algorithm cannot be fully resolved on a
purely theoretical basis. Nevertheless, we have made several in-
teresting observations that rely on the fact that cropped convolu-
tion can be approximated by circular convolution and that eigen-

values of a circular convolution matrix are Fourier coefficients
of the convolution mask.

Constraint (3), which was left aside at the beginning, is au-
tomatically satisfied in the algorithm if the mean values of the
acquired images and the initial estimate are all equal,
i.e., . To see this, we first approxi-
mate at line 2 cropped convolution with circular convolution
and then apply FT to the equation. From the definition of
in (22) and from the assumption of zero-mean noise follow, that
the transformed vanishes at the spatial frequency (0, 0).
Since the (0, 0) frequencies refer to mean values, according to
the the definition of FT, the solution satisfies if

. Likewise, if , the solution at line 5
satisfies , since has zero
column-wise sums and hence vanishes at spatial frequencies

and .
The AM algorithm is a variation on the steepest-descent algo-

rithm. Our search space is a concatenation of the blur subspace
and the image subspace. The algorithm first descends in the blur
subspace and after reaching the minimum, i.e., , it
advances in the image subspace in the direction orthog-
onal to the previous one, and this scheme repeats. To speedup
the minimization, one may be tempted to implement direct set
methods like Powell’s that descend in arbitrary directions but
this would require to solve nonlinear equations and the effi-
ciency of such approach becomes problematic. Convergence is
assured if the descent is restricted to a convex region of the func-
tional which means that the Hessian matrix is positive semidefi-
nite in the region. The Hessian of is a symmetric matrix

where and the
cross second derivative is a combination of convolution
and correlation matrices with . Let and be pos-
itive definite, which is true if is persistently exciting and
are strongly coprime. The Hessian is then positive semidefi-
nite if and only if for all

and all . If we assume that the con-
volution matrices can be block diagonalized with FT then the
above semidefinite condition is satisfied if is satisfied for each
spatial frequency alone. The multichannel term is sin-
gular for each frequency and can be thus omitted. This leads
us to a conclusion that this multichannel term does not directly
enlarge the region of convexity. Instead, by defining mutual re-
lations between the channel blurs, it penalizes any diversion of
one blur from the rest. The necessary condition of convexity
is thus expressed for each spatial frequency in each channel
as , where denotes a
Fourier coefficient of the corresponding signal,is a simplified
expression that approximates eigenvalues of. Fundamental
constraint (2) for a zero noise level takes the form in the
Fourier domain. After substituting the constraint into the above
condition, we get which is always
true. In general, the condition is not satisfied only for the funda-
mental constraint but generates a periodic manifold that is dif-
ficult to visualize. It is important to note that the manifold size
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(a) (b)

(c)

Fig. 1. (a) Original 100� 100 cameraman image used for simulations; (b) three 7� 7 convolution masks; and (c) blurred and noise-free images.

grows with , i.e., with increasing noise, convexity is guaran-
teed on a larger neighborhood of .

B. Estimations of Parametersand

To calculate precisely the regularization parameters is not
only a tedious task but it also gives results that are of not much
help in practical applications, since both parameters depend on a
noise level which we usually do not know. Expressions derived
here are very loose approximations that do not provide exact
values but rather give a hint on the mutual relation of the pa-
rameters. Consider the equation at line 2 and let the values of
and be equal to the original image and correct PSFs, respec-
tively. Under the squared norm, we obtain

, where . It is
easy to verify that, if is white Gaussian noise anddenotes
convolution with . Since

stands for the correct PSFs, it must be a linear combination
of eigenvectors that correspond to a cluster of minimum
eigenvalues. Hence, , where denotes
the minimum eigenvalue of . From the definition of and
Proposition 1 follow that . Finally, we
get the approximation

(28)

The norms of and are of course not known in advance
but can be successfully approximated by and if
then .

