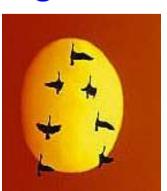


Communication Networks in Control: New Dimensions of Complexity

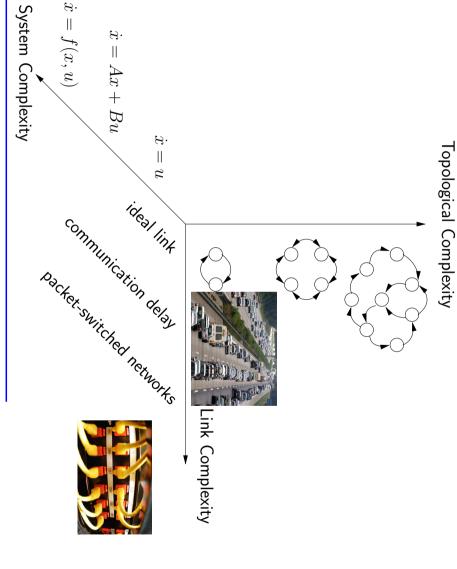
Frank Allgöwer

Germany Institute for Systems Theory and Automatic Control Rainer Blind, Ulrich Münz, Peter Wieland University of Stuttgart

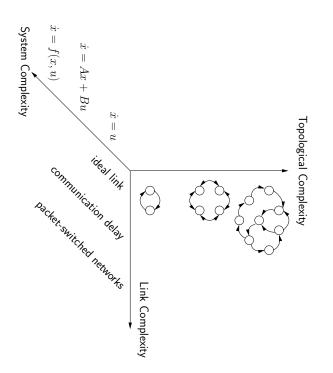
September 22-26, 2009



Dimensions of Complexity



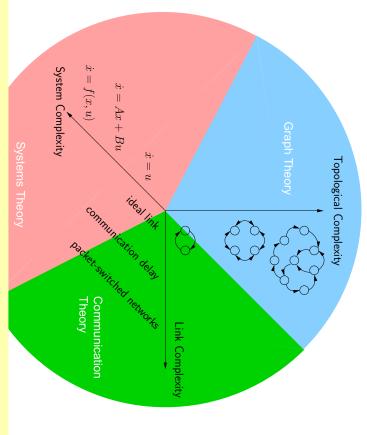
Communication Networks in Control: New Dimensions of Complexity



iste

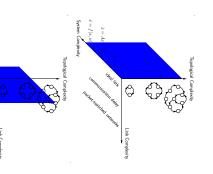
Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Communication Networks in Control: New Dimensions of Complexity

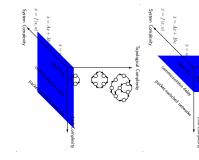


Challenges for Control over Communication Networks: Combine systems, graph and communication theory

Overview



Consensus in linear Multi-Agent Systems with ideal links



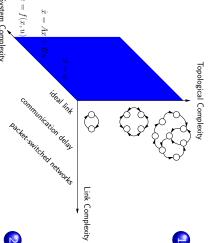
with Delays Consensus in Multi-Agent Systems

Control via digital networks

•ist^e

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Overview



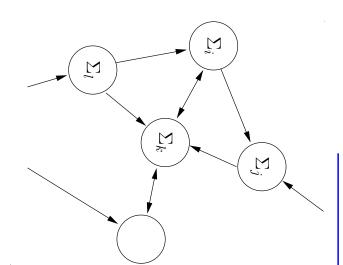
Systems with ideal links Consensus in linear Multi-Agent

with Delays Consensus in Multi-Agent Systems

 $\dot{x} = f(x, u)$

Control via digital networks

Consensus in Multi-Agent Systems (MAS) Motivation



- such as Networks of dynamical agents occur in a huge variety of applications
- Unmanned vehicles
- Mobile robots
- Formation control
- problems Synchronization

- Key players are individual agents and interconnection topology
- So-called consensus problems form appearing in these applications the basis of most of the challanges

Blend systems and graph theory \Rightarrow methods for analysis and design

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

History of Consensus **Problems**

Early related work

Synchronization of coupled oscillators goes back to Huygens $\left(1657
ight)$ and is still an active field of research.

History of Consensus Problems

Graph Theory

- Fiedler 1973: seminal work on algebraic connectivity of graphs
- Since then many extensions to more general classes of graphs (Ren et al. 2004; Wu 2005; Wieland et al. 2008; ...)

MAS Consensus

- kinematic agents: Jadbabaie et al. 2003; Olfati-Saber & Murray 2004; Ren et al. 2007; ...
- second order agents: Ren & Atkins 2005; Ren 2008;
- general LTI systems: Fax & Murray 2004; Tuna 2008; Wieland et al. 2008; ...

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

∞

Problem Setup

MAS model

We consider N identical linear agents

$$\dot{x}_i = Ax_i + Bu_i, \quad x_i \in \mathbb{R}^n, \ u_i \in \mathbb{R}^n$$

The interconnections between the agents are represented by a weighted and directed graph $G = \{V, \mathcal{E}, W\}$

Consensus

(State-)Consensus is achieved if

$$x_i(t)-x_j(t)=0$$
 for $t\to\infty$ for all $i,j=1,\ldots,N$.

