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The problem of recursive state estimation of discrete-timestochastic dynamic systems from noisy or in-
complete measurement data has been a subject of considerable research interest for the last several decades.

The general solution of the estimation problem, based on Bayesian approach, is given by the Func-
tional Recursive Relations (FRR’s) for computation of probability density functions (pdf’s) of the state
conditioned by the measurements. These pdf’s provide a fulldescription of the immeasurable state. The
FRR’s are known for all three parts of the estimation problemwhich can be distinguished, according to
relation between time instant of the estimated state and time instant of the last measurement, to prediction,
filtering, and smoothing.

The closed form solution of the FRR’s is available only for a few special cases [1, 2], e.g. for linear
Gaussian system, where the solution of the filtering problemis given by the well-known Kalman Filter. As
a solution of smoothing problem, the Rauch-Tung-Striebel Smoother [1, 3] can be used. The alternative
approach for smoothing is based on the doubling of the state dimension and on the utilisation of common
filtering techniques [4, 5]. The multi-step prediction can be imagined as a multiply application of the one-
step prediction known from the filtering algorithm [3, 5]. Inother cases it is necessary to apply some
approximative methods.

The local methods are often based on approximation of the nonlinear functions in the state or measure-
ment equation so that the Kalman technique can be used for theFRR’s solution. This approach causes that
all conditional pdf’s of the state estimate are given by the first two moments, i.e. mean value and covariance
matrix. This rough approximation of the a posteriori estimates induces local validity of the state estimates
and consequently impossibility to ensure the convergence of the local filter estimates. Moreover, resulting
estimates of the local filters are suitable mainly for point estimates. On the other hand, the advantage of
the local methods can be found in the relative simplicity of the FRR’s solution.

The standard local nonlinear filtering methods are based on the approximation of nonlinear functions
in the state or the measurement equation with the Taylor expansion. The FRR’s solution based on the
Taylor expansion first order approximation leads to the Extended Kalman Filter or to the Iterated Kalman
Filter [1]. Generally, the more exact Second Order Filter [6, 7] utilises the Taylor expansion second order
approximation. The Taylor expansion first order can be used to design of the extended Rauch-Tung-Striebel
Smoother and the multi-step predictor as well [3].

In the last decade the novel approaches to the local filter design, based on the polynomial interpola-
tion [8–11] or on the unscented transformation [9–13], havebeen published. The approximation of the
nonlinear functions by means of the Stirling’s polynomial interpolation first or second order leads to the
Divide Difference Filters 1st order or to the Divided Difference Filter 2nd order, respectively, which are
usually called as the Divided Difference Filters [8]. Instead of direct substitution of the nonlinear functions
in the system description an approximation of the “already approximated”pdf’s representing state estimate
by a set of deterministically chosen weighted points (so called σ -points) can be utilised as a base for the
local filters. This transformation is often called as the unscented transformation. The Unscented Kalman
Filter [10, 12, 14] or the Gauss-Hermite Filter [9] exemplify this approach. The smoothing local methods
utilising the Stirling’s interpolation and unscented transformation was very briefly outlined in [15] and
properly derived in [5]. Similarly to the standard local approaches the multi-step prediction is realised by
the multiply application of the one-step prediction known from the filtering algorithm [5]. It is very impor-
tant to mention that the estimators based on the unscented transformation and the Stirling’s interpolation
have common features although the basic idea of these estimators comes out from quite different assump-
tions [8, 11, 16]. Therefore, these local filters can be called together as the sigma point Kalman estimators
or the derivative-free Kalman estimators.

The numerical properties of the derivative-free local filters have been discussed in the several papers.
For example the Divided Difference Filters have been directly designed in the square-root form [8] and
although the Unscented Kalman Filter was originally derived in the “nonsquare-root” form, its square-root
versions have been subsequently derived in [10, 14]. However, the poor attention has been paid to the
numerical properties of the novel derivative-free smoothers [5].
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Therefore, in the paper the novel square-root smoothing algorithms, which are based on the unscented
transformation and the Stirling’s interpolation, are introduced. This modification improves not only numer-
ical properties of the smoothing algorithms, but it slightly reduces their computational demands as well.
Finally, the theoretical results are illustrated in a numerical example.
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[11] J. Dunı́k, M.Šimandl, O. Straka, and L. Král, “Performance analysis of derivative-free filters,” inPro-
ceedings of the 44th IEEE Conference on Decision and Control, and European Control Conference
ECC’05, no. ISBN: 0-7803-9568-9, ISSN: 0191-2216, Seville, Spain, 11 2005, pp. 1941–1946.

[12] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-White, “A new method for the nonlinear transformation
of means and covariances in filters and estimators,”IEEE Transactions On Automatic Control, vol. 45,
no. 3, pp. 477–482, 2000.

[13] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,”IEEE review, vol. 92,
no. 3, pp. 401–421, 2004.
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