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Abstract: One of the important parameters for tuning the response of a system in closed loop is the decay ratio. In this 

paper three tuning methods are compared: the DRMO tuning method [15,16], the KT tuning method [1] and the non-convex 

tuning method [3,17]. The latter method is based on setting the value of maximum sensitivity function Ms. The results have 

shown, that the DRMO method sets a closed-loop response such, that the decay ratio is within a relatively tight interval with 

regard to other two methods, despite the fact that the DRMO method isn’t based on optimization procedure (as is the case 

with non-convex method). 
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1. Introduction 

 

PID controllers are the most widely used controllers in the process industry. It has been acknowledged 

that more than 95% of the control loops used in the process control is of the PID type, of which most 

are the PI type [1]. 
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Today, the most often applied tuning rules for PID controllers are those based either on the 

measurement of process step response or on the detection of a particular point on the Nyquist curve of 

the process (usually one related to the ultimate magnitude and frequency of the process by using relay 

excitation).  

Apart from standard tuning rules, such as Ziegler-Nichols, Cohen-Coon, Chien-Hrones-Reswick, or 

refined Ziegler-Nichols rules, more sophisticated tuning approaches have been suggested. They are 

usually based on more demanding process identification algorithms or tuning procedures, like non-

convex optimization, gain and phase specification, IMC controller design, or identification of multiple 

points in frequency domain [3,4,5,6,7,8,17]. 

One of the frequent demands in the time domain when dealing with closed-loop regulation is, amongst 

other requirements, the closed-loop response decay ratio. In order to satisfy the prescribed decay ratio 

the closed-loop response has to be optimized in time domain which is a relatively demanding 

procedure. Some popular methods [3,17] tend to make use of an indirect approach that should 

guarantee acceptable decay ratios by optimizing the minimal distance of the open-loop transfer 

function to the critical point in the polar plot. The mentioned approaches result in stable closed-loop 

responses for different process models. However, the values of the decay ratios, despite being within 

acceptable range, may vary considerably. 

On the other hand, while using the disturbance rejection magnitude optimum (DRMO) tuning method 

[9,10,15,16,23], it came to our attention that the decay ratios have quite similar values for a diversity of 

process models. Furthermore, the DRMO method is relatively simple to apply since, in its basic form, it 

does not require any form of optimization (i.e. retuning). In this paper the DRMO method will be tested 

on some process models often encountered in process and chemical industry, decay ratios will be 

analyzed and compared with two other modern tuning methods based on frequency-domain 

optimization. 
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This paper is set out as follows. Section 2 provides some basic definitions. A study on uniformity of the 

decay ratios of the DRMO method is given in Section 3. Section 4 provides a comparison of the decay 

ratios obtained with the DRMO method and two other modern tuning methods [1,3,17]. Lastly, the 

conclusions are provided in Section 5. 

 

2. Basic definitions 

 

2.1 Decay Ratio 

 

In the time domain a noteworthy characteristic of a closed-loop response on a step input disturbance is 

its decay ratio, which is defined by the following relation: 

 
A
Bdr = , (1) 

where B is the difference between the second peak and the second valley of the closed-loop response 

and A is the difference between the first peak and the first valley, as depicted in Fig. 1 [22].  
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Fig. 1. Definition of decay ratio 
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2.2 Maximum Sensitivity 

 

Maximum sensitivity Ms is defined as an inverse of the minimum distance of the open-loop transfer 

function to the critical point (-1+0*j) in the polar plot: 
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where Gp(iω) and Gc(iω) are the process transfer function and the controller transfer function, 

respectively. 

 

2.3 Magnitude optimum method 
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Fig. 2. Typical closed-loop configuration with the 1DOF controller. 

Processu yControllerr e

d

 
 Fig. 14Fig. 2 shows the process in a closed-loop configuration with the controller, where signals r, u, 

d, y and e represent a reference, controller output, input disturbance, process output and control error, 
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respectively. One possible controller design objective is to maintain the closed-loop magnitude 

(amplitude) as flat and as close to unity over as wide frequency range as possible [10]. 

If we assume, that there is no input disturbance (d = 0), the transfer function between the reference and 

the process output is: 
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The controller is determined in such a way that 
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for as many k as possible [9,10,15]. This technique is variously called magnitude optimum (MO) [21], 

modulus optimum [1], or Betragsoptimum [9], and results in a fast and non-oscillatory closed-loop time 

response for a large class of process models [11,12,20]. 

Eq. (4) is simply fulfilled by using a controller structure containing the integral term1, because the 

steady-state control error is zero. The number of conditions in Eq. (5) that can be satisfied depends on 

controller order. For a PI controller: 

 







+=+=

i
P

i
PC sT

K
s

KKsG 11)( , (6) 

where KP, Ki, and Ti are respectively the proportional gain, the integral gain and the integral time 

constant, the MO method results in the following expressions for controller parameters [15]: 
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1 Under the condition that the closed-loop response is stable 
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If the process is described by the following transfer function: 
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where KPR is the static gain of the process, then the so called »characteristic areas« A0-A3  of the 

process can be defined as [12, 13, 15]: 
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Note that A0 equals the steady-state gain of the process. The name “characteristic areas” is associated 

with the fact that they can be calculated from nonparametric process model in time domain by changing 

the steady state of the process and performing multiple integrations on the process input (u) and output 

(y) signals [7, 12]. This procedure is relatively easy to perform in practice and does not require explicit 

identification of the process transfer function parameters. 