Objectives

- $oldsymbol{0}$ for given topology and control u_i , analyse consensus
- for given topology, design u; such that consensus is achieved

Graph Basics

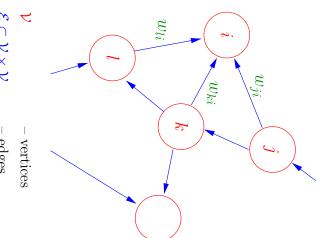
Algebraic graph theory

represented by matrices such as Graphs $\mathcal{G} = \{\mathcal{V}, \mathcal{E}, \mathcal{W}\}$ are

- the adjacency matrix $A \in \mathbb{R}^{|\mathcal{V}|} : [a_{ij}] = w_{ji}$
- the Laplacian matrix

 $L \in \mathbb{R}^{|\mathcal{V}|} : L = \operatorname{diag}(A\mathbf{1}) - A$

characterize graph connectivity consensus properties necessary/sufficient for Use algebraic properties of graphs to



 $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$ - edges

 $W: \mathcal{V} \times \mathcal{V} \to \mathbb{R}_+$ - edge weights

ist

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Structure of Consensus Algorithm

Single agent consensus algorithm

We use the state feedback

$$u_i = -K \sum_{j=1}^{N} w_{ji} (x_i - x_j), \qquad i = 1, \dots, N$$

where $w_{ji},\ i,j=1,\dots,N$ reflect the interconnection topology and $K\in\mathbb{R}^{1 imes n}$ is the design parameter.

Consensus algorithm of complete MAS

$$u = -(L \otimes K)\mathbf{x}$$
 $u = (u_1, \dots, u_N)^T$
 $\mathbf{x} = (x_1^T, \dots, x_N^T)^T$

Laplacian matrix L appears naturally in consensus algorithm.

topology through Laplacian L. Local state feedback leads to simple global representation involving

Consensus Analysis

Theorem (Necessary and sufficient condition)

Convergence to consensus is achieved if and only if the polynomial

$$P(s) := \prod_{j=2} \det(s l - A - \lambda_j(L) B K)$$

is Hurwitz

Wieland et al. 2008, Fax & Murray 2004

Theorem (Dynamic evolution at consensus)

$$x_i(t) o e^{At} \left(\frac{w_1(L)}{\|w_1(L)\|_1} \otimes I \right) \mathbf{x}(0), \quad i = 1, \dots, N$$

- $\lambda_j(L)$ are eigenvalues of L counting multiplicities, $\lambda_1(L) = 0$. $w_1(L)$ is left-eigenvector of L s.t. $w_1(L)L = 0$ and $w_1(L) \neq 0$.

stability problem with different feedback gains Vast linear systems theory applies Consensus problem for general identical LTI systems reduced to

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

onsensus Design

Idea

$$\prod_{j=2}^N \det(sl-A-\lambda_j(L)BK)$$
 Hurwitz is equivalent to

u=Kx asymptotically stabilizes $\dot{x}=Ax+\lambda_j(L)Bu$ for

If
$$\lambda_j = \sigma_j + \mathrm{j} \omega_j$$
 with $\omega_j \neq 0$, choose K such that $v = \begin{pmatrix} K & 0 \\ 0 & K \end{pmatrix} z$ asymptotically stabilizes $\dot{z} = \begin{pmatrix} A & 0 \\ 0 & A \end{pmatrix} z + \begin{pmatrix} \sigma_j B & \omega_j B \\ -\omega_j B & \sigma_j B \end{pmatrix} v$ for $j = 2, \ldots, N$.

Solve design problem as simple simultaneous stabilization problem.

Consensus Design

Theorem (LMI based design with guaranteedconvergence rate)

and $\kappa \in \mathbb{R}^{1 \times n}$ such that (with $\lambda_i(L) = \sigma_i + \mathrm{j}\omega_i$) If there exists a scalar $\nu \geq 0$, a matrix $Q = Q^T \succ 0$, and a vector $K = \kappa Q^{-1}$ then all roots s_i of P(s) satisfy $\operatorname{Re}(s_i) \leq -\nu$ $C_0(Q, \nu) + \sigma_i C_R(\kappa) + \omega_i C_I(\kappa) \prec 0, \quad i = 2, ..., N$

Wieland et al. 2008

$$C_{0} = \left(\begin{array}{ccc} QA^{T} + AQ + 2\nu Q & 0 \\ 0 & QA^{T} + AQ + 2\nu Q \end{array}\right)$$

$$C_{R} = -\left(\begin{array}{ccc} B\kappa + \kappa^{T}B^{T} & 0 \\ 0 & B\kappa + \kappa^{T}B^{T} \end{array}\right),$$

$$C_{I} = \left(\begin{array}{ccc} 0 & \kappa^{T}B^{T} - B\kappa \\ B\kappa - \kappa^{T}B^{T} & 0 \end{array}\right)$$

Design problem can be posed and efficiently solved using LMIs

14

Example: Formation Control

Vehicle model

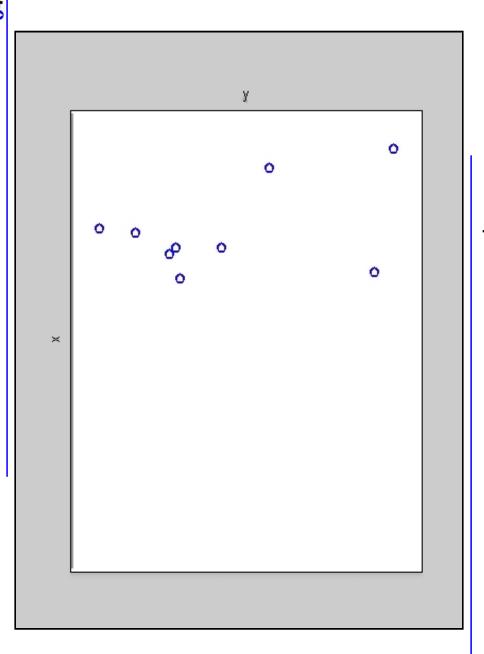
modeled by two independent systems Consider N identical holonomic vehicles. The *i*th vehicle is

$$\dot{z}_{i,q} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -a_1 & -a_0 \end{pmatrix} z_{i,q} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} u_{i,q}, \quad q = x, y$$

with position, speed, and an actuator state as states $z_{i,q}$

- The vehicles shall reach and keep a prespecified formation
- The consensus algorithm is used to correct formation errors
- While the shape of the formation is part of the design, its agents evolution in space depends on the initial conditions of the

