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Communication Networks in Control:
New Dimensions of Complexity

Topological Complexity

&= Az + Bu

Communication

& = f(z,u) Theory

System Complexity

Challenges for Control over Communication Networks:
Combine systems, graph and communication theory
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Consensus in Multi-Agent Systems (MAS)
Motivation

\ @ Networks of dynamical agents occur
in a huge variety of applications

@ such as
@ Unmanned vehicles
4/ \ o Mobile robots

@ Formation control
-~ @ Synchronization

\ problems

@ Key players are individual agents and
interconnection topology

/ @ So-called consensus problems form
the basis of most of the challanges
appearing in these applications

Blend systems and graph theory = methods for analysis and design
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History of Consensus Problems

Early related work

@ Synchronization of coupled oscillators goes back to Huygens
(1657) and is still an active field of research.
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History of Consensus Problems

Graph Theory
@ Fiedler 1973: seminal work on algebraic connectivity of graphs

@ Since then many extensions to more general classes of graphs
(Ren et al. 2004; Wu 2005; Wieland et al. 2008; ...)

MAS Consensus
@ kinematic agents: Jadbabaie et al. 2003; Olfati-Saber &
Murray 2004; Ren et al. 2007; ...

@ second order agents: Ren & Atkins 2005; Ren 2008; ...

@ general LTI systems: Fax & Murray 2004; Tuna 2008;
Wieland et al. 2008; ...
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Problem Setup

MAS model
@ We consider N identical linear agents
xi = Ax; + Bu;, x; € R", u; e R
@ The interconnections between the agents are represented by a
weighted and directed graph G = {V,&, W}.

Consensus
(State-)Consensus is achieved if
xi(t) — xj(t) =0 for t = oo forall i,j =1,...,N.

Objectives
@ for given topology and control u;, analyse consensus

Q for given topology, design u; such that consensus is achieved
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Graph Basics

Algebraic graph theory
Graphs G ={V,E, W} are
represented by matrices such as
@ the adjacency matrix
A€ H%_E : T:_ = Wjj
@ the Laplacian matrix
L e RVI: [ = diag(Al) — A

Goal

Use algebraic properties of graphs to
characterize graph connectivity
properties necessary /sufficient for
consensus.

\

V — vertices
ECV XV
WV xV — R, - edge weights

— edges
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Structure of Consensus Algorithm

Single agent consensus algorithm
We use the state feedback

N
up=—KY wili—x), i
j=1

where wji, i,j =1,..., N reflect the interconnection topology and
K € R is the design parameter.

1,...,N

Consensus algorithm of complete MAS

<y EZV.\.
ﬂvﬂ

u=—(L®K)x e Xy

Laplacian matrix L appears naturally in consensus algorithm.

Local state feedback leads to simple global representation involving
topology through Laplacian L.
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Consensus Analysis

Theorem (Necessary and sufficient condition)

Convergence to consensus is achieved if and only if the polynomial
N

P(s) := | | det(s/ — A— X;(L)BK)

4

j=2
Is Hurwitz. Wieland et al. 2008, Fax & Murray 2004

Theorem (Dynamic evolution at consensus)
At wi (L)
lwa (L)l

@ \;(L) are eigenvalues of L counting multiplicities, A\1(L) = 0.
@ wi(L) is left-eigenvector of L s.t. wi(L)L =0 and wy(L) # 0.

xi(t) — e ®I1])x(0), i=1,...,N

Consensus problem for general identical LTI systems reduced to
stability problem with different feedback gains.
Vast linear systems theory applies.
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Consensus Design

|dea
N
| [ det(sl — A= X\ (L)BK)  Hurwitz
j=2

Is equivalent to

u = Kx asymptotically stabilizes x = Ax + \;(L)Bu for

j=2,...,N
If \j = o0 + jw; with w; # 0, choose K such that
v = K0 z asymptotically stabilizes
- \b O Q\m E\m .
2=\ 9 4 z+ _B ;B vforj=2,...,N.

Solve design problem as simple simultaneous stabilization problem.
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Consensus Design

Theorem (LMI based design with guaranteedconvergence rate)
If there exists a scalar v > 0, a matrix @ = Q7 = 0, and a vector
k € R such that (with \;(L) = o; + jw;)

G(Q,v) +0iCr(k) +wiC(k) <0, i=2....N
and K = kQ~1! then all roots s; of P(s) satisfy Re(s;) < —v.

