Bearing fault detection in brushless DC motors

A sensitivity study

Pavle Boškoski, Bojan Musizza, Janko Petrovčič, Đani Juričić

PhD Workshop 2009

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Introduction

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Problem statement

Fault detection in brushless DC motors

- Design of algorithms for fault detection in electronically commutated (EC) motors
- Unknown quality limits
- Incipient faults hard to distinguish between faulty and fault-free motor

Fault model

iubliana. Sloveniia

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Bearing vibration model

Fault model Envelope analysis

000000

Cyclostationary analysis

Spectral kurtosis

Localized bearing fault Idealized periodic pulses

$$\mathbf{x}(t) = \sum_{i=-\infty}^{+\infty} \delta(t - iT)$$

 $\mathcal{F}\{\mathbf{x}(t)\}$

Envelope analysis

Fault model

000000

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Localized bearing fault Pulses with random lag

$$\mathbf{x}(t) = \sum_{i=-\infty}^{+\infty} \delta(t - iT - \tau_i)$$
 $\mathcal{F}\{\mathbf{x}(t)\}$

Fault model En

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion

Localized bearing fault Random amplitude Pulses with random lag

Fault model Env

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Localized bearing fault Periodic AM random amplitude Pulses with random lag

Fault model Envelope analysis

0000000

Cyclostationary analysis

Spectral kurtosis

Localized bearing fault Impulse responce

$$x(t) = \sum_{i=-\infty}^{+\infty} A_i q(iT) s(t - iT - \tau_i) \qquad \qquad \mathcal{F}\{x(t)\}$$

Envelope analysis

Fault model

000000

Cyclostationary analysis

Spectral kurtosis

Conclusion

Localized bearing fault Additive noise

$$\mathbf{x}(t) = \sum_{i=-\infty}^{+\infty} A_i q(iT) \mathbf{s}(t - iT - \tau_i) + \mathbf{n}(t)$$

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Envelope analysis of simulated fault

Institute
 "Jožef Stefan"
 Ljubljana, Slovenija

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Envelope spectra of unfiltered signals

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Envelope spectra of unfiltered signals

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Sensitivity improvements

Ideas

- Select a frequency band where the impulses generated by the fault can be best detected
- Conditions for frequency band selection
 - ▶ where the signal-to-noise ratio (SNR) is the highest
 - around a structural resonance frequency excited by the impacts
 - spectrum comparison for determining the region with the biggest change

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Cyclostationary processes

Strict-sense CS process (SSCS)
 F(x₁, x₂, ..., x_n; t₁, t₂, ..., t_n) =
 F(x₁, x₂, ..., x_n; t₁ + mT, t₂ + mT, ..., t_n + mT)

 Wide-sense CS process (WSCS)
 E{x(t)} = *E*{x(t + mT)}
 *R*_x(t₁, t₂) = *R*_x(t₁ + mT, t₂ + mT)

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Spectral correlation density

 Wiener-Khinchin theorem for CS
 S_X(ω) = ∫^{+∞}_{-∞} = R_x(τ)e^{-jωt}dt
 S^α_X(ω) = ∫^{+∞}_{-∞} = R^α_X(τ)e^{-jωt}dt
 Spectral Coherence (correlation coefficient)
 |ρ^α_X(ω)|² = |S^α_X(ω)|²/S_X(f+α/2), |ρ^α_X(ω)|² ∈ [0, 1]

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion

Cyclic coherence

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion

Cyclic spectral coherence (SCOH) for vibration signal

Introduction

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion

Cyclic spectral coherence (SCOH) for vibration signal

Introduction

Fault model

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

SCOH for selected cyclic frequencies

(c) Outer race fault

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Definition of spectral kurtosis

Time

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis 00000

3.5

3

2.52

1.5

0.5

Fast kurtogram

(a) Inner race fault

Institute "Jožef Stefan" Ljubljana, Slovenija

8

10 12

Bearing fault detection in brushless DC motors

14

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Fast kurtogram

(c) Lack of lubrication

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Selected frequency bands

Filter parameters determined by SK method		
Fault	Central frequency	Bandwidth
Lack of lubrication	8180 Hz	1000 Hz
Bearing inner race fault	5600 Hz	900 Hz
Bearing outer race fault	5000 Hz	2000 Hz
Filter parameters determined by CS method		
Fault	Central frequency	Bandwidth
Lack of lubrication	8150 Hz	600 Hz
Lack of lubrication Bearing inner race fault	8150 Hz 5100 Hz	600 Hz 800 Hz

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion o

Results of filtering

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion

Conclusion

- Envelope frequency analysis is capable in detecting majority of bearing faults
- Blind selection of band-pass filter parameters without the need of any historical data
- Increase in sensitivity of the feature extraction procedure

Fault model

Envelope analysis

Cyclostationary analysis

Spectral kurtosis

Conclusion

Conclusion

- Envelope frequency analysis is capable in detecting majority of bearing faults
- Blind selection of band-pass filter parameters without the need of any historical data
- Increase in sensitivity of the feature extraction procedure

Future work

- Non-stationary operating conditions
- Estimation of the remaining useful life