Example: Formation Control

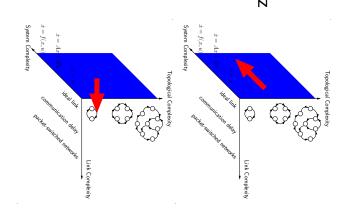


iste

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

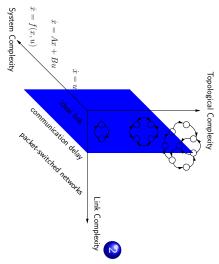
Existing Extensions

- System Class Extensions
- Passive/Lagrangian Systems (Chopra et al. 2006, 2008; Münz et al. 2009)
- Polynomial Systems (Kim & Allgöwer 2007, 2008)
- Allow Changes in Interconnection Topology
- Proximity Graphs (Jadbabaie et al. 2003, Tanner et al. 2003)
- Switching Topology (Ren & Beard 2007)



Overview

 Consensus in linear Multi-Agent Systems with ideal links



Consensus in Multi-Agent Systems with Delays

Control via digital networks

isto

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

18

Delay Sources Ξ. Cooperative Control Problems

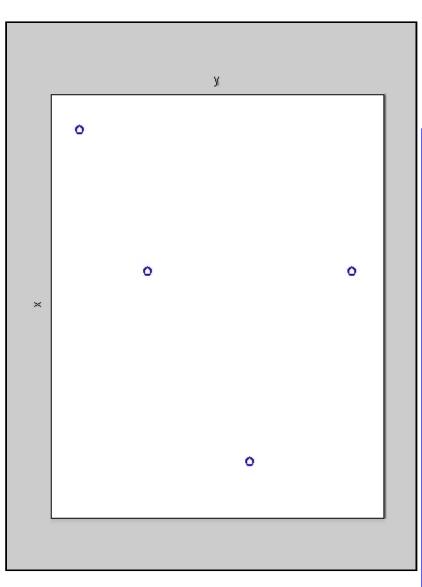
reaction time



comm. delay

Do delays corrupt consensus?

Delays Corrupt Consensus!

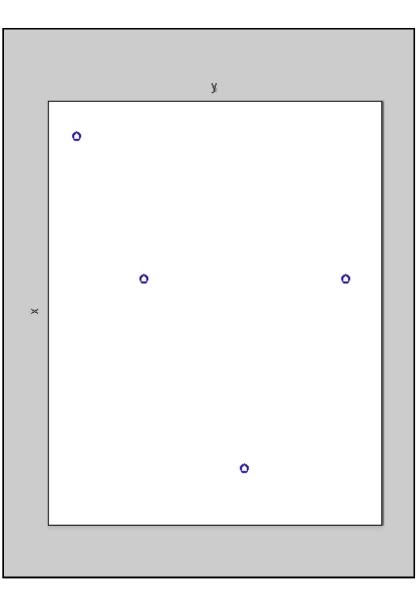


Second order linear MAS with communication delay au= 0.01.

•ist^o

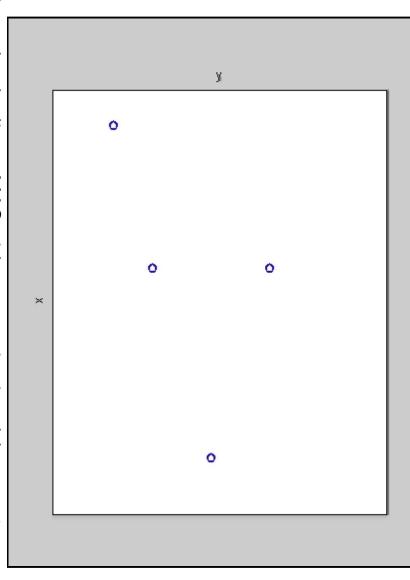
Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Delays Corrupt Consensus!



Second order linear MAS with communication delay au=0.3.

Delays Corrupt Consensus!



Second order linear MAS with communication delay 7

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Delay Models for Communication Networks

Constant delay

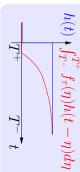
 $h(t)
ightharpoonup h(t-\tau)$

- easiest delay model
- approximation for reaction delay

$h(t) \nmid h(t - \tau(t))$ Time-varying delay

- accurate description with discontinuities
- upper bound on $\dot{ au}$ proofs often require continuous au or even

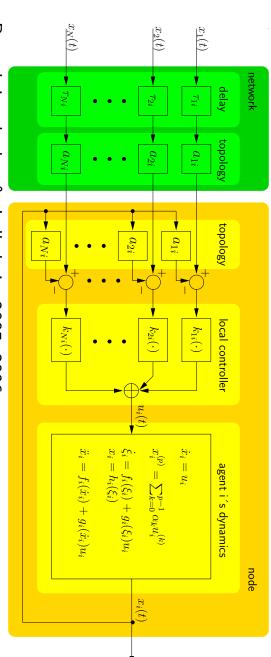
Distributed delay



- approximation for packet-switched channel (Münz et al. 2007, 2009)
- f_{τ} models packet delay probability

delay-dependent if consensus is guaranteed for all $au \in [0, \overline{ au}]$ delay-independent if consensus is guaranteed for all $au \geq 0$

