Efficient Reinforcement Learning for Motor Control

Marc Peter Deisenroth

joint work with Carl Edward Rasmussen

10th International PhD Workshop on Systems and Control Hluboká nad Vltavou, Czech Republic

September 23, 2009

Why learning for control?

borrowed from www.harting-mitronics.ch Figure: Robots assembling a car.

• machines can execute very complicated control commands

Why learning for control?

with permission from http://www.chesshistory.com
 Figure: Kasparov (left) vs. DeepBlue (right), 1996/1997
 but sometimes control is not so easy

Why learning for control?

with permission from http://www.chesshistory.com Figure: Kasparov (left) vs. DeepBlue (right), 1996/1997

- but sometimes control is not so easy
- → make machines solve control tasks themselves (learning)

Challenges in learning control

• machines typically require expert knowledge or many $(10^x, x \ge 2)$ trials \rightarrow can be a) expensive, b) not available, c) infeasible

Challenges in learning control

- machines typically require expert knowledge or many (10^x, x ≥ 2) trials
 ⇒ can be a) expensive, b) not available, c) infeasible
- data-efficient
- make machines learn from "scratch"
 - \rightarrow only general assumptions, no expert knowledge

Challenges in learning control

- machines typically require expert knowledge or many (10^x, x ≥ 2) trials
 ⇒ can be a) expensive, b) not available, c) infeasible
- data-efficient
- make machines learn from "scratch"
 - \rightarrow only general assumptions, no expert knowledge

objective:

 \Longrightarrow find a strategy of solving a problem that satisfies these constraints

Introduction Problem Setup Three Key Steps Results Conclusion

Task learning as an optimal control problem

 $\bullet\,$ find a policy/strategy π that yields low expected long-term cost

$$V^{\pi}(\mathbf{x}_0) = \sum_{t=0}^{T} \mathbb{E}_{\mathbf{x}_t}[c(\mathbf{x}_t)]$$

of following policy π for T time steps (starting from \mathbf{x}_0)

• $c(\mathbf{x}_t)$: immediate/instantaneous cost function

Task learning as an optimal control problem

 $\bullet\,$ find a policy/strategy π that yields low expected long-term cost

$$V^{\pi}(\mathbf{x}_0) = \sum_{t=0}^{T} \mathbb{E}_{\mathbf{x}_t}[c(\mathbf{x}_t)]$$

of following policy π for T time steps (starting from \mathbf{x}_0)

• $c(\mathbf{x}_t)$: immediate/instantaneous cost function

challenges:

- data-efficient solution (few trials)
- unknown system function
- no expert knowledge available

Task learning as an optimal control problem

 $\bullet\,$ find a policy/strategy π that yields low expected long-term cost

$$V^{\pi}(\mathbf{x}_0) = \sum_{t=0}^{T} \mathbb{E}_{\mathbf{x}_t}[c(\mathbf{x}_t)]$$

of following policy π for T time steps (starting from \mathbf{x}_0)

• $c(\mathbf{x}_t)$: immediate/instantaneous cost function

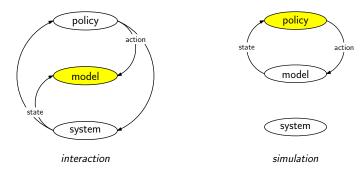
challenges:

- data-efficient solution (few trials)
- unknown system function
- no expert knowledge available

two possible approaches to get V^{π} :

- $\bullet\,$ model free \longrightarrow sample states and controls from real system
- model based \rightarrow find a model of the system function; internal simulation

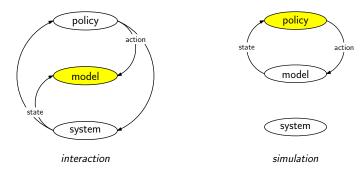
General (model-based) setup: interaction and simulation



two phases

- interaction: internal model is refined using experience from interacting with the real system
- simulation: internal model is used to simulate consequences of actions in the real system, policy is refined

General (model-based) setup: interaction and simulation



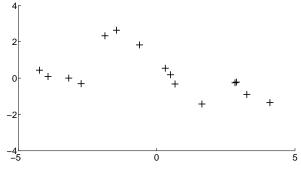
two phases

- interaction: internal model is refined using experience from interacting with the real system
- simulation: internal model is used to simulate consequences of actions in the real system, policy is refined
- → problem: model bias!

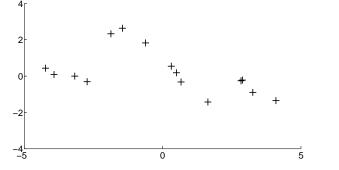
• system identification?