If we apply a similar procedure to the equation at line 5,
we derive only the bottom limit of the regularization param-
eter . The uncertainty resides in the term , which cannot
be simplified, since it totally depends on local behavior of the
image function . We may only formulate a generous upper limit
which is , where the constant depends on
the used approximation and the regularization term, i.e., for TV
with and for TV with . The

bottom limit is in general zero. Now, since
, we obtain the approximated bottom limit ofas

(29)

The product of the parameters

(30)

depends only on the dimensions of the problem and thus defines
a fix relation between the parameters.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of our
MC-AM approach on three different sets of data: simulated,
real indoor and astronomical data. First, the simulated data
for different SNR are used to compare results of MC-AM and
EVAM. Second, the performance of MC-AM is evaluated on
out-of-focus data acquired by a standard commercial digital
camera. Last but not least, we demonstrate capabilities of the
MC-AM approach on data from astronomical ground-based
observations of the Sun.

For the evaluation of the simulated data, we use the per-
centage mean squared errors of the estimated PSFsand of the
estimated original image, respectively, defined as follows:

(31)

Both and are the outputs of MC-AM. In general, the
mean squared errors do not correspond to our visual evaluation
of image quality and visual comparison is often the only
reliable evaluation technique. Nevertheless, the mean squared
errors give us a hint how successful the restoration task was
and therefore we present the calculated errors together with
estimated images. In cases of the camera and astronomical
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(a) (b) (c)

Fig. 2. Estimation of the cameraman image and blurs from threeSNR = 50 dB degraded images [(a) degradation withh ] using (b) the MC-AM algorithm and
(c) the EVAM algorithm.

(a) (b) (c)

Fig. 3. Estimation of the cameraman image and blurs from threeSNR = 40 dB degraded images [(a) degradation withh ] using (b) the MC-AM algorithm and
(c) the EVAM algorithm.

data, we use a wavelet-based focus measure [32] to compare
results. It is necessary to remark that all the focus measures,
which have been proposed in the literature, are easily deceived
by possible artifacts which often occur in the reconstruction
process. Artifacts are features (details) that were not present in
original images and have been added to the images later due to
erroneous image processing.

All the experiments were conducted for the TV regularization
with the eight-connectivity discretization scheme. The Mum-
ford–Shah regularization was found to produce similar results
with one advantage of having a good edge detector in the flux
variable . Less advantages is the presence of the new param-
eter which influences the amount of edges. Since we were
not interested in segmentation properties of the Mumford–Shah
functional, the flexibility provided by was redundant.

A. Simulated Data

Cameraman image of size 100100 in Fig. 1(a) was first
convolved with three 7 7 masks in Fig. 1(b) and then white
Gaussian noise at five different levels ( ,
and dB) was added. This way we simulated three acquisition
channels with a variable noise level that produced a

series of degraded images and . The signal-to-noise
ratio is calculated as usual

(32)

Both algorithms, our MC-AM and Harikumar’s EVAM, were
applied to the degraded data. The MC-AM algorithm was
let to iterate over the main loop (lines 1 to 9) ten times, and
within each iteration, the inner loop (lines 4 to 7) was iterated
five times. The input parameters were initialized as follows:

was calculated from
(29), since we know ; and was estimated from the parameter
product (30). Results for dB, dB, and

dB are shown in Figs. 2, 3, and 4, respectively.
Noise gets amplified in the EVAM reconstruction since it is
not considered in the derivation of this method. The results for

dB illustrate vividly this drawback. On contrary, the
MC-AM algorithm is still stable even for lower SNRs (20 dB,
10 dB) as Fig. 5 demonstrates. The percentage mean squared
errors of the results are summarized in Table I.

B. Real Indoor Data

Four images of a flat scene were acquired with a standard dig-
ital camera focused to 80 (objects in focus), 40, 39, and 38 cm
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(a) (b) (c)

Fig. 4. Estimation of the cameraman image and blurs from threeSNR = 30 dB degraded images [(a) degradation withh ] using (b) the MC-AM algorithm and
(c) the EVAM algorithm.