State of the Art: Delayed MAS



Papachristodoulou & Jadbabaie, 2005, 2006;

Chopra & Spong, 2006, 2008;

Münz, Papachristodoulou, Allgöwer, 2007, 2008, 2009;

Schmidt, Münz, Allgöwer, 2009

own state also delayed:

Olfati-Saber & Murray, 2004; Lestas & Vinnicombe, 2007;

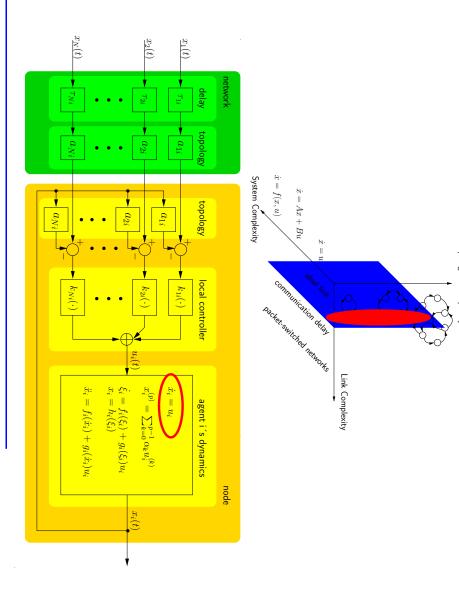
Bliman & Ferrari-Trecate, 2008

ist

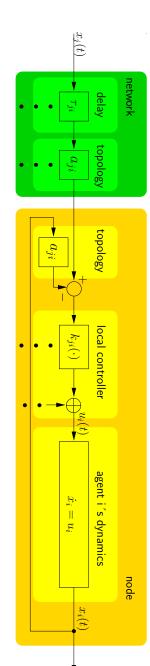
Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

22

Consensus Ξ. Nonlinear Delayed Single Integrator MAS



Consensus in Nonlinear Delayed Single Integrator MAS 👇



Münz, Papachristodoulou & Allgöwer, 2007, 2008, 2009) Theorem (Papchristodoulou & Jadbabaie, 2006;

Consensus is reached in directed, switching graphs with

constant, time-varying, or distributed delays for any nonlinear,

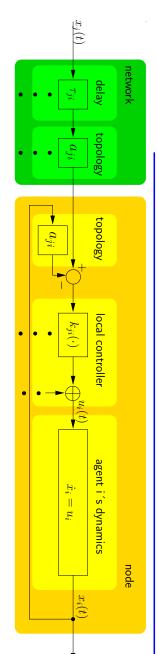
the initial condition satisfies locally passive controller, i.e. $\eta k_{ji}(\eta)>0, orall \eta\in [-\gamma_{ji}^-,\gamma_{ji}^+]\setminus\{0\}$ if

$$|x_i(\theta)| \leq \frac{\min_{i,j} \{\gamma_{ji}^-, \gamma_{ji}^+\}}{2}, \quad \forall \theta \in [-T, 0], i = 1, \dots, N.$$

isto

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Consensus in Nonlinear Delayed Single Integrator MAS



Münz, Papachristodoulou & Allgöwer, 2007, 2008, 2009) Theorem (Papchristodoulou & Jadbabaie, 2006)

Consensus is reached in directed, switching graphs with

Delayed single integrator MAS

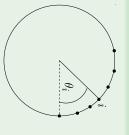
- always reach consensus with linear or nonlinear, globally passive controllers
- reach consensus locally with nonlinear, locally passive controllers

with minimal assumptions on delays and graph topology

Example: Kuramoto Oscillator

Kuramoto oscillator (Kuramoto, 1984)

$$\dot{ heta}_i(t) = \omega_i + K \sum_{j=1}^N rac{ extbf{a}_{ji}}{ extbf{d}_i} \sin(heta_j(t- au_{ji}) - heta_i(t))$$



- pacemaker cells in the heart
- arrays of lasers
- microwave oscillations

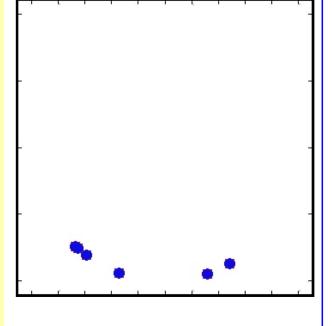
2009; Schmidt, Münz & Allgöwer 2009) Theorem (Papachristodoulou & Jadbabaie, 2006; Münz et al.,

- phase synchronization if $\omega_i = \omega, \forall i$
- trequency synchronization if $\omega_i \in [\underline{\omega}, \overline{\omega}], \forall i$
- phase synchronization if $\omega_i \in [\underline{\omega}, \overline{\omega}], \forall i$ and if delays τ_{ji} are chosen appropriately (not possible without delays!)

