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Problem statement

Fault detection in brushless DC motors
I Design of algorithms for fault detection in electronically

commutated (EC) motors
I Unknown quality limits
I Incipient faults – hard to distinguish between faulty and

fault-free motor
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Bearing vibration model
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Localized bearing fault
Idealized periodic pulses

x(t) =
∑+∞

i=−∞ δ(t − iT ) F{x(t)}
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Localized bearing fault
Pulses with random lag

x(t) =
∑+∞

i=−∞ δ(t − iT − τi) F{x(t)}
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Localized bearing fault
Random amplitude Pulses with random lag

x(t) =
∑+∞

i=−∞ Aiδ(t − iT − τi)
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Localized bearing fault
Periodic AM random amplitude Pulses with

random lag

x(t) =
∑+∞

i=−∞ Aiq(Tp)δ(t − iT − τi)
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Localized bearing fault
Impulse responce

x(t) =
∑+∞

i=−∞ Aiq(iT )s(t − iT − τi) F{x(t)}
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Localized bearing fault
Additive noise

x(t) =
∑+∞

i=−∞ Aiq(iT )s(t − iT − τi) + n(t)
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Envelope analysis of simulated fault

x(t) H{x(t)}
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Envelope spectra of unfiltered signals

(a) Inner race fault (b) Outer race fault
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Envelope spectra of unfiltered signals

(a) Fault free (b) Lack of lubrication
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Sensitivity improvements

Ideas
I Select a frequency band where the impulses generated by

the fault can be best detected
I Conditions for frequency band selection

I where the signal-to-noise ratio (SNR) is the highest
I around a structural resonance frequency excited by the

impacts
I spectrum comparison for determining the region with the

biggest change

Bearing fault detection in brushless DC motors
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Cyclostationary processes

I Strict-sense CS process (SSCS)
F (x1, x2, · · · , xn; t1, t2, · · · , tn) =
F (x1, x2, · · · , xn; t1 + mT , t2 + mT , · · · , tn + mT )

I Wide-sense CS process (WSCS)
E{x(t)} = E{x(t + mT )}
Rx(t1, t2) = Rx(t1 + mT , t2 + mT )

Bearing fault detection in brushless DC motors
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Spectral correlation density

I Wiener-Khinchin theorem for CS
Sx(ω) =

∫ +∞
−∞ = Rx(τ)e−jωtdt

Sα
x (ω) =

∫ +∞
−∞ = Rα

x (τ)e−jωtdt
I Spectral Coherence (correlation coefficient)
|ραx (ω)|2 = |Sα

x (ω)|2
Sx (f−α/2)Sx (f+α/2) , |ραx (ω)|2 ∈ [0,1]
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Cyclic coherence

Bearing fault detection in brushless DC motors
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Cyclic spectral coherence (SCOH) for
vibration signal

(a) Inner race fault (b) Outer race fault
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Cyclic spectral coherence (SCOH) for
vibration signal

(c) Fault free (d) Lack of lubrication
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SCOH for selected cyclic frequencies
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(b) Inner race fault
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(c) Outer race fault
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Definition of spectral kurtosis

Bearing fault detection in brushless DC motors
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Fast kurtogram
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(a) Inner race fault
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(b) Outer race fault
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Fast kurtogram

Frequency [kHz]

N
um

be
r

of
fil

te
rs

/O
ct

av
e

2 4 6 8 10 12 14

0

1

2

3

4

5

24

12

6

4

3

2

1

(c) Lack of lubrication
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Selected frequency bands

I Filter parameters determined by SK method
Fault Central frequency Bandwidth
Lack of lubrication 8180 Hz 1000 Hz
Bearing inner race fault 5600 Hz 900 Hz
Bearing outer race fault 5000 Hz 2000 Hz

I Filter parameters determined by CS method
Fault Central frequency Bandwidth
Lack of lubrication 8150 Hz 600 Hz
Bearing inner race fault 5100 Hz 800 Hz
Bearing outer race fault 3700 Hz 1400 Hz

Bearing fault detection in brushless DC motors
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Results of filtering
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Conclusion

I Envelope frequency analysis is capable in detecting majority
of bearing faults

I Blind selection of band-pass filter parameters without the
need of any historical data

I Increase in sensitivity of the feature extraction procedure

Future work
I Non-stationary operating conditions
I Estimation of the remaining useful life

Bearing fault detection in brushless DC motors
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