(a) (b) (c) (d)

Fig. 5. Estimation of the cameraman image and blurs from degraded images with low SNR using the MC-AM algorithm; (a)–(b)h degraded image withSNR =

20 dB and restored image-blur pair; (c)–(d)h degraded image withSNR = 10 dB and restored image-blur pair.

TABLE I
PERFORMANCE OF THE EVAM AND

MC-AM A LGORITHMS ON SYNTHETIC DATA IN FIG. 1

distance, respectively. The aperture was set at F2.8 and the expo-
sure at s. The acquired data were stored as low resolution
480 640 24-bit color images and only the central rectangular
part of the green channel of size 200250 was considered for
reconstruction. The central part of the first image, which cap-
tures the scene in focus, is shown in Fig. 6(a). Three remaining
images, Fig. 6(c), were used as the input for the MC-AM algo-

rithm. The parameter was estimated experimen-
tally by running the algorithm with different’s and selecting
the most visually acceptable results. The parameterwas calcu-
lated from (30). A defocused camera causes image degradation
that is modeled by cylindrical blurs. A cepstrum analysis [33]
was used to estimate diameters of these blurs, which were deter-
mined to be around 8 pixels. The size of blurs was then enlarged
to 10 10 to assure inclusion of the whole cylinder. Obtained
results after 10 iterations are shown in Fig. 6(b). Further iter-
ations did not produce any visual enhancement. Simple visual
comparison reveals that the letters printed on book covers are
more readable in the restored image but still lack the clarity of
the focused image, and that the reconstructed blurs resemble the
cylindrical blurs as it was expected.

A quantitative evaluation of the amount of image blurring
was done by wavelet-based focus measure [32]. The measured
values, which rate the focus or the sharpness of images, are
summarized in Table II. The three defocused images differ only
slightly from each other and the difference is not visually de-
tectable. However, the focus measure was able to distinguish
different focus levels. It decreases as the difference from the
correct focus distance increases. The focus measure of the re-
stored image is significantly higher than the measures of the
input images. It is remarkable how successful the restoration
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(a) (b)

(c)

Fig. 6. Real indoor images: (a) 200� 250 image acquired with the digital camera set to the correct focus distance of 80 cm; (b) MC-AM estimated image and
10� 10 blurs obtained from three images (c) of false focus distances 40 cm, 39 cm, and 38 cm, after 10 iterations and� = 1:6� 10 .

TABLE II
FOCUSMEASURESCALCULATED FOR THE REAL INDOORIMAGES IN FIG. 6

was, since one would expect that the similarity of blurs will vi-
olate the co-primeness assumption. It is believed that the algo-
rithm would perform even better if a wider disparity between
blurs was assured. Another interesting observation is the fact
that the restored image gives a smaller response than the focused
image. This is of course in agreement with our visual evaluation
but it also supports a hypothesis that our restoration technique
produces only few artifacts.

C. Astronomical Data

The last test which we have conducted was on real astro-
nomical data obtained in the observation of the Sun. In the
ground-based observations, the short-exposure images from
the telescope are corrupted by “seeing.” This degradation leads
to image blurring, where the actual PSF is a composition of
the intrinsic PSF of the telescope (which is constant over the
observation period) and of a random component describing

the perturbations of the wavefronts in the Earth’s atmosphere.
Different parts of the solar atmosphere are observed in different
spectral bands. The lower part called photosphere is usually
observed in visible light of nm while the medium part
called chromosphere is best to observe in ( nm)
wavelength. In visible light the effects of fluctuations in the
refractive index of the air caused by temperature variations are
more significant than in . Since the atmospheric conditions
may change very quickly, the acquired image sequence usually
contains images of different quality from almost sharp to
heavy blurred ones. Such sequence, which is a result of one
observation session, may consist of several tens (or even
hundreds) of images. Multichannel blind deconvolution is the
way how to fuse the individual images of low quality to obtain
one (or a few) “optimal” images which can be used for further
investigation of astronomical phenomena.

