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Abstract: The paper deals with the design of discrete adaptive model-based predictive 
control for simple mechatronic systems. Simple mechatronic systems are considered 
as Single-Input/Single-Output systems or possibly systems with low number of inputs 
and outputs. However, the methods of adaptation and model-based control are not ge-
nerally limited to this condition. In the paper, a combination of on-line identification 
and generalized predictive control will be introduced. The identification is based on least 
squares. The predictive control arises from state-space formulation. This idea is applied 
to ARX models representing Input/Output formulation. The presented algorithms are 
derived in computationally suitable square-root form and their correctness is documented 
by tests on laboratory models. 
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1. INTRODUCTION 

With steady growth of production, there is a necessity to develop different ways of the control 
of individual components included in the production process. The components usually 
combine some mechanical elements (mechanisms) and elements, mostly electrical, which 
power (actuators – drive units), monitor (sensors) or control (control units) the component 
state itself; i.e. altogether, it represents combination of mechanics and electronics, in single 
word – mechatronics. 

The main purpose of the control often consists in fulfillment of some predetermined motion 
or in stabilization. The question is: ‘How to achieve such purpose?’. One of the possibilities, 
being at the beginning of industrial application, is approach based on model-based control 
strategies (Belda, 2005). These strategies offer complex solution on global level of whole 
controlled system and not only of its individual elements. In this paper, as a powerful way, 
the predictive control is presented (Ordis, 1993; Maciejowski, 2002). The main stress is laid 
on obtaining of suitable model and its on-line use (adaptation) within control design. 

The explanation is intended for simple mechatronic systems, which are considered as Single-
Input/Single-Output type or possibly the systems with low number of inputs and outputs. 
However, the methods of adaptation and model-based control are not generally limited to this 
condition. 



2. MODEL DEFINITION 

The model, description of a controlled system, represents very important part, which includes 
specifically processed information for design of control actions. The best results of control 
process are achieved, when the model is obtained on the basis of thoroughgoing mathematical 
and physical analysis. It is often difficult. Therefore, different ways, how to obtain the model 
describing the controlled system, are investigated. 

Selection of model form is determined by used model-based control, in which the model is 
involved. Due to digital character of automating devices, the discrete control techniques are 
preferred. Therefore, the resultant models for control design are also discrete in spite of the 
facts that controlled system may be continuous. Discrete realization is advantageous, because 
naturally respects finite and predefined time for computation of control actions. 

As was mentioned in introduction, the design of algorithms of predictive control will arise 
from state-space formulation. However, only this idea will be used as inspiration for utili-
zation of ARX models, which are Input/Output type. Thus, let us proceed from autoregressive 
model with external input (ARX model) (Bobál, 2005) 
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where n  is order of controlled system; )(⋅y  and )(⋅u  are values of its output and input; and 
)(ke  is error, respective, some noise of measurement of system output ).(ky  The ARX model 

can be also written in the following condensed form 
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The ARX model will be used for construction of equations of predictions (subsection 4.2) 
and its condensed form is suitable for identification by least squares (section 3). 

3. IDENTIFICATION 

The sufficient and well known method of identification is method of least squares 
(Söderström, 1989). In this paper will be briefly summed up in square-root form (Bobál, 
2005). Let us consider ARX model, where )(ke  represents in view of least squares model 
error expressed as follows: 

kkkyke fϑ−= )()(  

On the assumption, that the parameters are close to constants or they are varied only slightly 
during real control process, then it is possible to write necessary number of equations 
with changeless vector of parameters kϑ  
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where kF  is a matrix of past data, composed from data vectors niT
ik 2,,1,1 L=+−f . 



