Analytical and LMI based design for the Acrobot traking with aplication to robot walking

Milan Anderle, Sergej Čelikovský

Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

September 23, 2009

1

LMI based design

Analytical based design

Impact model

Conclusions and outlooks

The model of the acrobot $_{\mbox{\sc Acrobot}}$

- underactuated mechanical system
- the acrobot is a special case of *n*-link with *n* 1 actuators
- underactuated angle is at the pivot point

Impact model

The model of the acrobot Euler-Lagrange theory

• The acrobot can be modelled by usual Lagrangian approach

$$\mathcal{L}(q,\dot{q})=K-V=rac{1}{2}\dot{q}^{\mathsf{T}}D(q)\dot{q}-V(q)$$

• The resulting Euler-Lagrange equation

$$\begin{bmatrix} \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_1} - \frac{\partial \mathcal{L}}{\partial q_1} \\ \vdots \\ \frac{d}{dt} \frac{\partial \mathcal{L}}{\partial \dot{q}_n} - \frac{\partial \mathcal{L}}{\partial q_n} \end{bmatrix} = u = \begin{bmatrix} 0 \\ \tau_2 \\ \vdots \\ \tau_n \end{bmatrix}$$

M. Anderle, S. Čelikovský Analytical and LMI based design for the Acrobot traking with aplication to robot walki 3 / 22

The model of the acrobot Euler-Lagrange theory

• The Euler-Lagrange equation leads to a dynamic equation

 $D(q)\ddot{q} + C(q,\dot{q})\dot{q} + G(q) = u$

D(q) is the inertia matrix, $C(q, \dot{q})$ contains Coriolis and centrifugal terms, G(q) contains gravity terms, u is vector of external forces

• Kinetic symmetry

 $D(q)\equiv D(q_2)$

The model of the acrobot Partial exact feedback linearization

- System transformation into a new system of coordinates that display linear dependence between some output and new input
- Two independent function with relative degree 3

$$\sigma = \frac{\partial \mathcal{L}}{\partial \dot{q}_1} = (\theta_1 + \theta_2 + 2\theta_3 \cos q_2)\dot{q}_1 + (\theta_2 + \theta_3 \cos q_2)\dot{q}_2$$
$$p = q_1 + \frac{q_2}{2} + \frac{2\theta_2 - \theta_1 - \theta_2}{\sqrt{(\theta_1 + \theta_2)^2 - 4\theta_3^2}} \arctan\left(\sqrt{\frac{\theta_1 + \theta_2 - 2\theta_3}{\theta_1 + \theta_2 + 2\theta_3}} \tan \frac{q_2}{2}\right)$$

Analytical based design

Impact model

Conclusions and outlooks

The model of the acrobot Partial exact feedback linearization

The transformation

$$T: \quad \xi_1 = p, \xi_2 = \sigma, \xi_3 = \dot{\sigma}, \xi_4 = \ddot{\sigma}$$

 \bullet Connection σ and p with $\mathcal L$

$$\dot{p} = d_{11}(q_2)^{-1}\sigma,$$

$$\dot{\sigma} = \frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{q}_1} = \frac{\partial \mathcal{L}}{\partial q_1} = -\frac{\partial V}{\partial q_1}$$

• Acrobot's dynamics in partial exact linearized form

$$\dot{\xi}_1 = d_{11}(q_2)^{-1}\xi_2, \ \dot{\xi}_2 = \xi_3, \ \dot{\xi}_3 = \xi_4, \ \dot{\xi}_4 = lpha(q,\dot{q}) au_2 + eta(q,\dot{q}) = w$$

Reference system

$$\dot{\xi}_1^r = d_{11}^{-1}(q_2^r)\xi_2^r, \ \dot{\xi}_2^r = \xi_3^r, \ \dot{\xi}_3^r = \xi_4^r, \ \dot{\xi}_4^r = w^r$$

