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State estimation is an important subtask of a range decision making problems. Kalman filtering (KF)
[1] is the first-option method for its addressing. However, still there is no well-established methodology
of selecting innovation covariances. Also, it is difficult to combine KF with hard restrictions on state
ranges. Both these drawbacks can be avoided by assuming that the model innovations are uniform.

In this contribution, state-space model with uniformly distributed innovations is introduced and the
Bayesian state estimation proposed, [2]. This extends parameter estimation of the controlled autore-
gressive model treated in [3]. Similarly as in the latter case, the off-line evaluation of the maximum a
posteriori probability (MAP) estimate of unknowns in the linear state-space model with uniform innova-
tions reduces to linear programming (LP). The solution provides either estimates of the noise boundary
and parameters or of the noise boundary and states.

The on-line estimation is obtained by applying LP on the sliding window, i.e., by considering only the
fixed amount, say 0 < ∂, of the newest last data and states items.

By swapping between state and parameter estimations, joint parameter and state estimation is ob-
tained. The use of Taylor expansion for approximation of products of unknowns solves also the joint
parameter and state estimation. Simulation studies help to get an insight on the potential and restric-
tions of these heuristic method. This contribution shares the experimentally gained experience with both
these solutions of the joint state and parameter estimation.

Problem formalization We consider the standard linear state-space model

xt = Axt−1 + But + xet, yt = Cxt + Dut + yet, (1)

known in connection with from Kalman filtering theory. In it, x, u, y are unobserved state, known
input and observed output of the system, respectively. They are real column vectors. The subscript
t ∈ {0, 1, 2, . . .} labels discrete time. The involved time-invariant matrices A, B, C, D have appropriate
dimensions. Unlike in the KF case, the distributions of vector innovations xet and yet are assumed to be
uniform

f ( xet) = U (0, xr) , f ( yet) = U (0, yr) . (2)

U (µ, xr) denotes uniform probability density function (pdf) on the box with the center µ and half-width
of the support interval xr. The model parameters A,B,C, D are collected into parameters Θ. Equations
(1) together with the assumptions (2) define the linear uniform state-space model (LU).
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We assume that the generator of the inputs u1:t ≡ [u′t, . . . , u
′
1]
′ meets natural conditions of control

[2]. They formalize assumption that information about unknown quantities for generating ut can only be
extracted from the observed data d1:t−1, where dt = (yt, ut). Then, for a given initial state x0, half-widths
xr, yr and parameters Θ, the joint pdf of data and the state trajectory x1:t of the LU model is

f
(
d1:t, x1:t

∣∣x0,
xr, yr, Θ

)
∝

n∏
i=1

xr−t
i

m∏
j=1

yr−t
j χ(S). (3)

χ(S) is the indicator of the support S; ∝ denotes equality up to a constant factor. The convex set S is
given by inequalities, τ = 1, 2, . . . , t,

− xr ≤ xτ −Axτ−1 −Buτ ≤ xr (4)
− yr ≤ yτ − Cxτ −Duτ ≤ yr.

The adopted Bayesian estimation needs to complement conditional pdf (3) by a prior pdf f (x0,
xr, yr|Θ)

defined as uniform pdf on support given by the initial condition.

If the inequalities (4) are linear in the unknowns and xr < 1, yr < 1, then the MAP estimation is
equivalent to the problem of LP. We can run either noise boundary and state estimation (parameters Θ are
supposed to be known) or noise boundary and parameters estimation (known states x1:t are supposed).

In the case that both parameter and states are unknown, the joint parameters and state estimation
is to be performed. Two approaches for the joint parameter and state estimation are considered.

The first one is based on the idea of swapping between the parameter and state estimation. It means
that the state x1:t is estimated with parameters Θ fixed at their last point estimates. The resulting
estimates of states, x̂t−∂:t are subsequently used to obtain new estimates of the parameters Θ. Initial
values of the estimates are prepared in off-line mode.

The second one linearizes non-linear expressions at the newest point estimates. This common idea
is used in various extensions of KF, see e.g. [1]. When the expressions occurring in inequalities (4) are
approximated by the first order Taylor expansion linear inequalities are obtained. Thus it suffices to
transform them into the standard form of LP and joint parameter and state estimation is gained.

Concluding remarks The proposed approach opens a way for on-line parameter and state estimation
for a class of non-uniform distributions with restricted support as well as for Bayesian filtering of non-
linear systems.

The main current contributions include feasible care about hard bounds of estimated quantities; joint
estimation of parameters, state, and noise bounds; parameter tracking via windowing the joint estimation.
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