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System Model

We suppose the system model

f (yt |ψt , θ), t = 1, 2, . . .

yt – model output

ψt – regression vector (inputs uτ , outputs yτ )

θ – vector of parameters (regr. coefficients)

or in a form of a regression model

yt =
n∑

i=1

aiyt−i +
m∑

j=0

bjut−j + ct + et

m, n ∈ N0, ai , bj , ct ∈ θ, et ∼ N (0, r)

e.g. AR(1): yt = ayt−1 + ct + et
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Parameter Estimation

Basic steps

data update (incorporates new data)

f (θt |d(t)) ∝ f (yt |ψt , θt) f (θt |d(t − 1))

time update (reflects θt → θt+1)

f (θt+1|d(t)) =

∫
θ∗

f (θt+1|d(t), θt) f (θt |d(t)) dθt

where dt = (ut , yt), d(t) = (d1, . . . , dt)

Parameter variability and time update:

θt+1 = θt – ‘formal’ step

θt+1 ≈ θt – slowly varying parameters – we need forgetting
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Exponential Forgetting

AKA Time-weighted least squares (TWLS)

AKA Flattening of the posterior pdf

by forgetting factor λ ∈ (0, 1]
usually λ ≥ 0.95

In general form:

f (θt+1|d(t)) = [f (θt |d(t))]λ

In Gaussian model:

Vt = λVt−1

νt = λνt−1
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Alternative Forgetting

AKA Stabilized exponential forgetting (SEF)

forgetting factor λ ∈ [0, 1]
two pdfs f1 and f2 for θ

In general form:

f (θt+1|d(t)) ∝ [f1(θ|d(t))]λ[f2(θ|d(t))]1−λ

min
f

[λD (f ||f1) + (1− λ)D (f ||f2)]

In Gaussian model:

Vt = λVt−1 + (1− λ)VA

νt = λνt−1 + (1− λ)νA
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Partial Forgetting (PFM)

The principle

The parameters have some true distribution with pdf Tf

which is unknown
but we can make hypotheses about it

→ and use them for approximation

Hypotheses

No parameter varies – the filtered pdf

H0 : E
[

Tf (θ|d(t))|θ, d(t),H0

]
= f (θ|d(t))

All parameters vary – an alternative pdf

H1 : E
[

Tf (θ|d(t))|θ, d(t),H1

]
= fA(θ)



Comparison of selected forg. methods

Partial Forgetting (PFM) – cont.

A subset of parameters vary
θα ∈ θ – params. that do not vary
θβ = θ \ θα – params. that vary
. . . and use the chain rule (*)

Hj : E
[

Tf (θ|d(t))|θ, d(t),Hj

]
= f (θα|θβ , d(t))fA(θβ)

Theoretically up to 2n hypotheses.

Each hypothesis has assigned a weight (probability)

λj ∈ [0, 1];
∑

j

λj = 1, j = 0, 1, . . .

==============================

f (θ) = f (θ1, . . . , θn) = f (θ1)
n∏

i=2

f (θi |θi−1, . . . , θ1) (*)
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Approximation

A true pdf Tf (or its expectation) can be expressed as a convex
combination of the hypothetic densities:∑

j

λjE
[

Tf (θ|d(t))|θ, d(t),Hj

]

. . . and then approximated by f̃

D
(

Tf (θ)
∣∣∣∣∣∣f̃ (θ)

)
=

∫
Tf (θ) ln

Tf (θ)

f̃ (θ)
dθ

As we don’t know Tf , we use the mixture and search for f̃ .
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Comparisons

The three methods were compared

AR(1) model for simulated data

yt+1 = θ1 + θ2yt

the best weights/factors were searched

alternative pdf → flat prior

criterion: Relative prediction error

RPE =
1

s

√∑T
i=1(yp;i − yi )2

T

where yi denotes the real system output, yp;i is the predicted
output and s is the sample standard deviation of data on
horizon T .
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Time-varying dynamics

yt+1 = (0.9− 1/t)yt + 2, t = 1, 2, . . . , 300
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Time-varying dynamics

yt+1 = (0.9− 1/t)yt + 2, t = 1, 2, . . . , 300

Table: Time-varying dynamics: one step-ahead prediction of time series.

Method Weight(s) RPE

Exponential 0.95 0.00336
Alternative 0.4078 0.00085
Partial [0.2443, 0.1435, 0.6122, 0] 0.00061
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Time-varying absolute term

yt+1 = yt + 0.9t, t = 1, 2, . . . , 300
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Time-varying absolute term

yt+1 = yt + 0.9t, t = 1, 2, . . . , 300

Table: Time-varying absolute term: one step-ahead prediction of time
series.

Method Weight(s) RPE

Exponential 0.95 19.564e-05
Alternative 0.001 7.0712e-05
Partial [0.2941,0.0086, 0.6973] 6.436e-05
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Time-varying absolute term and dynamics

yt+1 = (1 + 10−4t)yt + 10−3t, t = 1, 2, . . . , 300
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Time-varying absolute term and dynamics

yt+1 = (1 + 10−4t)yt + 10−3t, t = 1, 2, . . . , 300

Table: Time-varying both parameters: one step-ahead prediction of time
series.

Method Weight(s) RPE

Exponential 0.95 33.478e-05
Alternative 0.001 9.789e-05
Partial [0.731,0.0020,0.2490,0] 9.216e-05
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Conclusions and Future Work

Conclusions

+ The PFM method leads to the best results.

+ The AF method was very succesfull too.

+ The most basic EF method led to worse results.

However. . .

+ The EF is very simple!

- The PFM is very complicated in comparison to the others.

+ However, PFM can fully elliminate the blow-up phenomenon,
when the covariance grows w/o bounds.

Future work

Method for online optimization of hypotheses’ weights of PFM

Method for constructing appropriate alternative pdfs for PFM
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The End

Thank you for your attention
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