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Introduction

Investing vs. trading

Investing ”buy and hold” - goal is to take long term
ownership of an instrument with a high level of confidence
that it will continually increase in value (investment horizon).

Trading ”sell high, buy low” - goal is to buy and sell to
capitalize on short term relative changes in value of an
instrument (trading frequency).
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Introduction

Mean-risk models

Markowitz (1952): expected return E(x), risk R(x) (variance)
constraints X ⊂ Rn on portfolio composition

max E(x) & minR(x) : x ∈ X .
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Introduction

Multiobjective optimization

We are looking for efficient solutions: x̂ ∈ X such that there is no
element x ∈ X with R(x) ≤ R(x̂) and E(x) ≥ E(x̂) with at least
one strict inequality. There are two main approaches for solving
such problems, both leading to single objective problems and under
mild condition to efficient solutions: weighted sum approach

min
x∈X

[
− (1− ρ)E(x) + ρR(x)

]
for some ρ ∈ (0, 1), and ε-constraint approach

min
x∈X
R(x)

E(x) ≥ rmin

with rmin such that {x ∈ X : E(x) ≥ rmin} is nonempty.
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Improvements

Transaction costs

Indivisible assets

Nonsymmetrical quantitation of risk

→ Stochastic integer programming problem

Dynamics (not included :-(
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Mean-CVaR models with integer variables

Conditional Value at Risk

R.T. Rockafellar, S. Uryasev (2002):
If we denote Z a general loss random variable with distribution
function F , then α VaR is defined as

VaRα = min{z : F (z) ≥ α}

for some level α ∈ (0, 1), usually 0.95 or 0.99.
CVaR is defined as mean of losses in the α-tail distribution

Fα(z) =
F (z)− α

1− α
, if z ≥ VaRα

= 0, otherwise.
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Mean-CVaR models with integer variables

For application of CVaR in optimization problems, the following
minimization formula is of crucial importance.

CVaRα = min
η∈R

η +
1

1− α
E[Z − η]+ (1)

where [·]+ denotes positive part and η is a real auxiliary variable.

If the loss variable depends on decision variables, say Z (x), x ∈ X ,
we can use optimization shortcut, i.e.

min
x∈X

CVaRα(x) = min
(η,x)∈R×X

η +
1

1− α
E[Z (x)− η]+.
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Mean-CVaR models with integer variables

We will assume that the distribution of the loss random variable
depends on P, i.e. ω ∼ P.

Objective function

fρ(η, x ; P) = (1− ρ)EPZ (x , ω) (2)

+ρ

(
η +

1

1− α
EP [Z (x , ω)− η]+

)
, (3)

where ρ ∈ (0, 1) is a parameter corresponding to the agregate
function. If we set ρ = 0 we minimize expected loss without
involving risk minimization. On the other hand, if we set ρ = 1 we
are absolutely risk averse, i.e. we minimize risk only without
considering mean loss (return).
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Mean-CVaR models with integer variables

Loss random variable

We denote Pi quotation of security i , fi fixed transaction costs, ci

proportional transaction costs (not depending on investment
amount), Ri random return of security i , xi number of securities,
yi binary variables which indicate, whether the security i is bought
or not. Then the loss random function depending on our decision
x , y and random returns R is equal to

Z (x , y ,R) = −
n∑

i=1

(Ri − ci )Pixi +
n∑

i=1

fiyi

together with the constraints 0 ≤ xi ≤ uiyi using upper bounds
ui > 0 ∀i .
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Mean-CVaR models with integer variables

We will assume that the distribution of random returns is finite
discrete, i.e P ∼ D({pj , r

P
j }J

P

j=1) with probabilities pj ≥ 0 of

realizations rP
j , and

∑JP

j=1 pj = 1.

gρ(η, x , y ; P) = (1− ρ)
J∑

j=1

pjZ (x , y , rP
j )

+ρ

(
η +

1

1− α

J∑
j=1

pj [Z (x , y , rP
j )− η]+

)
,

where ρ ∈ (0, 1).

Martin Branda MME 2009



MME 2009

Mean-CVaR models with integer variables

Our investment problem is

min gρ(η, x , y ; P)
s.t. liyi ≤ xi ≤ uiyi , i = 1, . . . , n,

Cl ≤
∑n

i=1 Pixi ≤ Cu,
xi ≥ 0, integer, i = 1, . . . , n,
yi ∈ {0, 1}, i = 1, . . . , n,
η ∈ R,

(4)

where Cl and Cp are lower and upper bound on the capital
available for the portfolio investment, li > 0 and ui > 0 are lower
and upper number of units for each security i .
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Stability analysis and contamination techniques

In general, we may consider the following stochastic optimization
problem

ϕ(P) = inf
x∈X

g(x ,P), (5)

where X is a closed subset of Zn′ × Rn−n′
and the KNOWN

underlying probability measure P belongs to a general class of Borel
probability measures P with support Ξ ⊆ Rm, g : Rn × P → R.

