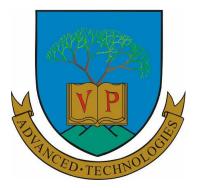
Dynamic Modeling and Analysis of a Synchronous Generator in a Nuclear Power Plant

Attila Fodor, Attila Magyar, Katalin M. Hangos

University of Pannonia Faculty of Information Technology Department of Electrical Engineering and Information Systems foa@almos.vein.hu



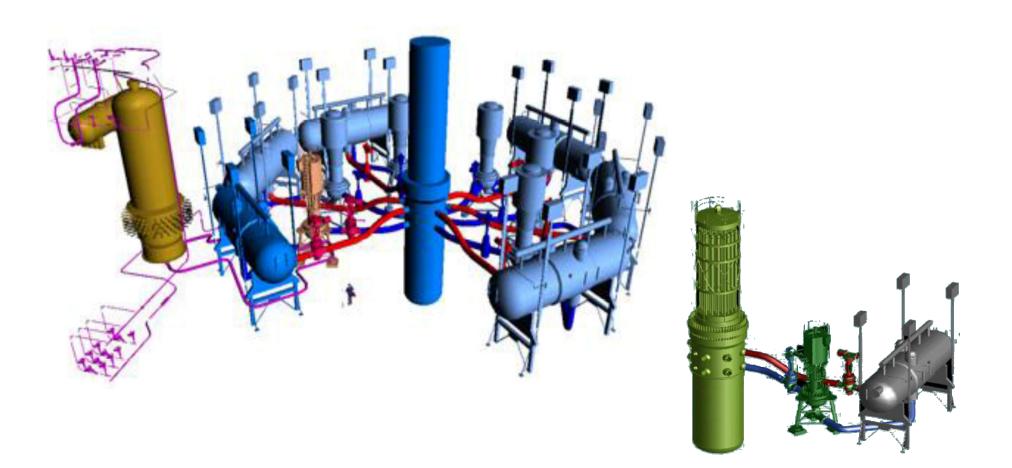
Contents

- Introduction, Motivation
- The power generating equipments of the Paks Nuclear Power Plant
- The Model of the Synchronous Machine
- Stability analysis
- Simulation results

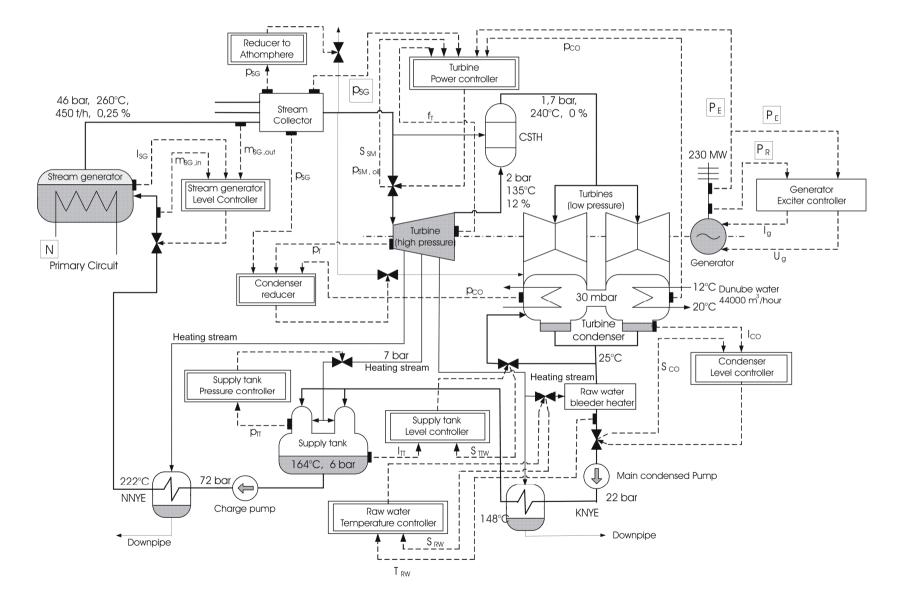
- Modeling of synchronous machine (electrical and mathematical)
- Model analysis (e.g. stability)
- Generator model parameter identification
- Generator model validation (partially controlled case)
- Design of synchronous generator control structure
- Controller design and validation by simulation