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

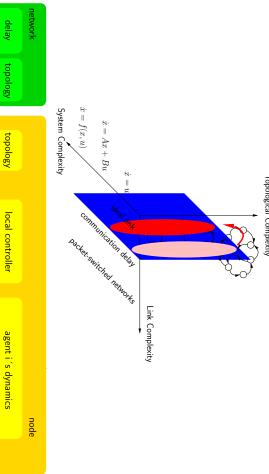
25

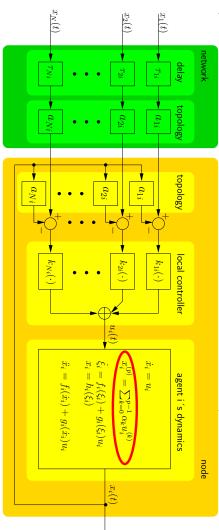
Phase Synchronization in Heterogeneous Kuramoto Oscillators with and without Delays



- Kuramoto oscillators synchronize in networks with delays
- without delays Delays achieve phase synchronization, which is not possible

Consensus in Linear Delayed Multi-Integrator MAS



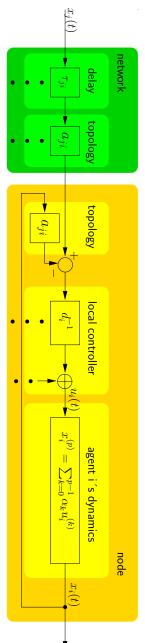


isto

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

1

Consensus ⊒. Linear Delayed Multi-Integrator MAS



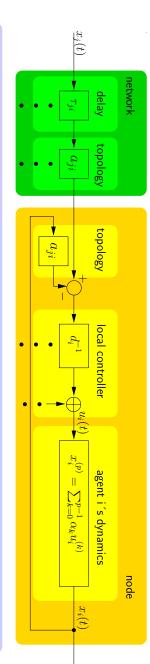
Theorem (Münz, Papachristodoulou, Allgöwer, 2009)

degree normalizing controllers $k_{ji}(\eta)=\frac{1}{d_i}\eta$, where $d_i=\sum_{j=1}^N a_{ji}$. Consensus is reached if and only if graphs Consider linear delayed multi-integrator MAS in undirected with constant, symmetric delays $au_{ji} = au_{ij} \leq \overline{ au}$ and

$$\frac{(j\omega)^p + \sum_{k=1}^{p-1} \alpha_k (j\omega)^k}{\sum_{k=1}^{p-1} \alpha_k (j\omega)^k} \notin \Omega_1(\omega)$$

for all $\omega \neq 0$.

Consensus in Linear Delayed Multi-Integrator MAS



Theorem (Münz, Papachristodoulou, Allgöwer, 2009)

Consider linear delayed multi-integrator MAS in undirected Consensus is reached if and only if degree normalizing controllers $k_{ji}(\eta)=rac{1}{d_i}\eta$, where $d_i=\sum_{j=1}^N a_{ji}$. graphs with constant, symmetric delays $au_{ji} = au_{ij} \leq \overline{ au}$ and

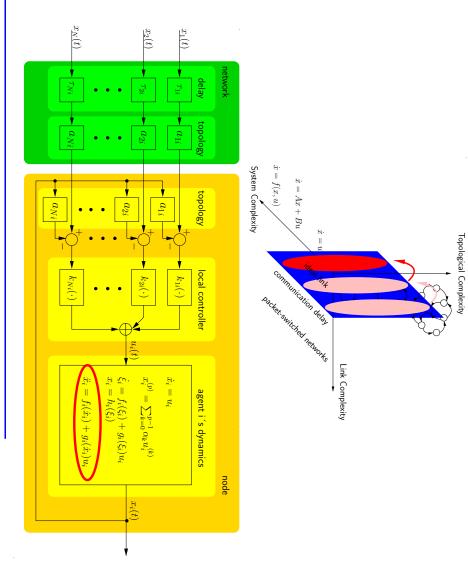
_inear delayed multi-integrator MAS

- necessary and sufficient set-valued condition
- analytical results for first and second order MAS
- delay-dependent convergence rate condition for first order MAS

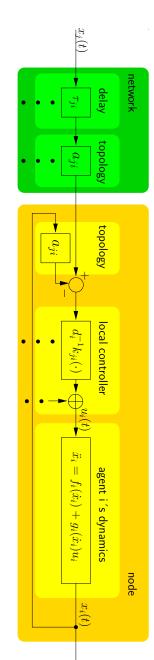
isto Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

28

Consensus in Nonlinear MAS with Relative Degree WO



Consensus in Nonlinear MAS with Relative Degree Two



Theorem (Münz, Papachristodoulou, Allgöwer, 2009)

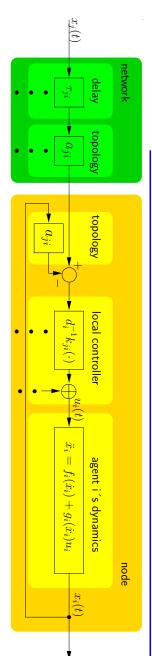
for any nonlinear, globally Lipschitz controller, i.e. are globally positive and bounded, i.e. $g_i(\eta) \in (0, \beta_i)$, $\forall \eta$. Consensus is reached in undirected graphs with Assume f_i are globally sector bounded, i.e. $\eta f_i(\eta) \geq \alpha_i \eta^2$ and $|k_{ji}(\eta_1)-k_{ji}(\eta_2)|\leq \kappa_{ji}|\eta_1-\eta_2|, orall \eta_1, \eta_2$, if constant delays

$$\kappa_{ji} < rac{lpha_i}{eta_i \max\{ au_{ji}, au_{ij}\}}, \quad orall i, j.$$

isto

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Consensus ⊒. Nonlinear MAS with Relative Degree Two



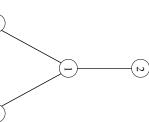
Theorem (Münz, Papachristodoulou, Allgöwer, 2009)

for any nonlinear, globally Lipschitz controller, i.e. $|k_{ji}(\eta_1) - k_{ji}(\eta_2)| \le \kappa_{ji} |\eta_1 - \eta_2|, \forall \eta_1, \eta_2$, if Assume f_i are globally sector bounded, i.e. $\eta f_i(\eta) \geq \alpha_i \eta^2$ are globally positive and bounded, i.e. $g_i(\eta) \in (0, \beta_i), \forall \eta$. Consensus is reached in undirected graphs with constant delays