Analytical based design

Impact model

Conclusions and outlooks

The model of the acrobot Partial exact feedback linearization

• Denoting
$$e := \xi - \xi^r$$

 $\dot{e}_1 = d_{11}^{-1}(\phi_2(\xi_1, \xi_3))\xi_2 - d_{11}^{-1}(\phi_2(\xi_1^r, \xi_3^r))\xi_2^r$
 $\dot{e}_2 = e_3, \quad \dot{e}_3 = e_4, \quad \dot{e}_4 = w - w^r$

• Computations based on the Taylor expansions

$$\dot{e}_1 = \mu_1(t)e_1 + \mu_2(t)e_2 + \mu_3(t)e_3 + o(e)$$

 $\dot{e}_2 = e_3, \quad \dot{e}_3 = e_4, \quad \dot{e}_4 = w - w^r$

• To ensure e(t)
ightarrow 0 for $t
ightarrow \infty$ we use feedback

$$w = w^{r} + \overline{K}_{1}(t)e_{1} + \overline{K}_{2}(t)e_{2} + \overline{K}_{3}(t)e_{3} + \overline{K}_{4}(t)e_{4}$$

 State feedback controller K
_{1,2,3,4}(t) for the reference trajectory tracking

LMI based design

Analytical based design

Impact model

Conclusions and outlooks

LMI based design for the Acrobot walking LMI design of gains $K_{1,2,3,4}$

• Open-loop continuous-time and time-varying linear system, state feedback controller

$$\dot{e} = A(t)e + Bu, \quad u = Ke$$

Closed-loop system

$$\dot{e} = (A + BK) e = \left(egin{array}{cccc} \mu_1(t) & \mu_2(t) & \mu_3(t) & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ K_1 & K_2 & K_3 & K_4 \end{array}
ight) e,$$

- Bounds for $\mu_1(t), \mu_2(t), \mu_3(t)$ are known
- Lyapunov equation is solved for all values of $\mu_1(t), \mu_2(t), \mu_3(t)$ $(A(\mu) + BK)^T S + S(A(\mu) + BK) \preceq 0, \quad S = S^T \succ 0$

LMI based design

Analytical based design

Impact model

Conclusions and outlooks

LMI based design for the Acrobot walking Bounds for LMI

Convex set is defined in the form

- rectangular box
- prismatic box

Impact model

Conclusions and outlooks

LMI based design for the Acrobot walking Simulations - Torque

- Yalmip and SEDUMI
- $(K_1, K_2, K_3, K_4) = -10^4 \times$ (1.9087, 1.2097, 0.1781, 0.0090)
- \bullet saturation limit in the range $\pm 10\,{\rm Nm}$

M. Anderle, S. Čelikovský Analytical and LMI based design for the Acrobot traking with aplication to robot walki 10 / 22

Impact model

Conclusions and outlooks

LMI based design for the Acrobot walking Simulations - Coordinates and Velocities

M. Anderle, S. Čelikovský Analytical and LMI based design for the Acrobot traking with aplication to robot walki 11 / 22

LMI based design

Analytical based design

Impact model

Conclusions and outlooks

- - E

LMI based design for the Acrobot walking $_{\rm Animations \ with \ saturation \ \pm 10 \ Nm}$

(Loading movie...)

M. Anderle, S. Čelikovský Analytical and LMI based design for the Acrobot traking with aplication to robot walki 12 / 22

Impact model

Conclusions and outlooks

Analytical design of the Acrobot exponential tracking Analytical desig of gains $K_{1,2,3,4}$

• Using the following notation

$$\begin{split} \overline{\mathbf{e}}_1 &= \mathbf{e}_1 - \mu_3(t)\mathbf{e}_2, \quad \overline{\mu}_2(t) = \mu_2(t) + \mu_1(t)\mu_3(t) - \dot{\mu}_3(t) \\ \widetilde{K}_1 &= \overline{K}_1(t) \\ \widetilde{K}_2 &= \overline{K}_2(t) + \mu_3(t)\overline{K}_1(t) \\ \widetilde{K}_3 &= \overline{K}_3(t) \\ \widetilde{K}_4 &= \overline{K}_4(t) \end{split}$$