The criterion for identification is 

k
T
kkJ ee= , i.e. alternatively ⎥

⎦

⎤
⎢
⎣

⎡−
⎥
⎦

⎤
⎢
⎣

⎡−=

1

][]1[ T
kkk

T
k

T
kkkJ ϑϑ yF

y
F  

To minimize the criterion, it is sufficient to minimize only its square-root J  following from 
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The computationally effective minimization is provided by orthogonal-triangular decom-
position (e.g. house-holder algorithm (Golub, 1989)) which transforms extended matrix 

][ kk yF  to upper triangular matrix ⎥⎦
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This matrix consists of sub-matrices partly corresponding to the unknown parameters kϑ  
and partly to square-root of loss of the criterion lc . By considering sub-matrices related 
to unknown parameters, the following equation is obtained 

0RR =+− PR
T
kPPϑ  

from which, the parameters can be determined by backward substitution (due to triangular 
form of matrix PPR ). This process is provided on-line in each time step with connecting 
refreshed data kf  and )(ky  to current triangular matrix R , which is again restored to new 
upper triangular matrix R . 

4. ALGORITHM OF PREDICTIVE CONTROL 

Predictive control is a multi-step approach, combining feedforward and feedback control 
design (Ordis, 1993). Feedforward is represented by predictions based on mathematical 
model. This part is dominant component of control actions. Feedback from measured outputs 
serves for compensation of some bounded model inaccuracies and low external disturbances. 

The design consists in local minimization of quadratic criterion, in which the predictions 
of future outputs )(⋅y  are involved. The predictions are determined from specific equations 
of predictions forming the basis of predictive control. The minimization is repeated in each 
time step. 

4.1 Model reorganization 

To compose equations of predictions from available ARX model (defined in sections 2 & 3), 
there are several possibilities how to do it. One of the possibilities is to express the equations 
directly from ARX model. It is possible according to (Maciejowski, 2002), however such way 
requires solution of Diofantic equation and storing previous values of inputs and outputs 
as in ‘pseudo state-space’ possibilities. These further possibilities are generally called as state-
space forms with non-minimal state. They will be helpful for the use of idea of state-space 
formulation in predictive control, in which the forming of needed equations of predictions 
consists in repetitive insertion of state-space model. 



The suitable model form arisen from described ARX model can be structured as follows: 
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This state-space model is equivalent to the usual state-space model. It has two pseudo 
state-space matrices A  and 0B  with similar dimensions as in the usual model. 

4.2 Equations of predictions 

Principle of the equations is an expression (prediction) of future values of outputs y  from current 
measured state )(kX  (Ordis, 1993). Considering the pseudo state-space model, the equations 
of predictions can be composed as follows 
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and appropriate matrix notation is 
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Such composed equations of predictions have the same dimension as the equations, which are 
based on state-space model with minimal state. 



4.3 Computation of control actions 

The control actions are obtained by minimization of quadratic criterion 
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where N , No  and Nu  are horizons; yQ  and uQ  are penalizations; and )( jkw +  are desired 
values. Using effective square-root algorithm, the vector u  is obtained. It represents control 
actions for whole horizon N . From it, only the first appropriate actions are really applied 
to the controlled system. This process is repeated in every time step. 

5. TESTS WITH MODEL ‘BALL ON ROD’ 

For real-time tests, simple laboratory model (Fig. 1) was used. From mathematical-physical 
analysis, this model represents system of fourth order: electrical motor is second order 
and the ball dynamics is expressed also by second order. The fast motor dynamics can be 
omitted, and only ball dynamics of second-order can be considered. 

 

Fig. 1. Laboratory model ‘ball on rod’. 

The tests were realized in MATLAB-Simulink environment. The predictive controller 
and algorithm of identification were implemented in Simulink blocks; see schemes in Fig. 2 
and in Fig. 3. The presented predictive control was partly tested in adaptive mode (Fig. 2). 
For comparison, the control was also tested in non-adaptive mode with constant model 
from mathematical-physical analysis (Fig. 3). The aim of the tests was stabilization of the ball 
in different positions y  of desired rectangular signal w . 

  
Fig. 2. Simulink scheme and time histories of adaptive predictive control. 



  

Fig. 3. Simulink scheme and time histories of predictive control 
with mathematical-physical model. 

The control process with model identification required relatively energetic control actions 
for induction of the identification. It is achieved by penalization uQ , which was smaller, than 
in case of using physical model. Therefore the actions were quite jittered. 

The tests show successful realization of predictive control both non-adaptive and adaptive. 
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