In this experiment, we processed a sequence of images of
a sunspot. Since the images were taken shortly one after an-
other they are almost perfectly registered. The random nature of
the atmospheric turbulence provides the necessary co-primeness
of the individual PSFs. The least degraded image from the se-
quence, which is shown in Fig. 7(a), was selected as a reference
image. Two other images of medium degradation, Fig. 7(b) and
(c), were used as the input of the algorithm. The size of blurring
masks was set to 1212 which was believed to be large enough
to contain the original blurring functions. The parameterwas
set to which corresponds to dB and which is the
expected noise level for this type of images. The restored image
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(a) (b) (c)

Fig. 7. Astronomical data: (a) the least degraded 500� 500 image of the sunspot from the sequence acquired with the terrestrial telescope (reference); (b)–(c)
two blurred images from the sequence used for the reconstruction.

Fig. 8. Astronomical data: MC-AM reconstructed sunspot and 12� 12 blurs
with � = 10 .

TABLE III
FOCUSMEASURESCALCULATED FOR THE SUNSPOTIMAGES IN FIGS. 7 AND 8

in Fig. 8 was obtained after three iterations of the MC-AM al-
gorithm. It is worth noting that the used data are far from being
“ideal” for the application of the MC-AM algorithm—there are
only two channels, and their degradations are of similar nature.
Nevertheless, the results are encouraging. By visual assessment,
the restored image is clearly sharper than the two input images,
contains no (or few) artifacts and its quality is comparable to
the reference image. As in the previous experiment, we asses
the quality also by quantitative focus measure (see Table III).
The focus measure of the restored image is significantly higher
than that of the input images and even slightly higher than the

measure of the reference image. Along with the visual assess-
ment, this illustrates a good performance of our method in this
case.

VI. CONCLUSION

We have developed the algorithm for multichannel blind
image restoration which combines the benefits of the edge
preserving denoising techniques and the one-step subspace
(EVAM) reconstruction method. This has been achieved by
utilizing the multichannel EVAM constraint as a regularization
term in the anisotropic denoising framework of total variation
or the Mumford–Shah functional. The fundamental assumption
is the weak co-primeness of blurs which guarantees the appro-
priate level of channel disparity and assures perfect restoration
in a noise-free environment. The only input parameters, that are
required, are the minimum order (size) of blurs and the noise
level in the acquisition system. However, exact values of these
parameters are not really needed and a rough estimate by trial
and error is usually sufficient.

It was shown that the proposed algorithm gives satisfying
results, compared to EVAM, even for low SNRs around 30 dB.
This indicates that the denoising scheme significantly stabilizes
the restoration process. The channel co-primeness is a mild
condition especially in real applications, since the necessary
channel disparity is probably always satisfied by random
processes intrinsic to a given acquisition system. For example
in case of the astronomical data, atmospheric turbulence is
often modeled by Gaussian masks. In theory, any two Gaussian
masks have a common nontrivial factor, but the algorithm was
still able to recover the image, since small fluctuations in PSFs
assured the co-prime condition.

Although we have not addressed the question of computa-
tional complexity directly, we have demonstrated the ability of
the algorithm to recover images of moderate size 500500 with
blurs up to 20 20.

We have not explored the influence of the blur order over-
estimation on image reconstruction and on convergence of the
algorithm. A crucial issue for successful reconstruction, which
to our knowledge has not been so far discussed in the literature,
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is the spatial alignment of channels. In real applications, the
channel misalignment occurs very frequently and therefore
channel registration must precede the MC restoration task.
Clearly by shifting the mask centers, we can compensate to
a certain extent for small translation misalignments. It is ex-
pected that the overestimated blur orders provide the necessary
freedom which nullifies such misalignments by automatically
offsetting the blurs centers during the reconstruction process.
The influence of the misregistration and the role of the order
overestimation are matters for debate and will be considered in
our future research.
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