The primary circuit of Paks NPP

- Pressurized water reactor (VVER 440/213)
- 6 stream generators

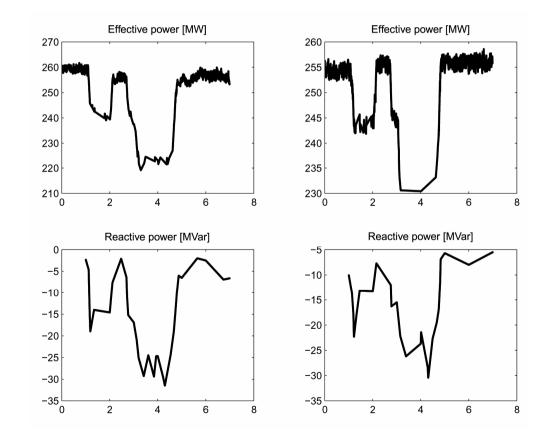


The secondary circuit of Paks NPP

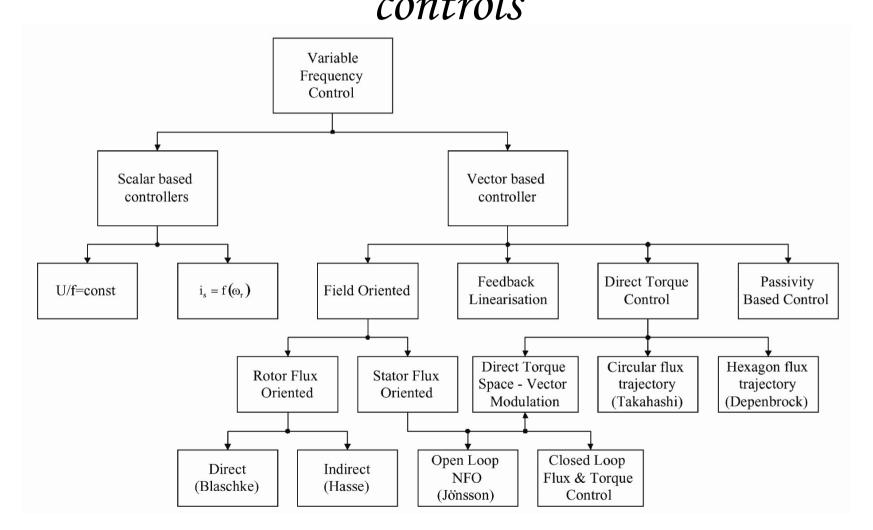


Introduction, problem statement

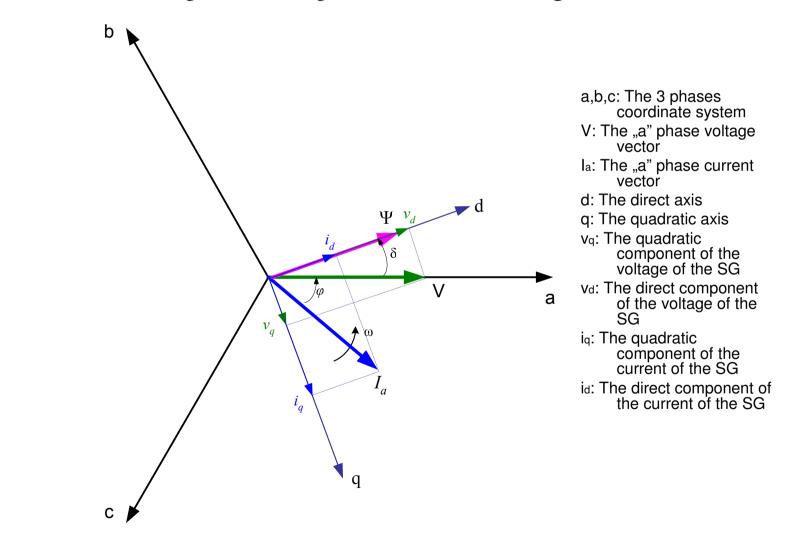
- There is no joint effective and reactive power control in the Paks NPP
- The reactive depends on the control effective power



