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Veszpŕem, Hungary

2 Continental Teves Hungary Ltd., H-8201 Veszprém, Hungary
3 Systems and Control Laboratory, Computer and Automation Research

Institute, H-1518 Budapest P.O. Box 63, Hungary

Abstract: An iterative method for estimationg the stability region by constructing a se-
quence of Lyapunov functions is analyzed and improved in this paper. Vanelli and Vidyasagar
proved that there exists a sequence of special kind of Lyapunov functionsVm that can be
used to estimate the domain of attraction (DOA) for an asymptoticaly stable equilibria.
Based on this idea a corrected proof is given and the iterative method has been imple-
mented in a Mathematica-package to find the appropriate approximating functionsVm.
The use and the properties of the method is illustrated on three simple examples.
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1. INTRODUCTION

The stability and the stability region of (controlled) industrial systems are important properties
to be determined. The reason for that is that it is highly desirable to have a system which
is globally stable; that is why stability theory is continuously in the focus of both theoretical
researchers and industrial partitioners.

A substantial part of the different methods described in theliterature is based on the classical
results of Lefschetz and La Salle using a suitably chosen Lyapunov function, see for example
(Chesi, 2005), (Camilliet al., 2000), (Kasliket al., n.d.), (Vanelli and Vidyasagar, 1985) and
(Yoshizawa, 1966). The subject of this paper is to use the idea of Vanelli and Vidyasagar
(Vanelli and Vidyasagar, 1985) to develop a practically useful algorithm to estimate the stability
region (or domain of attraction, DOA) of autonomous nonlinear systems by improving the
original method.

In the following we will consider the nonlinear autonomous system centered such that the origin
is its asymptotically stable equilibrium point:

ẋ(t) = f(x(t)) (1)

By the region or domain of attractionS(M) of the setM (which need not to be an attractor)
we mean the union of all trajectories with the property that their limit sets are non-empty and



contained byM itself. Based on this composition we can define the domain of attraction of the
origin as a set having only one element. Thedomain of attraction of the originis the set

S(0) = {x0 : x(t, x0) → 0 as t → ∞}

wherex(t, x0) denotes the solution of the system in (1) corresponding to the initial condition
x(0) = x0.

In this paper it is shown by following the ideas of (Vanelli and Vidyasagar, 1985) that there
exists a sequence of special kind of Lyapunov functionsVm that can be used to estimate the
setS(0) through estimating a Lyapunov function of special kind. An iterative method will be
given to find these appropriate functionsVm. The given algorithm is able to find unbounded
domains of attraction, too. Usually, the first few number of iterations can show if the domain is
bounded or not. Throughout the paper it is assumed that the functionf is smooth enough that
(1) has unique solution corresponding to each initial condition x(0) = x0.

2. MAXIMAL LYAPUNOV FUNCTIONS

The proofs of the statements in this section can be found in (Vanelli and Vidyasagar, 1985).

Theorem 2.1.Suppose we can find a setA ⊆ R
n containing the origin in its interior, a contin-

uous functionV : A → R+ and a positive definite functionφ such that

1. V (0) = 0, V (x) > 0∀x ∈ A \ {0}

2. The functionV̇ (x0) = lim
t→0+

V (x(t,x0))−V (x0)
t

is well defined at allx ∈ A and satisfies

V̇ (x) = −φ(x),∀x ∈ A.

3. V (x) → ∞ asx → ∂A and/or‖x‖ → ∞.

ThenA = S.

SupposeV is a continuous function on some ballBδ such thatV (0) = 0 and V̇ is negative
definite. Then one could prove thatV is positive definite. This fact shows that if we can find
a functionV and a positive definite functionφ such thatV (0) = 0 and∇V (x)′f(x) = −φ(x)
thenV is guaranteed to be positive definite.

Definition 2.2. A functionVm : R
n → R+ ∪ {∞} is called maximal Lyapunov function for the

system described in (1) if

1. Vm(0) = 0, Vm(x) > 0, x ∈ S\{0}

2. Vm(x) < ∞ ⇔ x ∈ S

3. Vm(x) → ∞ asx → ∂S and/or‖x‖ → ∞

4. V̇m is well-defined and negative definite overS.



3. COMPUTATION OF THE DOMAIN OF ATTRACTION (DOA)

We need a functionV and a positive definite functionφ satisfyingV (0) = 0 and

V̇ (x) = −φ(x) (2)

over some neighborhood of the origin. Then the boundary of the domain of attraction is defined
by the limitV (x) → ∞.