However, the distribution is usually estimated or approximated.
Hence, stability analysis with respect to some changes of the
distribution is necessary.
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Stability analysis and contamination techniques

Metric stability

For P,Q ∈ P

|ϕ(P)− ϕ(Q)| ≤ L · dMI (P,Q) ≤ L · dI (P,Q) (6)

for some L > 0 and an appropriate minimal information dMI and
ideal dI (pseudo)metrics.
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Stability analysis and contamination techniques

Example of metric

W. Römisch, S. Vigerske (2008, 2009): for fully random two-stage mixed

integer linear programming problems (Fortret-Mourier, discrepancy)

ζ2,phk
(P,Q) = sup

{ ∣∣∣∣∫
B

f (ξ)(P − Q)(dξ)

∣∣∣∣ : f ∈ F2(Ξ), B ∈ Bphk
(Ξ)

}
,

where Bphk
(Ξ) denotes the set of all polyhedra being subsets of Ξ

and having at most k faces and

Fp(Ξ) = {F : Ξ→ R : |F (ξ)− F (ξ̃)| ≤ cp(ξ, ξ̃)‖ξ − ξ̃‖, ∀ξ, ξ̃ ∈ Ξ}

with the growth function cp(ξ, ξ̃) = max{1, ‖ξ‖, ‖ξ̃‖}p−1

describing the growth of the local Lipschitz constant.
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Stability analysis and contamination techniques

Contamination techniques in SP

J. Dupačová (1990): Let P ∈ P and Q ∈ P, then the
contaminated distribution Pt is defined for all t ∈ [0, 1] by

Pt = (1− t)P + tQ.

We denote extreme value function and optimal solution set
mapping of contaminated stochastic programming problem as

ϕ(t) = inf
x∈X

g(x ,Pt),

ψ(t) = arg min
x∈X

g(x ,Pt) = {x ∈ X : g(x ,Pt) = ϕ(t)}.
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J. Dupačová (1990): Let P ∈ P and Q ∈ P, then the
contaminated distribution Pt is defined for all t ∈ [0, 1] by

Pt = (1− t)P + tQ.

We denote extreme value function and optimal solution set
mapping of contaminated stochastic programming problem as

ϕ(t) = inf
x∈X

g(x ,Pt),

ψ(t) = arg min
x∈X

g(x ,Pt) = {x ∈ X : g(x ,Pt) = ϕ(t)}.

Martin Branda MME 2009



MME 2009

Stability analysis and contamination techniques

The Gateaux derivative of the extreme value function at P in
direction Q − P is then defined as

ϕ′(P; Q − P) = lim
t→0+

ϕ(t)− ϕ(0)

t

if the limit exists.
If we assume, that all optimal values are finite, the concavity of the
objective function in the underlying distribution ensures concavity
of the extreme value function. Hence, we can construct the
contamination bounds for the extreme value function of the
contaminated problem as follows

(1− t)ϕ(0) + tϕ(1) ≤ ϕ(t) ≤ ϕ(0) + tϕ′(P; Q − P), t ∈ [0, 1].
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Stability analysis and contamination techniques

Complexity of contamination techniques

Contamination techniques may be more computationally
tractable in stochastic integer programming than the
approach based on probability metrics, however theoretically
less general.

We do not need to solve any contaminated problem
which is always larger then the original and fully
contaminated problem.
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Stability analysis and contamination techniques

Applications of contamination techniques

Integer stochastic programming: P. Dobiáš (2003).

Conditional Value at Risk, Value at Risk: J. Dupačová, J.
Poĺıvka (2005).

Bond portfolio management: J. Dupačová, M. Bertocchi,
and V. Moriggia (2008).

...
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Numerical study

Numerical example

We consider

mean-CVaR model with indivisible assets

30 Czech shares funds (4 types: stock funds, bond funds,
financial funds, mixed funds)

Week returns from January 2005 to April 2009 downloaded
from www.kurzy.cz. We used them to estimate month returns
on which we based our portfolio optimization model.

Two riskless assets (term deposits) with different guaranteed
interest rates.

Proportional transaction costs which range 0 to 2 per cent
depending on concrete fund.

budget 500 000 CZK
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Numerical study

Numerical example

In the source of data we can differ two periods - before and during
distress. We used the first period to construct our portfolio and
the second period to the post-analysis of our results. We studied
performance of our portfolios and apply the contamination
techniques.
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Numerical study

Optimal values and solutions, upper bounds for derivatives

MPL & CPLEX

Distribution P Q

ČPI - OPF Penezni 100 000 CZK 100 000 CZK
IKS Balancovany 50 000 CZK 0

IKS Global konzervativni 100 000 CZK 0
Term deposits 250 000 CZK 400 000 CZK

CVaRα -31.5020 189.1228
ϕ′ (upper bound) 2579.9976 -95.1548
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Future research

Multistage investment stochastic programming problems

scenario tree

decomposition algorithms

contamination techniques
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