Nonlinear delayed MAS with relative degree two

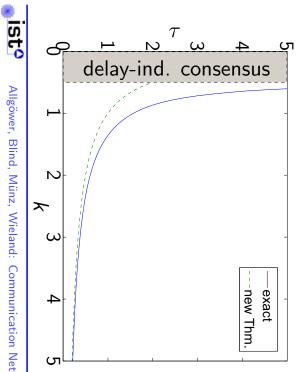
- first result for relative degree two agents
- delay-dependent decentralized design for heterogeneous agents

Motivating Example: Consensus of 4 Agents



$$\ddot{x}_i(t) = -\dot{x}_i(t) - \sum_{j=1}^N k \frac{a_{ji}}{d_i} (x_i(t) - x_j(t-\tau))$$

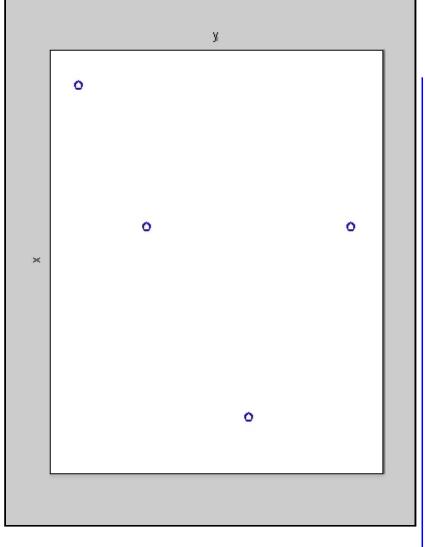
$$k < \frac{1}{\tau} \Longrightarrow$$
 consensus



Simulation parameters:

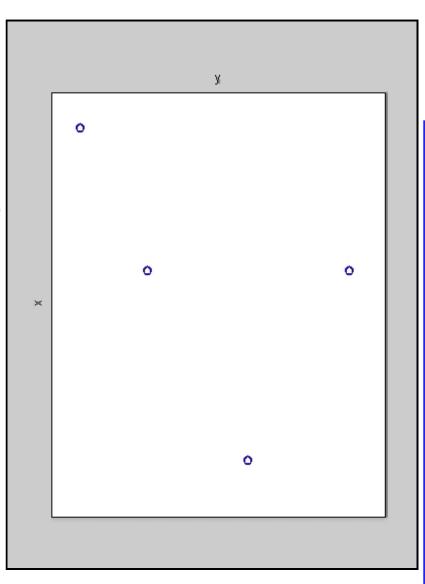
- chosen gain: *κ* = \sim
- exact bound: $\tau < 0.6046$
- new condition: $\tau < 0.5$

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control



Second order linear MAS with communication delay = 0.01.

Simulation

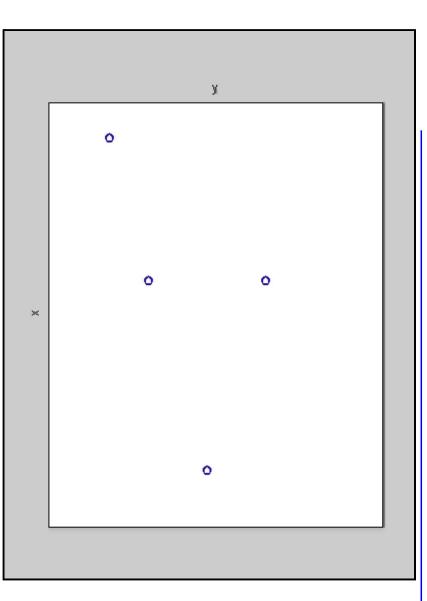


Second order linear MAS with communication delay au= 0.3.

•ist^o

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Simulation



Second order linear MAS with communication delay au=1.

Summary — Consensus of Multi-Agent Systems

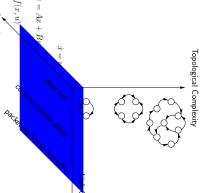
- consensus for general identical LTI systems without delays
- delays may corrupt consensus
- with dependent delay-independent consensus for first order MAS relative degree one, but convergence rate and MAS is delay-
- with relative degree two delay-dependent consensus for second order MAS and MAS
- × and topology more complex dynamics require more restrictions on delays

ist

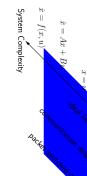
Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Overview

Consensus in linear Multi-Agent Systems with ideal links

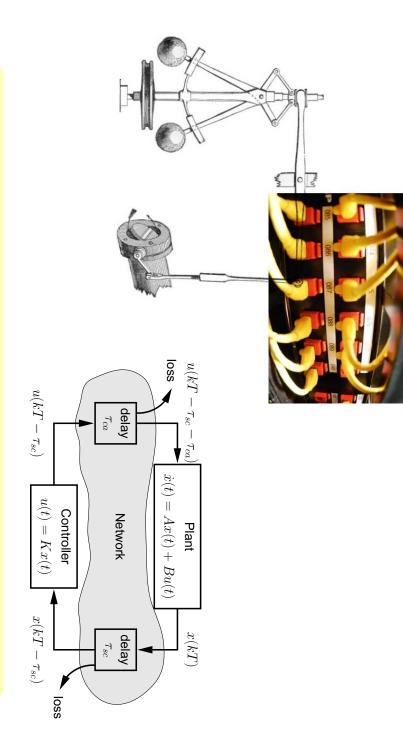


with communication delays Consensus in Multi-Agent Systems



Control via digital networks

Networked Control Systems



Physical interconnections are replaced by digital networks

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Link Complexity



- known in advance

no loss

no delay

constant

unknown, in interval

limitations

bandwidth

time varying

- known
- unknown
- with known random, distribution

where?

