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The problem of recursive state estimation of discrete-8toehastic dynamic systems from noisy or in-
complete measurement data has been a subject of cons&lerabarch interest for the last several decades.

The general solution of the estimation problem, based ore&ap approach, is given by the Func-
tional Recursive Relations (FRR’s) for computation of bitity density functions (pdf's) of the state
conditioned by the measurements. These pdf’s provide aé&gtription of the immeasurable state. The
FRR'’s are known for all three parts of the estimation problenich can be distinguished, according to
relation between time instant of the estimated state anglitistant of the last measurement, to prediction,
filtering, and smoothing.

The closed form solution of the FRR’s is available only foravfspecial cases [1, 2], e.g. for linear
Gaussian system, where the solution of the filtering prolidegiven by the well-known Kalman Filter. As
a solution of smoothing problem, the Rauch-Tung-Strielmeb&ther [1, 3] can be used. The alternative
approach for smoothing is based on the doubling of the statertsion and on the utilisation of common
filtering techniques [4, 5]. The multi-step prediction canitmagined as a multiply application of the one-
step prediction known from the filtering algorithm [3,5]. &ither cases it is necessary to apply some
approximative methods.

The local methods are often based on approximation of théream functions in the state or measure-
ment equation so that the Kalman technique can be used f&RRés solution. This approach causes that
all conditional pdf’s of the state estimate are given by tra fivo moments, i.e. mean value and covariance
matrix. This rough approximation of the a posteriori estissanduces local validity of the state estimates
and consequently impossibility to ensure the convergehtteedocal filter estimates. Moreover, resulting
estimates of the local filters are suitable mainly for postireates. On the other hand, the advantage of
the local methods can be found in the relative simplicityhef FRR’s solution.

The standard local nonlinear filtering methods are baseti®@@approximation of nonlinear functions
in the state or the measurement equation with the Taylorresipa. The FRR’s solution based on the
Taylor expansion first order approximation leads to the Bokéel Kalman Filter or to the Iterated Kalman
Filter [1]. Generally, the more exact Second Order Filte7]@utilises the Taylor expansion second order
approximation. The Taylor expansion first order can be useésign of the extended Rauch-Tung-Striebel
Smoother and the multi-step predictor as well [3].

In the last decade the novel approaches to the local filtegdebased on the polynomial interpola-
tion [8-11] or on the unscented transformation [9-13], haeen published. The approximation of the
nonlinear functions by means of the Stirling’s polynomigkirpolation first or second order leads to the
Divide Difference Filters 1st order or to the Divided Difésrce Filter 2nd order, respectively, which are
usually called as the Divided Difference Filters [8]. Iresfleof direct substitution of the nonlinear functions
in the system description an approximation of the “alregayraximated”pdf’s representing state estimate
by a set of deterministically chosen weighted points (séedat-points) can be utilised as a base for the
local filters. This transformation is often called as theagméed transformation. The Unscented Kalman
Filter [10, 12, 14] or the Gauss-Hermite Filter [9] exemyplifiis approach. The smoothing local methods
utilising the Stirling’s interpolation and unscented stormation was very briefly outlined in [15] and
properly derived in [5]. Similarly to the standard local apgches the multi-step prediction is realised by
the multiply application of the one-step prediction knowanf the filtering algorithm [5]. It is very impor-
tant to mention that the estimators based on the unsceresférmation and the Stirling’s interpolation
have common features although the basic idea of these ¢stBr@mes out from quite different assump-
tions [8,11, 16]. Therefore, these local filters can be dalgether as the sigma point Kalman estimators
or the derivative-free Kalman estimators.

The numerical properties of the derivative-free local fitbave been discussed in the several papers.
For example the Divided Difference Filters have been diyed¢signed in the square-root form [8] and
although the Unscented Kalman Filter was originally detiirethe “nonsquare-root” form, its square-root
versions have been subsequently derived in [10, 14]. Hoxyvélve poor attention has been paid to the
numerical properties of the novel derivative-free smorslijig].
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Therefore, in the paper the novel square-root smoothingyifgns, which are based on the unscented
transformation and the Stirling’s interpolation, are @tnced. This modification improves not only numer-
ical properties of the smoothing algorithms, but it slighttduces their computational demands as well.
Finally, the theoretical results are illustrated in a nuicarexample.
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