However, by using the original MO method, disturbance rejection is degraded when dealing with 

lower-order processes, since slow process poles might become almost entirely cancelled by controller 

zeros. This phenomenon is expected, since the MO method aims at achieving good reference tracking, 

so it optimizes the transfer function between the reference and the process output (r=1, d=0) 

GCL(s)=Y(s)/R(s) instead of  the transfer function between the input disturbance (r=0, d=1) and the 

process output GCLD(s)=Y(s)/D(s). Optimizing the latter would prove itself a fruitless attempt, since this 

transfer function is not compatible with MO criterion (4) as GCLD(0)=0. 
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The modification of MO criteria, hereafter denoted as the disturbance rejection magnitude optimum 

(DRMO), which has been previously proposed in [15], optimizes a modified transfer function between 

the input disturbance (r=0, d=1) and the process output: 
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This transfer function is then applied to equations (4) and (5) instead of the transfer function (3). For 

the PI controller structure the following expressions have been obtained [15]: 
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where ξ1 and ξ2 are  
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The proposed DRMO method is quite efficient in improving disturbance rejection performance, 

especially for lower-order processes. The sufficient stability conditions are given in [15,20]. 

 

3. Study of decay ratios for DRMO tuning method 

 

As previously mentioned, one possible criterion in time domain that determines the closed-loop 

systems time response, is the decay ratio. The aim of this chapter is to calculate the decay ratios for a 

wide batch of process models in a closed-loop configuration with a PI controller tuned by using the 

DRMO method. Anticipation is that the method in question gives decay ratios that are, in most cases, 

relatively similar for many different process models. The following batch of process models, covering 
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processes of lower and higher orders, processes with delay, non-minimum phase processes and 

processes with zeros in left half-plane, has been selected: 
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These process models were used in the closed-loop configuration (Fig. 2) with input step disturbance of 

magnitude 1 (d=1(t) in Fig.2). The calculated decay ratios (1) for all the process models are depicted in 

Fig. 3. 
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Fig. 3. Decay ratios for closed-loop systems with PI controller and processes GP1 to GP9 

 

Similar decay ratios (values between 0.017 and 0.024) can be observed for all the process models 

except the non-minimum phase process models. Some of the non-minimal phase processes (GP7) give 

noticeably lower decay ratios. The histogram of decay ratios is shown in Fig. 4. 
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Fig. 4. A histogram of the decay ratios for closed-loop systems with PI controller tuned with DRMO 

method 

 

4. Comparison with decay ratios of some other methods 

 

The DRMO tuning method was compared with two frequency domain tuning methods. Two of the 

more popular such tuning methods are the Ästrom and Hagglund (Kappa-Tau or KT) tuning method [1] 

and the non-convex tuning in frequency domain [3,17]. A short description of the mentioned tuning 

methods follows in the next two sub-sections. 

 

4.1 Kappa-Tau tuning method 

 

This method [1] basically leans on the original Ziegler-Nichols rules. However, the process is 

characterized by three (instead of two) parameters. Desired maximum sensitivity (2) is used as a tuning 

parameter. If the process is stable, its dynamics is characterized by three parameters: the static gain KP, 
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the apparent lag T, and apparent dead time L (Fig. 5), which can all be obtained from a simple open-

loop experiment. 

 

Fig. 5. Determination of process static gain, lag time and apparent dead time 

 

The procedure of calculating the parameters is given in [1]. 

 

4.2 Non-convex based optimization tuning method 

 

This method [3] is based on non-convex optimization in frequency domain. The controller parameters 

are being adjusted until a certain value of sensitivity Ms (2) is achieved is achieved at maximum 

integral gain (Ki). This method requires either the process model transfer function or the frequency 

characteristics of the process. 

 

4.3 Results 

 

Previously described sets of tuning rules for PI control [1,3,15] have been applied to the following 

process models: 

 31 )1(
1
+

=
s

GP ,   (24) 

 
( )( )( )( )ssss

GP 008.0104.012.011
1

2 ++++
= ,   (25) 

T L 
t 

y(t) 

Kp 



 12

 
( )3

15

3 1+
=

−

s
eG

s

P ,   (26) 

 
( )34 1

21
+
−

=
s

sGP ,   (27) 

 s
P eG −=5 .   (28) 

 
The PI controller parameters for all three tuning methods are given in Table I. 
 
 
Table I Controller parameters for processes (24) to (28). 

