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Why learning for control?

Figure: Robots assembling a car.
borrowed from www.harting-mitronics.ch

machines can execute very complicated control commands

make machines solve control tasks themselves (learning)
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Why learning for control?

Figure: Kasparov (left) vs. DeepBlue (right), 1996/1997
with permission from http://www.chesshistory.com

but sometimes control is not so easy

make machines solve control tasks themselves (learning)
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Challenges in learning control

machines typically require expert knowledge or many (10x, x ≥ 2) trials
can be a) expensive, b) not available, c) infeasible

data-efficient

make machines learn from “scratch”
only general assumptions, no expert knowledge

objective:
find a strategy of solving a problem that satisfies these constraints
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Task learning as an optimal control problem

find a policy/strategy π that yields low expected long-term cost

V π(x0) =
T∑
t=0

E
xt

[c(xt)]

of following policy π for T time steps (starting from x0)

c(xt): immediate/instantaneous cost function

challenges:

data-efficient solution (few trials)

unknown system function

no expert knowledge available

two possible approaches to get V π:

model free sample states and controls from real system

model based find a model of the system function; internal simulation

MP Deisenroth (Engineering, Cambridge, UK) Efficient Learning in Control 4



Introduction Problem Setup Three Key Steps Results Conclusion Optimal Control Model-based RL

Task learning as an optimal control problem

find a policy/strategy π that yields low expected long-term cost

V π(x0) =
T∑
t=0

E
xt

[c(xt)]

of following policy π for T time steps (starting from x0)

c(xt): immediate/instantaneous cost function

challenges:

data-efficient solution (few trials)

unknown system function

no expert knowledge available

two possible approaches to get V π:

model free sample states and controls from real system

model based find a model of the system function; internal simulation

MP Deisenroth (Engineering, Cambridge, UK) Efficient Learning in Control 4



Introduction Problem Setup Three Key Steps Results Conclusion Optimal Control Model-based RL

Task learning as an optimal control problem

find a policy/strategy π that yields low expected long-term cost

V π(x0) =
T∑
t=0

E
xt

[c(xt)]

of following policy π for T time steps (starting from x0)

c(xt): immediate/instantaneous cost function

challenges:

data-efficient solution (few trials)

unknown system function

no expert knowledge available

two possible approaches to get V π:

model free sample states and controls from real system

model based find a model of the system function; internal simulation

MP Deisenroth (Engineering, Cambridge, UK) Efficient Learning in Control 4



Introduction Problem Setup Three Key Steps Results Conclusion Optimal Control Model-based RL

General (model-based) setup: interaction and simulation

policy

model

interaction

state

action

system

policy

model

system

state action

simulation

two phases

interaction: internal model is refined using experience from interacting with
the real system

simulation: internal model is used to simulate consequences of actions in
the real system, policy is refined

problem: model bias!
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How do we get a good model?

system identification?

extract “shape” of the system function from data with high-level
assumptions (e.g. smoothness)

model what we know and what we don’t

−5 0 5
−4

−2

0
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4

here: Gaussian processes to find a model of the system function
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Pictorial introduction to Gaussian process regression
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Evaluation of the value function

the GP gives us one-step transition probabilities p(xt+1|xt), but we need

V π(x0) =
T∑
t=0

E
xt

[c(xt)]

cascade predictions to get p(x1), p(x2), . . . , p(xT )
compute Ext

[c(xt)]
add them together
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Policy refinement

expected long-term cost (value function)

V π(x0) =
T∑
t=0

E
xt

[c(xt)]

can be evaluated analytically using approximate Bayesian inference

compute derivative of V π(x0) with respect to policy parameters

iterative gradient-based method to optimize policy parameters
policy search
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High-level algorithm

1: init: set policy to random
2: loop
3: apply policy to the real system . interaction
4: learn GP model for system function
5: loop . policy search
6: simulate system with policy π . predictions
7: compute value function V π for current policy
8: improve policy . policy refinement
9: end loop

10: end loop
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Results

u

u
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Wrap-up

I data-efficient artificial learning for control problems

I no expert knowledge

I probabilistic model for coherent representation of uncertainty

I explicit incorporation of uncertainty into prediction and decision-making

I gradient-based policy search

I works in simulation and hardware

http://mlg.eng.cam.ac.uk/marc
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