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Abstract: The paper deals with the Kalman filtering in the factorized form. The target ap-
plication area is the urban traffic control, which main controlled variable – queue length,
expressing the optimality of a traffic network most adequately, can not be directly ob-
served and has to be estimated. Additional problem is that some state variables are of a
discrete-valued nature. Thus, estimation of mixed-type data (continuous and discrete val-
ued) models is highly desirable. A potential solution to this problem calls for a factorized
version of the state-space model, which describes respective state factors individually. The
present work considers the problem of the factorized filtering with Gaussian models and
offers the solution, based on applying theL′DL decomposition of the covariance matrix.
The result of such a filtering is the posterior state estimate with the mean value and the
factorized matrix of covariance.
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1. INTRODUCTION

The paper deals with the Kalman filtering in the factorized form. The research in the area of
factorization of the Kalman filter generated many results, which are worthy of notice. Only
to enumerate some of them, one can note, for example, the following works. The paper
(Dimitriu, 2005) describes the factorization of the covariance matrix in Kalman filter, where
the covariance matrix was decomposed with the help of square root factorization. TheQR-
factorized filter and smoother algorithms for use on linear time-varying discrete-time prob-
lems, that can handle the general case of a singular state transition matrix, are discussed in
(Psiaki, 1999). TheUD-factorization of Kalman filter for the multi-sensor data fusion is pre-
sented in (Girijaet al., 2000). Another work, devoted to theUD-factorized covariance filter
application, is concerned with development of a connected element interferometer (Morrison
et al., 2002). The method for particle filtering, which factorizes the likelihood, was proposed in
(Patras and Pantic, 2004). It considers the problem, when the state space can be partitioned in
groups of random variables, whose likelihood can be independently evaluated. As regards the
nonlinear estimation, the following research works should be noted here. The square root form
of unscented Kalman filter (UKF) for the state and parameter estimation, which, in its turn,
was proposed as an alternative to the extended Kalman filter, used for nonlinear estimation,
is described in (van der Merwe and Wan, 2001). This square-root UKF has better numerical
properties and guarantees positive semi-definiteness of the underlying state covariance. The
factorization of the covariance matrices is also used in problems of systems classification, deal-
ing with multivariate Gaussian random field (Saltyte-Benth and Ducinskas, 2003).



Inspite of the variety of the mentioned works, their global aim was, primarily, to increase the
numerical stability of the Kalman filter. The objective of the present work isto obtain the
estimates of the individual state entries. The solution to this problem in general is concerned
with a factorized version of the state-space model, which would enable to model the factors of
the state individually. Use of the Gaussian state-space model and Gaussian observations calls
for the Kalman filter.

The target application area for the present research is the urban traffic control. The motivation
for the work is absolutely clear: nobody is surprised by the congestions in the crossroads of
the cities, when the modern powerful cars have to move slowly and inefficiently within perma-
nently extending peak hours and waste the time. Extension of the traffic network is expensive
and often impossible, especially in historical cities. To solve the problem, all available means
can be exploited: starting from economical pressure, various regulative measures up to the
modern, ideally adaptive, feedback control. One of the main controlled variables in traffic sys-
tems is a queue length, which expresses the optimality of a traffic network most adequately. It
can not be directly observed and has to be estimated. At the same time, other state variables
might be of a discrete-valued nature. In this way,estimation of mixed-type data (continuous
and discrete valued) modelsis highly desirable.

The layout of the paper includes the following sections. Section 2 reminds the basic facts
about the Kalman filter and provides necessary notations, used throughout the text. Section 3
describes the idea of the presented version of the factorized Kalman filtering along with the
model and algorithm used. Section 4 demonstrates examples of application of the algorithm to
the system with different dimensions of the state. The remarks in Section 5 close the paper.

2. BASIC FACTS OF KALMAN FILTER

Throughout the text the following notations are used:

xt is a quantityx at the discrete time instant labelled byt ∈ t∗ ≡ {1, . . . , t̊};

x̊ denotes the number of members in the countable setx∗ or the number of entries in the vector
x;

xt is directly unobservable state of the system;.

yt is a measured output of the system;

ut is an optional input of the system.

2.1 Model

Let’s assume, that the system is described by the state-space model

xt+1 = Axt + But + ωt, (1)

yt = Cxt + Dut + et, (2)

whereωt andet are Gaussian white noises with zero mean values and covariancesQ andR
correspondingly.



2.2 Algorithm

Kalman filter (Welch and Bishop, 1995) includes the following two steps of equations.

Time updating, which predicts the state estimate ahead in time

x̂−
t+1 = Ax̂t + But, (3)

P−
t+1 = APtA

′ + Q. (4)

Data updating, which corrects the predicted estimate by the actual measurements

Kt+1 = P−
t+1C

′(CP−
t+1C

′ + R)−1, (5)

x̂t+1 = x̂−
t+1 + Kt+1(yt − Cx̂−

t+1 −Dut), (6)

Pt+1 = (I −Kt+1C)P−
t+1. (7)

The result of the algorithm application is the normal distribution of the state with mean value
x̂t+1 and covariance matrixPt+1. The initial valueŝx0, P0 are known.