Tuning method Parameters GP1 GP2 GP3 GP4 GP5 

KP 0,651 2,176 0,276 0,328 0,268 DRMO 

Ki 0,455 4,041 0,045 0,176 0,804 

KP 0,535 1,32 0,077 0,141 0,005 KT Ms=1.4 

Ki 0,334 2,289 0,018 0,11 0,020 

KP 0,633 1,93 0,164 0,179 0,158 KT Ms=2 

Ki 0,325 2,591 0,027 0,101 0,472 

KP 1,145 3,036 0,280 0,340 0,023 NC Ms=1.4 

Ki 0,715 5,266 0,064 0,266 0,097 

KP 1,22 4,13 0,266 0,294 0,255 NC Ms=2 

Ki 0,685 6,988 0,048 0,184 0,854 

 
 

Fig. 6 to 10 show the closed-loop responses on input disturbance for processes (24) to (28). In Fig. 11 

the decay ratios are depicted for all three tuning methods. 
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Fig. 6. Response on input disturbance (r=0, d=1) of process (24) 
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Fig. 7. Response on input disturbance (r=0, d=1) of process (25) 
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Fig. 8. Response on input disturbance (r=0, d=1) of process (26) 
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Fig. 9. Response on input disturbance (r=0, d=1) of process (27) 
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Fig. 10. Response on input disturbance (r=0, d=1) of process (28) 

 

The decay ratios of the DRMO tuning method span between 0.009 and 0.022, while the other two 

methods have significantly wider intervals of decay ratios (0.017 to 0.09 for NC method and 0 to 0.185 

for KT method). The results show that the responses on input disturbance, when the PI controller 

parameters are tuned with DRMO method, are more uniform in terms of decay ratios than responses 

from other two methods. 

 

Fig. 11 depicts the maximum sensitivity function (2) for all the process models and tuning methods. 

 

From Fig. 12 it is clear that the NC method guarantees constant maximum sensitivity over the tested 

batch of process models, since it sets Ms to a fixed value (by using optimization). On the other hand, 

the measured maximum sensitivity of the KT method varies significantly, even more than DRMO 

method. 
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Fig. 11. Decay ratios of processes (24) to (28) for DRMO tuning method (+), KT tuning method with 

Ms=1.4 (○),  KT tuning method with Ms=2 (◊), non-convex tuning method with Ms=1.4 (*) and non-

convex tuning method with Ms=2 (□). 
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Fig. 12. Maximum sensitivity function for processes (24) to (28) for DRMO tuning method (+), KT 

tuning method with Ms=1.4 (○),  KT tuning method with Ms=2 (◊), non-convex tuning method with 

Ms=1.4 (*) and non-convex tuning method with Ms=2 (□). 
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5. Conclusions 

 

Disturbance rejection magnitude optimum (DRMO) tuning method applied to a PI controller results in 

efficient input disturbance rejection for many process models frequently encountered in process and 

chemical industries. The aim of this paper was to determine whether the closed-loop time responses are 

uniform in terms of the decay ratios. The experiment on a wide batch of process models established 

that decay ratios, except for non-minimal process- models, are between 0.017 and 0.024. Decay ratios 

of the non-minimum phase process models are significantly smaller.  

 

The DRMO method, when compared with two other tuning methods, gives more uniform closed-loop 

responses in terms of decay ratios.  
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 Fig. 14. Typical closed-loop configuration using a 1DOF controller. 
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Fig. 15. Decay ratios for closed-loop systems with PI controller and processes GP1 to GP9 
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Fig. 17. Determination of process static gain, lag time and apparent dead time 
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Fig. 18. Response on input disturbance (r=0, d=1) of process (24) 
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Fig. 19. Response on input disturbance (r=0, d=1) of process (25) 
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Fig. 20. Response on input disturbance (r=0, d=1) of process (26) 
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Fig. 21. Response on input disturbance (r=0, d=1) of process (27) 
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Fig. 22. Response on input disturbance (r=0, d=1) of process (28) 
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Fig. 23. Decay ratios of processes (24) to (28) for DRMO tuning method (+), KT tuning method with 

Ms=1.4 (○),  KT tuning method with Ms=2 (◊), non-convex tuning method with Ms=1.4 (*) and non-

convex tuning method with Ms=2 (□).  
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Fig. 24. Maximum sensitivity function for processes (24) to (28) for DRMO tuning method (+), KT 

tuning method with Ms=1.4 (○),  KT tuning method with Ms=2 (◊), non-convex tuning method with 

Ms=1.4 (*) and non-convex tuning method with Ms=2 (□). 
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LIST OF FIGURES LEGENDS 

Fig.6, Fig.7, Fig.8, Fig.9 and Fig.10 – (solid blue line) DRMO method; (solid green line) 

Astrom&Hagglund method with Ms=1.4; (red dashed line) Astrom&Hagglund method with Ms=2; 

(cyan solid line) Panagopoulos method with Ms=1.4; (black dashed line) Panagopoulos method with 

Ms=2 

Fig.11 – (+) DRMO tuning method, (○) KT tuning method with Ms=1.4, (◊) KT tuning method with 

Ms=2, (*) non-convex tuning method with Ms=1.4, (□) non-convex tuning method with Ms=2. 

 

Fig.12 – (+) DRMO tuning method, (○) KT tuning method with Ms=1.4, (◊) KT tuning method with 

Ms=2, (*) non-convex tuning method with Ms=1.4, (□) non-convex tuning method with Ms=2. 

 