Wieland et al. 2008

e ( QAT +AQ+2Q 0

0~ 0 QAT + AQ+2vQ )’
Co— _ Bk +r"BT 0

R 0 Br+rxkTBT )’

Cr — 0 xTBT — Bk

=\ Bk—xk™BT 0

Design problem can be posed and efficiently solved using LMIs

Allgower, Blind, Miinz, Wieland: Communication Networks in Control 14

Example: Formation Control

Vehicle model

Consider N identical holonomic vehicles. The ith vehicle is
modeled by two independent systems

0 1 0 0
Zig = 0O O 1 Zig+ | O Jug g=xy
0

|
L
[y
|
QL
o
[

with position, speed, and an actuator state as states z; 4.

@ The vehicles shall reach and keep a prespecified formation
@ The consensus algorithm is used to correct formation errors

@ While the shape of the formation is part of the design, its
evolution in space depends on the initial conditions of the
agents.

Allgower, Blind, Miinz, Wieland: Communication Networks in Control 15




Example: Formation Control
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Existing Extensions

@ System Class Extensions

o Passive/Lagrangian Systems
(Chopra et al. 2006, 2008; Miinz

et al. 2009)

o Polynomial Systems (Kim &

Allgower 2007, 2008)

@ Allow Changes in Interconnection

Topology

o Proximity Graphs (Jadbabaie et
al. 2003, Tanner et al. 2003)
e Switching Topology (Ren &

Beard 2007)

Topological Complexity

Link Complexity

System Complexity

Topological Complexity

Link Complexity

System Complexity

17
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Overview

© Consensus in linear Multi-Agent
Systems with ideal links

Topological Complexity

© Consensus in Multi-Agent
Link Complexity o
Systems with Delays

&= Az + Bu

&= f(x,u)

System Complexity

© Control via digital networks
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Delay Sources in Cooperative Control Problems
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Do delays corrupt consensus?
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Delays Corrupt Consensus!

Second order linear MAS with communication delay 7 = 0.01.
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Delays Corrupt Consensus!
Q
Q
Q
0
®
Second order linear MAS with communication delay 7 = 0.3.
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Delays Corrupt Consensus!

Second order linear MAS with communication delay 7 = 1.
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Delay Models for Communication Networks

Constant delay

h(t) yh(t — ) @ easiest delay model

@ approximation for reaction delay

T t
Time-varying delay
h(t) th(t — 7(t)) @ accurate description with discontinuities

-l @ proofs often require continuous 7 or even
7(t) t upper bound on 7

Distributed delay
he)s [T f )t —mdy @ APProximation for packet-switched
—— channel (Miinz et al. 2007, 2009)

T+ T "t @ f, models packet delay probability

delay-independent if consensus is guaranteed for all 7 > 0

delay-dependent if consensus is guaranteed for all 7 € [0, 7]

%ﬁ—m.ﬁc Allgower, Blind, Miinz, Wieland: Communication Networks in Control




State of the Art: Delayed MAS

node
topology local controller agent i ‘s dynamics
k() .
T; = U;
(p) p—1 (k)
kai() i = 2 p—0 WYy
\: Qst .
. S &= fil&) + 9w
° A T, = \NsAmsv
3y — fil@a) = ga(@:)
Eni(-)

Papachristodoulou & Jadbabaie, 2005, 2006;

Chopra & Spong, 2006, 2008;

Minz, Papachristodoulou, Allgower, 2007, 2008, 2009;

Schmidt, Miinz, Allgower, 2009

own state also delayed:

Olfati-Saber & Murray, 2004; Lestas & Vinnicombe, 2007;

Bliman & Ferrari-Trecate, 2008
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Consensus in Nonlinear Delayed Single Integrator MAS
Topological Complexity
Link Complexity
&= Ar+ Bu
=) o
]
System Complexity
node
topology local controller agent i s dynamics
O k()
—= a1; L\I Ae
W Ko (- 2® =3yl g ®
T PO | T it
gkl . DT d=nE) a6
. . . T = \:Amb
” +- : Z; = filds) + gi(@s)us
), ) ki()
> AN a
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Consensus in Nonlinear Delayed Single Integrator MAS

node

topology local controller agent i’s dynamics

=P B0 v“@sﬁ i e

Theorem (Papchristodoulou & Jadbabaie, 2006;
Miinz, Papachristodoulou & Allgéwer, 2007, 2008, 2009)

locally passive controller , i.e. nkji(n) > 0,Vn € TSTS.LE \ {0} if
the initial condition satisfies
: —
min; {7 » Vi ¥
(0)] < T ),

Vo e[-T,0,i=1,...,N.