- system identification?
- extract "shape" of the system function from data with high-level assumptions (e.g. smoothness)
- model what we know and what we don't

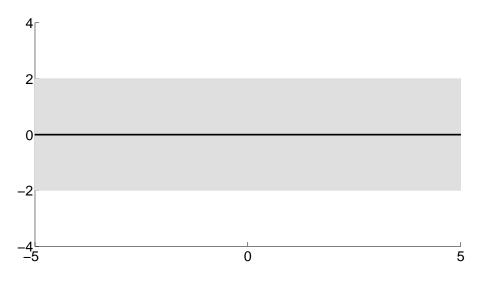
- system identification?
- extract "shape" of the system function from data with high-level assumptions (e.g. smoothness)
- model what we know and what we don't

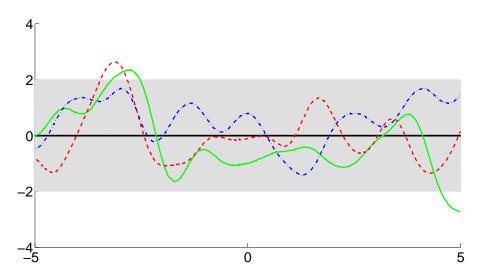


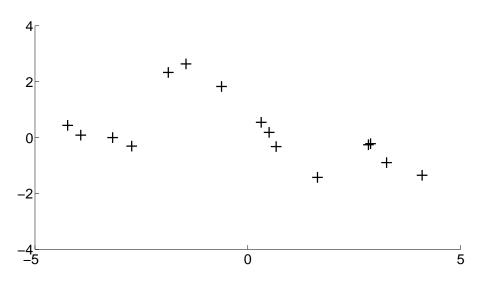
- system identification?
- extract "shape" of the system function from data with high-level assumptions (e.g. smoothness)
- model what we know and what we don't

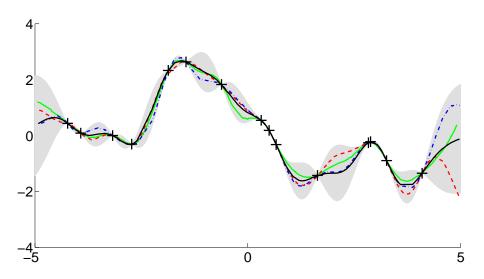


→ here: Gaussian processes to find a model of the system function









Evaluation of the value function

• the GP gives us one-step transition probabilities $p(\mathbf{x}_{t+1}|\mathbf{x}_t)$, but we need

$$V^{\pi}(\mathbf{x}_0) = \sum_{t=0}^{T} \mathbb{E}_{\mathbf{x}_t}[c(\mathbf{x}_t)]$$

Evaluation of the value function

• the GP gives us one-step transition probabilities $p(\mathbf{x}_{t+1}|\mathbf{x}_t)$, but we need

$$V^{\pi}(\mathbf{x}_0) = \sum_{t=0}^{T} \mathbb{E}_{\mathbf{x}_t}[c(\mathbf{x}_t)]$$

- cascade predictions to get $p(\mathbf{x}_1), p(\mathbf{x}_2), \dots, p(\mathbf{x}_T)$
- compute $\mathbb{E}_{\mathbf{x}_t}[c(\mathbf{x}_t)]$
- add them together

Policy refinement

• expected long-term cost (value function)

$$V^{\pi}(\mathbf{x}_0) = \sum_{t=0}^{T} \mathbb{E}[c(\mathbf{x}_t)]$$

can be evaluated analytically using approximate Bayesian inference

- ullet compute derivative of $V^\pi(\mathbf{x}_0)$ with respect to policy parameters
- iterative gradient-based method to optimize policy parameters
 → policy search

High-level algorithm

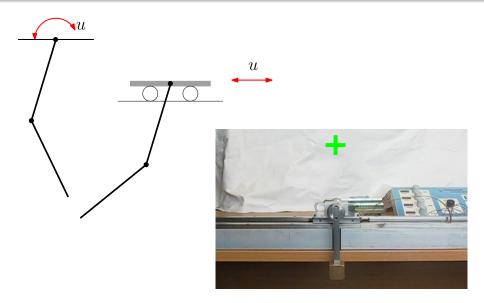
- 1: init: set policy to random
- 2: **loop**
- 3: apply policy to the real system
- 4: learn GP model for system function
- 5: loop
- 6: simulate system with policy π
- 7: compute value function V^{π} for current policy
- 8: improve policy
- 9: end loop
- 10: end loop

▷ interaction

policy searchpredictions

 \triangleright policy refinement

Results



Wrap-up

- data-efficient artificial learning for control problems
- no expert knowledge
- probabilistic model for coherent representation of uncertainty
- explicit incorporation of uncertainty into prediction and decision-making
- gradient-based policy search
- works in simulation and hardware

http://mlg.eng.cam.ac.uk/marc