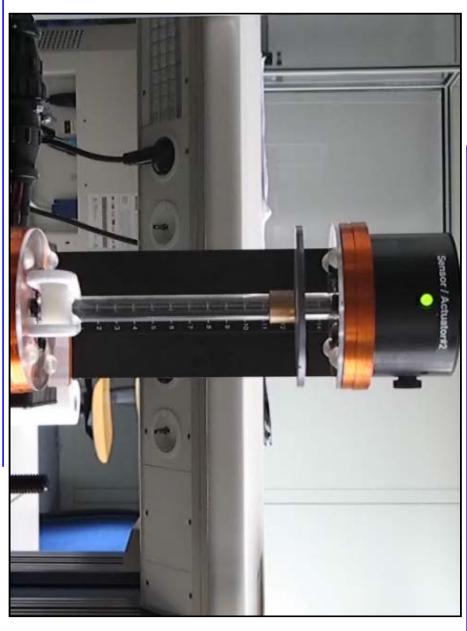
SSO

- sensor → controller
- controller → actuator
- random process
- <u>=</u>:
- Markov

detailed link model

- of loss, interaction data rate delay and
- . Ф system queuing

The Negative Effects of Loss

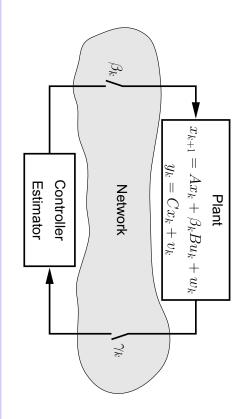


•ist^o

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

37

Loss of Control or Measurement **Packets**



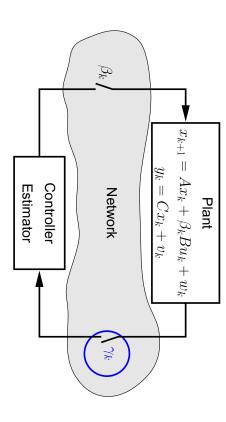
Loss of measurement packets:

The estimator can only simulate, no correction step.

Loss of control packets:

- The system runs open loop.
- The input to the plant is unknown to the controller/estimator.

Loss of Control or Measurement Packets



Loss of measurement packets:

The estimator can only simulate, no correction step.

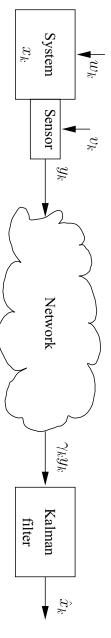
We want to find suitable methods to

- analyze the effects of the loss
- take these effects into account.
- compensate these effects

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

38

Kalman Filtering with Intermittent Observations



When do we get $x_k \approx \hat{x}_k$?

Theorem [Sinopoli et al. 04]

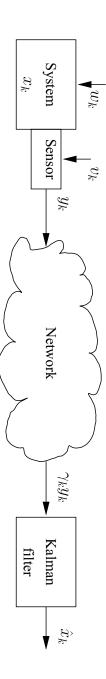
If $(A,Q^{1/2})$ is controllable, (A,C) is detectable, and A is unstable, then there exists a $\lambda_c\in[0,1)$ such that

$$\lim_{k\to\infty} \mathbb{E}[P_k] = +\infty, \quad \text{for } 0 \le \lambda \le \lambda_c \text{ and } \exists P_0 \ge 0$$

$$\mathbb{E}[P_k] \le M_{P_0} \forall k, \quad \text{for } \lambda_c < \lambda \le 1 \text{ and } \forall P_0 \ge 0,$$

where $\lambda := E[\gamma_k]$ and $P_k = E[(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T | y_{k-1}, \gamma_{k-1}]$. For λ_c a lower and upper bound can be given: $\underline{\lambda} \leq \lambda_c \leq \overline{\lambda}$.

Kalman Filtering with Intermittent Observations



When do we get $x_k \approx \hat{x}_k$?

Theorem [Sinopoli et al. 04]

If $(A,Q^{1/2})$ is controllable, (A,C) is detectable, and A is unstable, then there exists a $\lambda_c\in[0,1)$ such that

$$\lim_{k\to\infty} \mathbb{E}[P_k] = +\infty, \quad \text{for } 0 \le \lambda \le \lambda_c \text{ and } \exists P_0 \ge 0$$

$$\mathbb{E}[P_k] \le M_{P_0} \forall k, \quad \text{for } \lambda_c < \lambda \le 1 \text{ and } \forall P_0 \ge 0,$$

lost The system can be observed $(x_k pprox \hat{x}_k)$ if not too many packets are

ete

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Kalman Filtering with Intermittent Observations

Theorem [Sinopoli et al. 04]

optimization problem: The upper bound $ar{\lambda}$ is given by the solution of the following

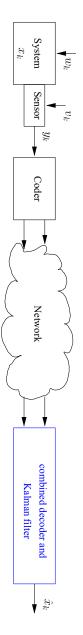
$$ar{\lambda} = \arg\min_{\lambda} \Psi_{\lambda}(Y, Z) > 0, \qquad 0 \leq Y \leq I.$$

where

$$\Psi_{\lambda}(Y,Z) = \begin{bmatrix} Y & \sqrt{\lambda}(YA + ZC) & \sqrt{1 - \lambda}YA \\ * & Y & 0 \\ * & * & Y \end{bmatrix}$$