Allgower, Blind, Miinz, Wieland: Communication Networks in Control 24

Consensus in Nonlinear Delayed Single Integrator MAS

node
topology local controller agent i’s dynamics

+W i) - JJSEV . zi(t) .~
Aji - . %\
[ -

(]

Theorem (Papchristodoulou & Jadbabaie, 2006;
Miinz, Papachristodoulou & Allgéwer, 2007, 2008, 2009)

~

Delayed single integrator MAS . ..

@ always reach consensus with linear or nonlinear, globally
passive controllers,

@ reach consensus locally with nonlinear, locally passive
controllers,

with minimal assumptions on delays and graph topology.

Allgower, Blind, Miinz, Wieland: Communication Networks in Control 24




Example: Kuramoto Oscillator

Kuramoto oscillator (Kuramoto, 1984)

@ pacemaker cells in the heart
@ arrays of lasers

@ microwave oscillations

Theorem (Papachristodoulou & Jadbabaie, 2006; Miinz et al.,
2009; Schmidt, Miinz & Allgower 2009)

@ phase synchronization if w; = w, Vi
@ frequency synchronization if w; € [w, @], Vi

@ phase synchronization if w; € [w,w], Vi and if delays 7j; are
chosen appropriately (not possible without delays!)

Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Phase Synchronization in Heterogeneous Kuramoto
Oscillators with and without Delays

L % ]

@ Kuramoto oscillators synchronize in networks with delays

@ Delays achieve phase synchronization, which is not possible
without delays

- . . 2

Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Consensus in Linear Delayed Multi-Integrator MAS

Topological Complexity

Link Complexity

&= Ar+ Bu
%.ﬂ[
. 5
&= f(z,u) X
09
System Complexity
node
topology local controller agent i s dynamics
+
O k() .
w - Ti = U;
—= Q14
+ p —1 k.
O Fai(+) N\ 7Y = ;s )
ks uilt) | i)
= . . D & = fi&) + gi(&)ui
. T =hy Amsv
L] L]
L]
” +- & = fi(@:) + gi(@:)wi
\/, ) ki)
| (LN
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Consensus in Linear Delayed Multi-Integrator MAS

node

topology local controller agent i’s dynamics

xX; va

= _ w;(t _
L]

Theorem (Miinz, Papachristodoulou, Allgower, 2009)
Consider linear delayed multi-integrator MAS in I

degree normalizing controllers kj(n) = %:_ where d; = MMZHH aji.
Consensus is reached if and only if

(jw)? + >ho1 awljw)*
>ho a(jw)k
for all w # 0.

m.ﬁmv Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Consensus in Linear Delayed Multi-Integrator MAS

node

topology local controller agent i’s dynamics

7 _ w;(t _
Wl ~ 4 v% ‘EE Shzo -
(]

Theorem (Miinz, Papachristodoulou, Allgower, 2009)
Consider linear delayed multi-integrator MAS in I

degree normalizing controllers kj(n) = %:_ where d; = MPH aji.
Consensus is reached if and only if #

Linear delayed multi-integrator MAS
@ necessary and sufficient set-valued condition
@ analytical results for first and second order MAS

@ delay-dependent convergence rate condition for first order MAS

f
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Consensus in Nonlinear MAS with Relative Degree Two

Topological Complexity

Link Complexity

&= Ar+ Bu

i = fla.u) o
09
System Complexity
node
topology local controller agent i s dynamics
+
O k() )
w - Ti = U;
— Q14
s =1 k
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ke S ult)) 20
& . . D & = fil&) + gi(&)uwi
. . . ;= h; Amb
. | Gste e
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Consensus in Nonlinear MAS with Relative Degree Two

node

topolo local controller agent i’s dynamics
pology

%I'V d; k(") V@SEV & = fi(#:) + gi(@i)wi () -
_\v @ji . {

(]

Theorem (Miinz, Papachristodoulou, Allgower, 2009)

Assume f; are globally sector bounded, i.e. nfi(n) > Q.dm and g;
are m_owm__v\ positive m:g bounded, i.e. gi(n) € (0, 5;),

for any nonlinear, globally Lipschitz controller , i.e.
|Kji(11) = Kji(12)| < rjilm = m2l, Vi, 2, if

QY

Vi, .

ki <
/! \QN BNXA\O.?Q'QW“
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Consensus in Nonlinear MAS with Relative Degree Two

node

topolo local controller agent i’s dynamics
pology

%I'V di k() V@:@,EV & = fi(@:) + gi(@i)wi () -
_\v aji . {

(]

Theorem (Miinz, Papachristodoulou, Allgower, 2009)

Assume f; are globally sector bounded, i.e. nfi(n) > a;n? and g;
are globally positive and bounded, i.e. gi(n) € (0, 5;), V

n.

for any nonlinear, globally Lipschitz controller, i.e.