Classic types of the rotating machine controls



Vector control for a Synchronous Generator



The Flux Equations of the SG

The equations in natural coordinate system

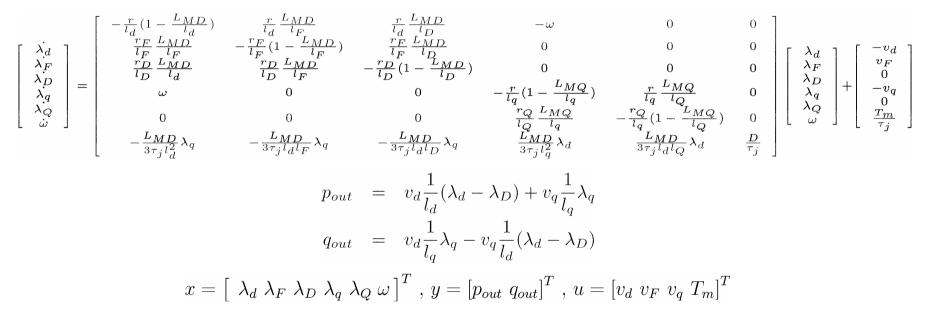
$\begin{bmatrix} \lambda_a \end{bmatrix}$	=	L_{aa}	L_{ab}	L_{ac}	L_{aF}	L_{aD}	L_{aQ}	$\begin{bmatrix} 1_a \end{bmatrix}$
λ_b		L_{ba}	L_{bb}	L_{bc}	L_{bF}	L_{bD}	L_{bQ}	1_b
λ_c		L_{ca}	L_{cb}	L_{cc}	L_{cF}	L_{cD}	L_{cQ}	1_{C}
λ_F		L_{Fa}	L_{Fb}	L_{Fc}	L_{FF}	L_{FD}	$\begin{array}{c} L_{cQ} \\ L_{FQ} \end{array}$	1_F
λ_D		L_{Da}	L_{Db}	L_{Dc}	L_{DF}	L_{DD}	L_{DQ}	1_D
$\left\lfloor \lambda_Q \right\rfloor$		L_{Qa}	L_{Qb}	L_{Qc}	L_{QF}	L_{QD}	L_{QQ}	$\lfloor 1_Q \rfloor$

The equations in d-q coordinate system

λ_0		$\int L_0$	0	0	0	0	0]	1 ₀
λ_d		0	L_d	0	kM_F	kM_D	0		1_d
λ_q		0	0	L_q	0	0	kM_Q		1_{q}
λ_F		0	kM_F	0	L_F	M_R	0		1_F
λ_D		0	kM_D	0	M_R	L_D	0		1_D
λ_Q		0	0	kM_Q	0	0	L_Q		1_Q

State-Space model of the SG

The nonlinear state-space model of the SG

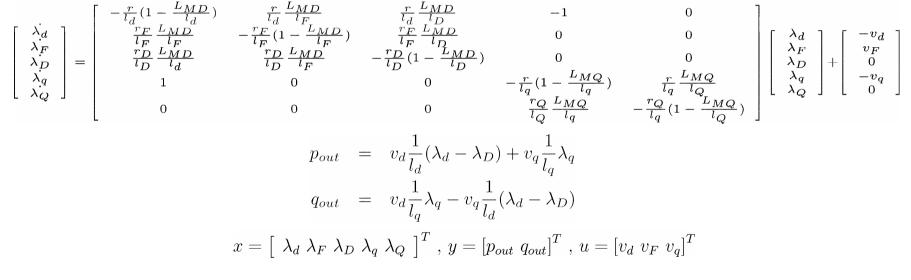


The steady-state values (in p.u. units)

 $\lambda_d = 1.345, \ \lambda_q = 1.934, \ \lambda_F = 1.633, \ \lambda_D = 1.094, \ \lambda_Q = 0.994$

Simplified State-Space Model and Stability Analysis

• The bilinear state-space model of the SG ($\dot{\omega} = 0$)



The eigenvalues of the model (Linear State-Space Eq.)

$$\lambda_{1} = -5.686 \cdot 10^{-3} + i0.999 \qquad \lambda_{4} = -0.117$$

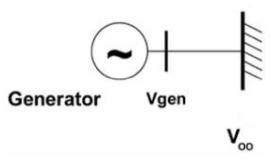
$$\lambda_{2} = -5.687 \cdot 10^{-3} - i0.999 \qquad \lambda_{5} = -3.061 \cdot 10^{-3}$$