Coding to Improve the Kalman Filtering

coder and decoder are designed such that $y_k \approx \hat{y}_k$

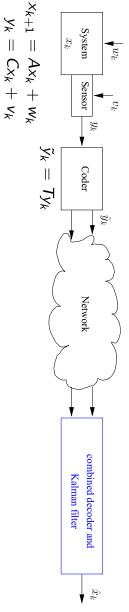


combined decoder and Kalman filter such that $x_k \approx \hat{x}_k$

ist°

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Coding to Improve the Kalman Filtering



Motivating example

Consider the system

$$A = \begin{bmatrix} 2.5 & 0 \\ 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

- The system is not observable if one measurement is missing
- Send virtual measurement $\tilde{y} = Ty$, where T is invertible E.g. $\tilde{y}_1 = y_1 + y_2$ and $\tilde{y}_2 = y_1 - y_2$.
- still observable If one of the virtual measurements is lost, then the system is

Coding to Improve the Kalman Filtering

Motivating example

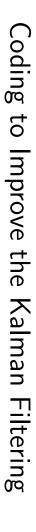
Consider the system

$$A = \begin{bmatrix} 2.5 & 0 \\ 0 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

The system is not observable if one measurement is missing

Choose T such that either

- the Kalman filter can tolerate a higher packet loss rate, or
- we get better estimates for a fixed loss rate



Theorem [Blind et al.]

optimization problem: The upper bound $ar{\lambda}$ is given by the solution of the following

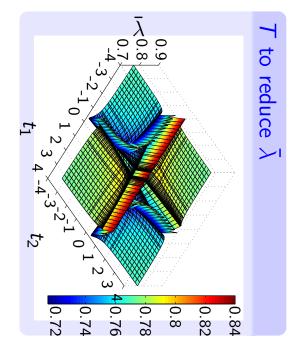
$$ar{\lambda} = \arg\min_{\lambda} \Psi_{\lambda}(Y, Z_1, \dots, Z_E, T) > 0, \quad 0 \leq Y \leq I,$$

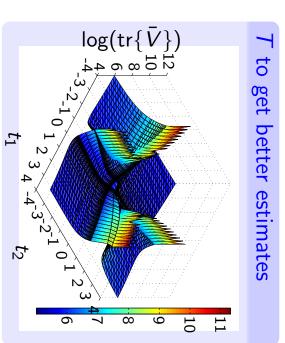
where

$$\begin{bmatrix} Y & \sqrt{w_1(\lambda)}(YA + Z_1\tilde{L}_1TC) & \cdots & \sqrt{w_E(\lambda)}(YA + Z_E\tilde{L}_ETC) \\ * & Y & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ * & * & * & \cdots & Y \end{bmatrix}.$$

Coding to Improve the Kalman Filtering

can be normalized to





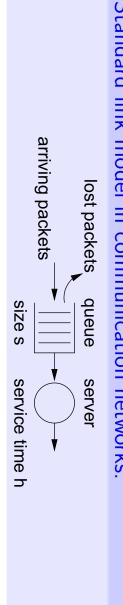
<u>В</u>у better estimates for a fixed loss rate a suitable choice of we can tolerate a higher loss rate or get

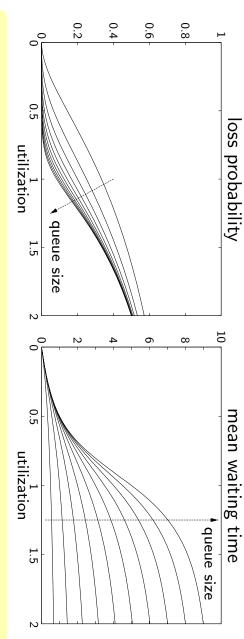
isto

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Detailed Link Model: Queueing System

Standard link model in communication networks:

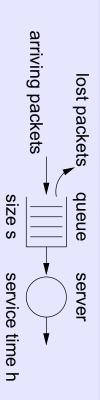




Loss and delay depends 9 the network resources.

How it All Interacts

Standard link model in communication networks:



How it all interacts resources network delay oss data rate sent data controller design pertormance

•ist^o

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

46

Summary Control via Digital **Networks**

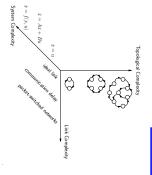
Summary

- \Rightarrow loss and delay of packets. Physical interconnections are replaced by digital networks
- Loss and delay of packets is considered individually.
- Methods to analyze the effects of loss.
- Methods to compensate these effects, e.g. coding

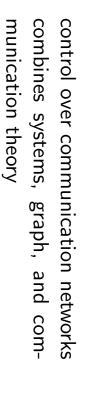
Outlook

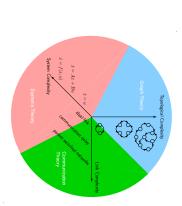
between loss and delay. Use more complex network models, which model the interaction

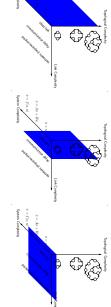
Conclusions



current trends in control systems introduce new dimensions of complexity







The story just started!
We need to exploit all dimensions of complexity.

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control

Acknowledgements

Rainer Blind

Ulrich Münz

Peter Wieland

Institute for Systems Theory and Automatic Control

Priority Program (SPP) 1305:

German Research Foundation (Deutsche Forschungsgemeinschaft) Control Theory of Digitally Networked Dynamical Systems

Symposium and Workshop Invitation

Symposium on Recent Trends in Networked Systems and Cooperative Control Monday, September 28, 2009, Stuttgart, Germany

Workshop on Network-Induced Constraints in Control
Tuesday, September 29, 2009, Stuttgart, Germany

Allgöwer, Blind, Münz, Wieland: Communication Networks in Control