[Kji (1) = Kii(n2)| < wjilm — m2l, Vi, 12, if

Nonlinear delayed MAS with relative degree two
@ first result for relative degree two agents

@ delay-dependent decentralized design for heterogeneous agents

%m__m.nﬁ Allgdwer, Blind, Miinz, Wieland: Communication Networks in Control 30




Motivating Example: Consensus of 4 Agents

2 e
5i(t) = —x(t) = 2k (q(t) — (e = 7))
j=1

k < w —> consensus

m, ” [
) ,,, —exact
” | ---new Thm.
4 2
O, . .
2 Simulation parameters:
3 6
-l @ chosen gain: k=2
| O |
2 @ exact bound: 7 < 0.6046
I 1!
LN ..
1= @ new condition: 7 < 0.5
.
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Simulation
Q
L)
=
Q
i
L
Second order linear MAS with communication delay 7 = 0.01.
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Simulation

Second order linear MAS with communication delay 7 = 0.3.
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Simulation
Q
=
Q
Q
Q
®
Second order linear MAS with communication delay 7 = 1.
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Summary — Consensus of Multi-Agent Systems

« consensus for general identical LTI systems without delays
« delays may corrupt consensus

« delay-independent consensus for first order MAS and MAS
with relative degree one, but convergence rate is delay-
dependent

« delay-dependent consensus for second order MAS and MAS
with relative degree two

X more complex dynamics require more restrictions on delays
and topology

wmww&WM_m.—.ﬂO Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Overview

@ Consensus in linear Multi-Agent
Systems with ideal links

Topological Complexity

mmmww © Consensus in Multi-Agent Systems
£

with communication delays

i =Ax+ B

& = flz,u)

System Complesiy © Control via digital networks

wmww&WM_m.—.ﬂO Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Networked Control Systems

Plant

x(t) = Ax(t) + Bul(t)

Network

Controller
u(t) = Kx(t)

loss

QQA\H - q.mav R.QANJ — ﬁwmv
Physical interconnections are replaced by digital networks.
WMWM,&WMmm.ﬁO Allgower, Blind, Miinz, Wieland: Communication Networks in Control 35
Link Complexity
| “ “ s
ideal link delay loss detailed
link model
@ no delay constant where?
@ no loss @ known in @ sensor — @ interaction
® Nno advance controller of loss,
bandwidth A U e @ controller delay and
limitations in interval — actuator data rate
o @ eg.
time varying queuing
~ s random process system
@ unknown @ iid
@ random o Markov
with known
distribution

Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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The Negative Effects of Loss

_m.ﬁo Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Loss of Control or Measurement Packets

Plant
| 241 = Axy, + B Buy, + wy,

\Q\A \ Network / Yk

\|\{\/\'I

Controller

Estimator

Loss of measurement packets:

@ The estimator can only simulate, no correction step.

Loss of control packets:
@ The system runs open loop.

@ The input to the plant is unknown to the controller/estimator.

_m.ﬁo Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Loss of Control or Measurement Packets

Plant
| 21 = Az + SpBug + wy,

By \ Network

Z O\

)
\|\/\I/|\‘

Controller

Estimator

Loss of measurement packets:

@ The estimator can only simulate, no correction step.

We want to find suitable methods to
@ analyze the effects of the loss.
@ take these effects into account.

@ compensate these effects.