• The previous system takes the following form

$$\begin{aligned} & \overline{e}_1 = \mu_1(t)\overline{e}_1 + \overline{\mu}_2(t)e_2 \\ (1) \quad & \dot{e}_2 = e_3, \quad \dot{e}_3 = e_4, \\ & \dot{e}_4 = \widetilde{K}_1\overline{e}_1 + \widetilde{K}_2e_2 + \widetilde{K}_3e_3 + \widetilde{K}_4e_4 \end{aligned}$$

Impact model

Conclusions and outlooks

Analytical design of the Acrobot exponential tracking Theorem

Theorem

Suppose $\forall t \ \mu_1(t) \in [\mu_1^{\min}, \mu_1^{\max}], \ 0 < \mu_2^{\min} \le \mu_2(t) \le \mu_2^{\max}$ and let $K_1, \ K_2, \ K_3, \ K_4$ are such that

- $K_1 < \frac{K_2\mu_1(t)}{\overline{\mu}_2(t)},$
- $\lambda^3 + K_4 \lambda^2 + K_3 \lambda + K_2$ is Hurwitz.

Then $\exists \Theta$ such that (1) is exponential stable for

$$\widetilde{K}_1(t)=\Theta^3 K_1, \ \ \widetilde{K}_2(t)=\Theta^3 K_2, \ \ \widetilde{K}_3(t)=\Theta^2 K_3, \ \ \widetilde{K}_4(t)=\Theta K_4$$

Impact model

Conclusions and outlooks

Analytical design of the Acrobot exponential tracking Summarizing

Summarizing

The system

 $egin{array}{lll} ec{e}_1 &= \mu_1(t) \overline{e}_1 + \overline{\mu}_2(t) e_2 \ ec{e}_2 &= e_3 \ ec{e}_3 &= e_4 \ ec{e}_4 &= w - w^r \end{array}$

is exponential stable for

$$w = w^r + \Theta^3 K_1 \overline{e}_1 + \Theta^3 \left(K_2 + \mu_3(t) K_1 \right) e_2 + \Theta^2 K_3 e_3 + \Theta K_4 e_4$$

Impact model

Conclusions and outlooks

Analytical design of the Acrobot exponential tracking Simulations - Torques

- $(K_1, K_2, K_3, K_4) = -(1.5 \times 6, 6, 12, 8)$
- $\Theta = 20$
- saturation limit in the range $\pm 10\,{\rm Nm}$

Impact model

Conclusions and outlooks

Analytical design of the Acrobot exponential tracking Simulations - Coordinates and Velocities

M. Anderle, S. Čelikovský Analytical and LMI based design for the Acrobot traking with aplication to robot walki 17 / 22

Impact model

Conclusions and outlooks

Analytical design of the Acrobot exponential tracking $_{\rm Animations\ with\ saturation\ \pm 10\ Nm}$

(Loading movie...)

M. Anderle, S. Čelikovský Analytical and LMI based design for the Acrobot traking with aplication to robot walki 18 / 22

Impact model for Acrobot Impact model

- Occurs when the swing leg touches the walking surface
- The impact between the swing leg and the ground is modeled as a contact between two rigid bodies
- The positions q do not change during the impact $q^+=q^-$
- Dynamic model of the Acrobot has to be enlarged by reaction force effects

$$D_e(q_e)\ddot{q}_e + C_e(q_e, \dot{q}_e)\dot{q}_e + G_e(q_e) = B_eu + \delta F_{ext}$$

$$q_e = (q_1, q_2, p_H^h, p_H^v),$$

 δF_{ext} the vector of external forces

Impact model

Conclusions and outlooks

Impact model for Acrobot Simulations

Conclusions and outlooks

Conclusions

- Two methods for the Acrobot exponential tracking compared
- Both methods give quite large torques but saturation to realistic
- Impact model for the Acrobot presented values works perfectly in simulations

Outlooks

• Propose the reference trajectory that the initial conditions of new step after impact are equal to initial conditions of the reference step

Impact model

Conclusions and outlooks

Conclusions and outlooks

Thank you for your attention