$$\lambda_{3} = -0.313$$

Asymptotically stable, near the boundary, oscillating

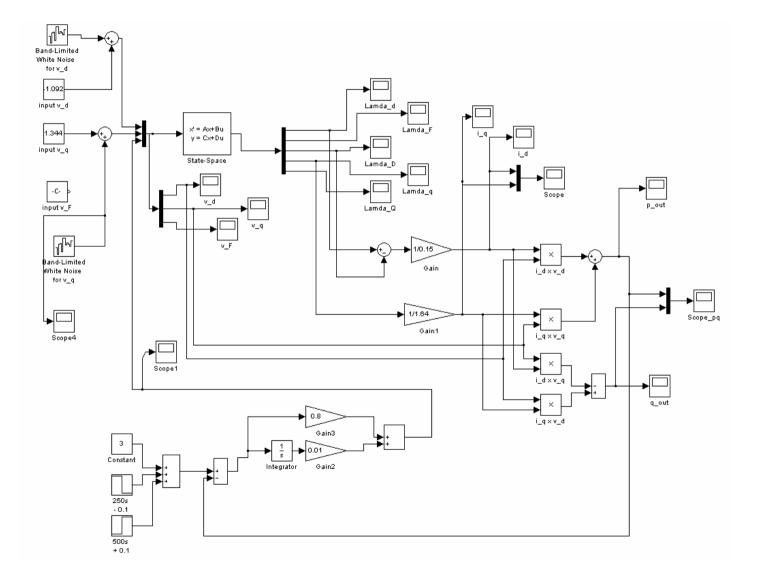
The simulated controller

The SG is connected to an infinite electrical network

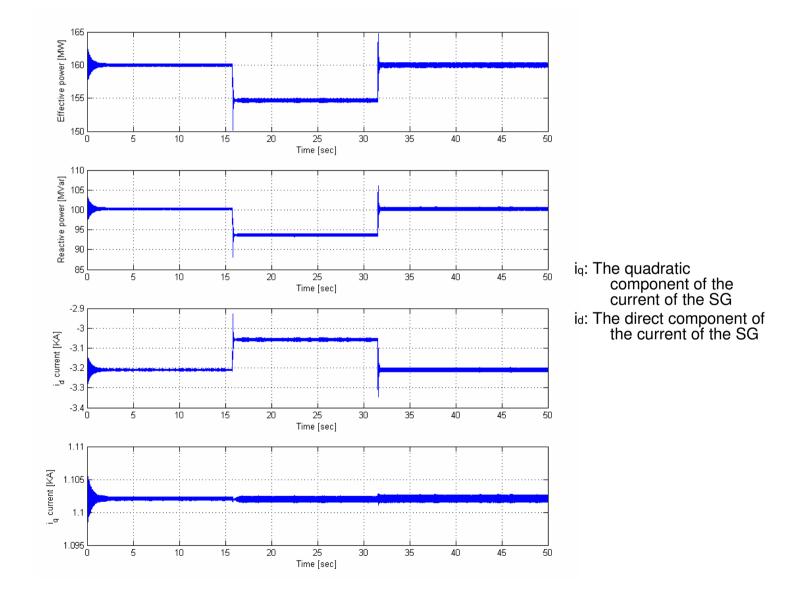


- Currently simulated controller (presently controlled case)
 - \Box PI controller (P=0.8, I=100)
 - □ Controlled value: effective power (pout)
 - \Box Manipulated value: the exciter voltage (v_F)
- Generator parameters
 - P.M. Anderson and A.A. Fouad: Power-Systems-Control and Stability, The IOWA State University Press, Ames Iowa, 1977.

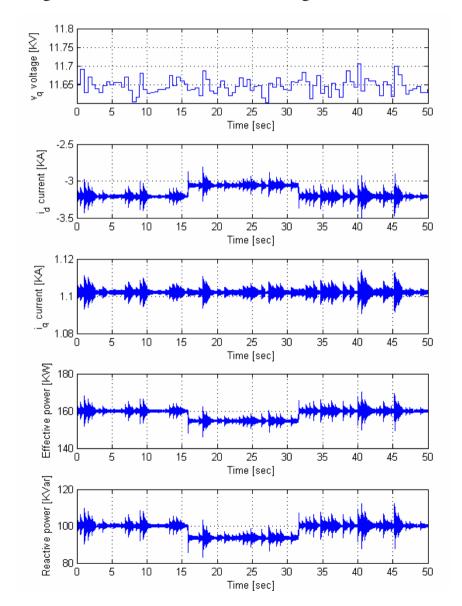
Changing the Effective Power of the SG



Changing the Effective Power of the SG



The effect of Disturbances from the Network



Vq: The quadratic component of the voltage of the electrical network iq: The quadratic component of the current of the SG id: The direct component of the current of the SG

Conclusion and Future work

Conclusion

- Modeling of the SG based on engineering principles
- □ A linear-bilinear state-space model is constructed for the SG
- The model of the SG is implemented in MATLAB/Simulink
- The set-point tracking at disturbance rejective properties were investigated by simulation

Future work:

- Model parameter estimation
- Controller design
 - Linear(ised) case
 - Non-linear case