ISE?  Aligswer, Blind, Miinz, Wieland: Communication Networks in Control
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Kalman Filtering with Intermittent Observations

«SA o
« Yk VkYk Ty,

System Sensor | g\ Kalman | o
T filter

When do we get x; ~ X 7

Theorem [Sinopoli et al. 04]

If (A, Q¥/?) is controllable, (A, C) is detectable, and A is unstable,
then there exists a A¢ € [0,1) such that

lim E[Px] = +o00, for 0 < A< Acand 3Py >0

k—00

E[Px] < Mp,Vk, for A\c <A <1andVPy >0,

where \ := mj\»_ and T\A = _.H.:X\A — V\N»XX\A — vm,»vﬂC\»IHv\N»IL.
For Ac a lower and upper bound can be given: A < Ac < A

Allgower, Blind, Miinz, Wieland: Communication Networks in Control 39




Kalman Filtering with Intermittent Observations

fsﬂ o
« Yk VY Ty,

System Sensor | g\ Kalman

T filter

When do we get x, ~ X 7

Theorem [Sinopoli et al. 04]

If (A, QH\MV is controllable, (A, C) is detectable, and A is unstable,
then there exists a A¢ € [0,1) such that

lim E[Px] = 400, for 0 < A< Acand 3Py >0

k—00

E[Px] < Mp,Vk, for A\c <A <1andVPy >0,

The system can be observed (x, ~ Xx) if not too many packets are
lost.

wWw_m.—.ﬂc Allgower, Blind, Miinz, Wieland: Communication Networks in Control

39

Kalman Filtering with Intermittent Observations

Theorem [Sinopoli et al. 04]

The upper bound X is given by the solution of the following
optimization problem:

yHmﬂm:wm:G\/AvaVov 0<Y<I.

where

Y 0
* Y

Y VAYA+ZC) V1-)AYA
U,y (Y,2) = | *
*

wWwﬁ—m.—.ﬂc Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Coding to Improve the Kalman Filtering

« Wy, Vg
« Yk Ty
System @l Kalman | 5
Tk filter
« Wk U
« Yk L — Uk Ty
System Sensor > Coder Decoder »| Kalman -
T filter

coder and decoder are designed such that yx ~ y

« Wy, Uk
« Yk o — : . Ty,
combined decoder and
System @l Coder L
Tk Kalman filter

combined decoder and Kalman filter such that x, ~ Xi

wmww%M_m.—.ﬂc Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Coding to Improve the Kalman Filtering
«\E» «S,. >
s |[Sr "] cuse Rl
Y = Ty
Xky1 = Axp + wi
Yk = Cxx + v
Motivating example
Consider the system
25 0 1 0
A= , C=
0 2 0 1
@ The system is not observable if one measurement is missing.
@ Send virtual measurement y = Ty, where T is invertible.
Eg ji=y1+y2and yo =y1 — yo.
@ If one of the virtual measurements is lost, then the system is
still observable.
%ﬁmm.ﬁc Allgower, Blind, Miinz, Wieland: Communication Networks in Control 42




Coding to Improve the Kalman Filtering

« Wy, Vg
« Y . T
System @l Coder combined decoder and
T Kalman filter

Yk = Tyk
Xky1 = Axp + wi

Yk = Cxx + vk
Motivating example

Consider the system

25 0 10
\blomuﬁloH

@ The system is not observable if one measurement is missing.

-~ C oo Lt S | B T2 s endbhmms T Bs Beme smetRllLl o

Choose T such that either
@ the Kalman filter can tolerate a higher packet loss rate, or

@ we get better estimates for a fixed loss rate.

w%M_m.—.u.c Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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Coding to Improve the Kalman Filtering

Theorem [Blind et al.]

The upper bound X\ is given by the solution of the following
optimization problem:

yHm_\mﬁm:G»C\va..;Nmu T)>0, 0<Y</|

— — 9

where

Uy\(Y,Z1,...,. 2, T) =

Y JwiN(YA+ZLTC) - Jwe(\)(YA+ ZELETC)]
* Y 0
| * * Y |

w%@—m.—.ﬂc Allgower, Blind, Miinz, Wieland: Communication Networks in Control
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How 1t All Interacts

Standard link model in communication networks:

lost packets queue  server

= CO

—
size s service time h

arriving packets

How it all interacts

loss

network data /sent . controller ___ _omjnoﬂgmsom
resources rate / data design
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Summary — Control via Digital Networks

Summary

@ Physical interconnections are replaced by digital networks
= loss and delay of packets.

@ Loss and delay of packets is considered individually.
@ Methods to analyze the effects of loss.

@ Methods to compensate these effects, e.g. coding.

Outlook

Use more complex network models, which model the interaction
between loss and delay.
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Conclusions

Topological Complexity

current trends in control systems
introduce new dimensions of complexity

Link Complexity

Topological Complexity
System Complexity

control over communication networks
combines systems, graph, and com-
munication theory

Communication
Theory

System Complexity

The story just started!
_We need to exploit all
dimensions of complexity.
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