A systematic procedure will be described and discussed hereto solve (2) supposing that the
Taylor series expansion exists forf around the origin. Expressf as

f(x) =
∞
∑

i=1

Fi(x)

where the functionsFi, i ≥ 1 are homogeneous functions of degreei. For i = 1 we have

F1(x) = Ax, A ∈ R
n×n.

For the sake of brevity letFi(x) = 0, i ≤ 0.

Our candidate Lyapunov function should excess any limit asx gets closer to the boundary of
setS or as‖x‖ → ∞. For this reason we put a functionD(x) to the denominator, i.e.

V (x) =
N(x)

D(x)

whereN(x) andD(x) are polynomials inx. Thus,V (x) → ∞ asx → ∂S and this suggests
thatx ∈ ∂S whenD(x) = 0. According to our results so far, the boundary ofS is defined by
solvingD(x) = 0 for x. We obtain a recursive technique to find this boundary by defining

V (x) =

∞
∑

i=2

Ri(x)

1 +
∞
∑

i=1

Qi(x)

whereRi andQi are homogeneous functions of degreei. The most straightforward idea forφ

is x′Qx whereQ > 0. Substituting this expression into (2) we obtain

V̇ (x) = ∇V (x)′f(x) = −φ(x) = −x′
Qx.

Based on these two equations we get
((

1 +
∞
∑

i=1

Qi

)

∞
∑

i=2

∇Ri
′ −

(

∞
∑

i=1

∇Qi
′

)

∞
∑

i=2

Ri

)

∞
∑

i=1

Fi = −x′Qx

(

1 +
∞
∑

i=1

Qi

)2

.

From this finally we obtain

∞
∑

i=2

∞
∑

k=1

∇Ri
′Fk +

∞
∑

i=1

∞
∑

j=2

∞
∑

k=1

Qi∇Rj
′Fk −

∞
∑

i=1

∞
∑

j=2

∞
∑

k=1

Qi
′RjFk =

− x′Qx

(

1 + 2
∞
∑

i=1

Qi +
∞
∑

i=1

∞
∑

j=1

QiQj

)

.



Equating the coefficients of the same degrees of the two sidesof this equality we get for degree
2 that

∇R2
′F1 = −x′Qx

and the general solution when degreek is greater than or equal to3 is

k
∑

i=2

∇Ri
′Fk+1−i +

k−2
∑

i=1

k−1
∑

j=2

(Qi∇Rj
′ −∇Qi

′Rj) Fk+1−i−j =

− x′Qx

(

2Qk−2 +
k−3
∑

i=1

QiQk−2−i

)

.

Thus in each step of the algorithm we get the followinglinear under-determined set of equa-
tionsas the equivalent form of the previous two equations:

An · y = bn (3)

whereAn are matrices of appropriate dimension. Consider the nonlinear system of equations

ẋ = f(x) =
∞
∑

i=i

Fi(x). (4)

First, select homogeneous functionsRn andQn−2, n ≥ 3, such that the coefficients ofRn and
Qn solve the constrained minimization problem yielded by (3)

min en(y)
s.t.An · y = bn

(5)

whereen(y) is the square of 2-norm of the coefficients of degree greater than or equal ton + 1
in the expression oḟVn. Furthermore, according to the theorem of La-Salle about invariant sets
one can choose the largest positive valueC∗ such that the level set

Vn =

n
∑

i=2

Ri

1 +
n−2
∑

i=1

Qi

= C∗

is contained in the region given by

Ω =
{

x : V̇n(x) ≤ 0
}

.

Then the set
SA = {x : Vn(x) < C∗} (6)

is contained in the region of attractionS. If this is the case then the iteration should be stopped
as soon as the desired accuracy has been reached.

If en(y∗) = 0 for somey∗ then the iteration can be stopped and

V̇n = −x′
Qx

whereQ > 0. In this case the domain of attraction is defined byD(x) = 0. This means that
the domain of attractionS is given by the formula

S =

{

x :
n−2
∑

i=1

Qi > −1

}

. (7)

Would any of the afore-mentioned cases happen for the major part of the systems, the iteration
usually stops in less then 10 cycles.
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Figure 1: DOA of the Van der Pole system

4. CASE STUDIES

In this section three examples will be shown. In the first and second examples the minimization
problem in (5) cannot be solved such thate(n) becomes small enough that we could apply
(7). Instead, (6) is used for the estimation of the domain of attraction. In the last example the
minimization problem can be solved and one can use (7) to get aproper region.

In the picture showing the level sets figure 1(a) the red colour curve showsV = C∗ while the
blue one shows those points whereV̇ = 0.

4.1 Van der Pole-equation

The Van der Pole system we took as example is described with the equation-system

ż1 = −z2

ż2 = z1 − z2 + z1
2z2

The origin is an asymptotically stable equilibrium point ofthe system thus the method based
on maximal Lyapunov functions can be used in this case. Applying the iteration steps 9 times
we getC∗ = 6.6 and the the minimum value ofe(n) was found to be0.0168945. The stability
region is the innermost area bounded by the red colored curvein figure 1(a). We stopped the
iteration at step 9 because further steps could not increasethe minimum significantly.

To verify the given region we used a direct method by scanningthe points over the region
[−3,−3]× [−3,−3] and examining if the system remains stable or not. The resulted set can be
seen in figure 1(b). We can ascertain that the regions found bythe two different methods are
pretty the same.



-1 -0.5 0.5 1

-1

-0.5

0.5

1

(a) DOA by the algorithm of Vanelli and
Vidyasagar

-1 -0.5 0. 0.5 1.
-1.5

-0.9

-0.3

0.3

0.9

1.5

-1 -0.5 0. 0.5 1.

-1.5

-0.9

-0.3

0.3

0.9

1.5

(b) DOA by direct scanning of the domain

Figure 2: DOA of the Lotka-Volterra system

4.2 Lotka-Volterra

In this example we take a Lotka-Volterra system described bythe equations

ż1 = −z1

(

(z1 − 1) (z1 − 3) +
1

2
z2

)

ż2 = z2 (−2.1 + z1)

Both the origin and point(2.1, 1.98) both are equilibria of the system. By shifting the second
equilibrium to the origin we get the following centralized system

ẋ1 = −0.42x1 − 2.3x1
2 − x1

3 − 1.05x2 −
1

2
x1x2

ẋ2 = 1.98x1 + x1x2

Similarly to the previous case after 6 steps we getC∗ = 1.65 and the minimum ofe(n) is
2915.040375. See the region in figure 2(a) bounded by the inner red curve.

By scanning the points over the region[−1, 1.5]× [−1.5, 1.5] we find that the region estimated
by the Vanelli-method is a subset of the one we found by directsearch, see figure 2(b).

4.3 Fermentation system

In this example we show a simple model of a fermentation system (Szederḱenyi et al., 2002)
described by the equations

ż1 = −0.802228z1 +
z1z2

0.03 + z2 + 0.5z2
2

ż2 = 0.802228 (10 − z2) −
z1z2

0.03 + z2 + 0.05z2
2



which has one asymptotically stable equilibrium point(4.89067, 0.218662). Shifting the sys-
tem by this point we get the transformed equation system

ẋ1 = −0.802228 (4.49067 + x1) +
2.13881 + 0.437324x1 + 9.79134x2 + 2x1x2

0.545137 + 2.43732x2 + x2
2

ẋ2 = 7.84686 − 0.802228x2 +
−4.27762 − 0.874648x1 − 19.5627x2 − 4x1x2

0.545137 + 2.43732x2 + x2
2

After 3 steps of iteration the minimization problem can be solved thate(n) becomes zero so
we can apply (7) and we get the region of stability as it is seenin figure 4.3. Note that the
given region is very small and it meets our expectations as itis described in (Szederkényi et
al., 2002).
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Figure 3: Stability region of the fermentation system

5. CONCLUSION AND FUTURE WORK

In this paper an improved algorithm based on constructing maximal Lyapunov functions (Vanelli
and Vidyasagar, 1985) is shown to estimate the DOA of nonlinear autonomous systems. The
advantage of this algorithm is that one does not have to know the solution of the system start-
ing form different initial values; only a minimization problem (a linear programming problem)
needs to be solved in each step of the recursive approximation procedure. Moreover, the appli-
cable system class is wider than that of the majority of available algorithms can handle (they
are mainly restricted to polynomial systems). And lastly, this algorithm is faster than Zubov’s
method as only about maximum ten steps are needed instead of afew times ten. In addition,
it is accurate enough that one could use it instead of the cumbersome (however more exact)
scanning approach.

A few problems arose during the analysis and implementationof the described algorithm, they
can be divided into two main area. One of them is the deeper investigation of the method
to find broader class of systems which can be analyzed, for example, the class of periodic
non-autonomous systems or the so-called partial stable systems (for definitions see (Rouche
et al., 1977)) are promising. An other important problem is to seekfor restrictive conditions
under which the number of iterations could be estimated.
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