3. FACTORIZED KALMAN FILTERING

The state-space model, supposed to be used for the factorized Kalman filtering, has practically
the same form as (1-2), with the exception of covariance matrices of noises:

xt+1 = Axt + But + H ′ωt, (8)

yt = Cxt + Dut + F ′et. (9)

Here ωt and et are Gaussian white noises, for whichf(ω) ∼ N (0, Q), f(e) ∼ N (0, R).
H ′QH andF ′RF areL′DL decomposed matrices, whereL is lower triangular matrix with
unit diagonal andD is a diagonal matrix. The matrixA is of dimension(̊x× x̊), B – (̊x× ů),
C – (ẙ × x̊) andD – (ẙ × ů).

The state estimate is assumed to be calculated withL′DL-factorized covariance matrix, i. e. as
N (x̂t+1; Pt+1), wherePt+1 = L′

P (t+1)DP (t+1)LP (t+1). The initial valueŝx0, P0 = L′
0D0L0 are

known. Now let’s consider in details the time updating and the data updating procedures for
the factorized filter.

3.1 Time updating

Let’s calculate the prior state estimate for the timet + 1. Here we multiply equation (3) by
inverse matrixH ′−1.

H ′−1x̂−
t+1 = H ′−1Ax̂t + H ′−1But. (10)

DenoteH ′−1 = G, we obtain

Gx̂−
t+1 = G Ax̂t︸︷︷︸

˜̂xt

+ GB︸︷︷︸
B̃

ut = G˜̂xt + B̃ut, (11)



where new statẽ̂xt is a known vector,G is the upper triangular matrix with unit diagonal,
matrix B̃ is of dimension(̊x× ů). The structure of matrices in equations (11) can be illustrated
in the following way (for the case̊x = 3, ů = ẙ = 2). . . . . . . . . .
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Considering equation (11) in the form of individual factors, we can present the predicted esti-
mate for thei-th state factor with dimension of the state vector, equal tox̊, as

x̂−
i(t+1) +

x̊∑
k=i+1

gikx̂
−
k(t+1) = ˜̂xi(t) +

x̊∑
k=i+1

gik
˜̂xk(t) +

ů∑
j=1

b̃ijuj(t), (12)

x̂−
i(t+1) = ˜̂xi(t) +

x̊∑
k=i+1

gik(˜̂xk(t) − x̂−
k(t+1)) +

ů∑
j=1

b̃ijuj(t). (13)

The calculation of covariance matrix is done as

P−
t+1 = APtA

′ + H ′QH = AL′
PtDPtLPtA

′ + H ′QH = L′−
P (t+1)D

−
P (t+1)L

−
P (t+1). (14)

The illustration of the structure of matrices is the following one. . . . . . . . . .
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Note, that the result in (14) is obtained as theL′DL-decomposed matrix of covariance. The
calculation exploits the algorithms from the toolbox Mixtools (Nedomaet al., 2003) and does
not contain numerically dangerous operations.



3.2 Data updating

Let’s begin untraditionally from calculation of the covariance matrix. The advantages of such
a calculation will be clear later. The straightforward procedure of the covariance matrix calcu-
lation is based on the matrix inversion lemma (Peterka, 1981).

Proposition 3.1 (Matrix Inversion Lemma)

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (15)

Proof: See (Peterka, 1981).

The matrix of covariance is calculated in the step of data updating as

Pt+1 = (I − P−
t+1C

′(CP−
t+1C

′ + F ′RF )−1C)P−
t+1, (16)

where
P−

t+1C
′(CP−

t+1C
′ + F ′RF )−1 = Kt+1 (17)

is the Kalman gain matrix. We will need it later, but let’s now return to equation (16) in the
form, as it is presented. After multiplyingP−

t+1 from the right of the brackets we obtain

Pt+1 = P−
t+1 − P−

t+1C
′(CP−

t+1C
′ + F ′RF )−1CP−

t+1, (18)

= P−
t+1 − P−

t+1C
′(F ′RF + CP−

t+1C
′)−1CP−

t+1, (19)

= (P−
t+1

−1
+ C ′(F ′RF )−1C)−1, (20)

= L′
P (t+1)DP (t+1)LP (t+1). (21)

Proof: The relation (20) is calculated straightforward, based on application of the matrix
inversion lemma.

The covariance matrix is obtained inL′DL-factorized form, which can be illustrated similarly,
as it was shown in Section 3.1. For calculating the algorithms from toolbox Mixtools (Nedoma
et al., 2003) are used.

Now we can return to the Kalman gain matrix, calculated in (17). It results in the matrixKt+1

with ẙ columns and̊x rows, where̊y is dimension of the output vector. With its help we can
calculate the posterior state estimate as it follows.

x̂t+1 = x̂−
t+1 + Kt+1 (yt − Cx̂−

t+1 −Dut︸ ︷︷ ︸
denote by ŷt

)

︸ ︷︷ ︸
or denote by vector ∆t

, (22)

x̂t+1 = x̂−
t+1 + Kt+1∆t, (23)

where∆t is a known vector with̊y rows. The schematic representation of (23) looks like .
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Thus, we can consider the equation (23) from the point of view of estimates for the individual
factors of the state. We have

x̂i(t+1) = x̂−
i(t+1) +

x̊∑
j=1

kij∆j(t), (24)

where

∆i(t) = yi(t) −
ẙ∑

j=1

cijx̂
−
j(t+1) −

ů∑
j=1

dijuj(t). (25)

Summarizing the section, the suggested factorized Kalman filtering involves the following al-
gorithm.

Time updating

H ′−1x̂−
t+1 = H ′−1Ax̂t + H ′−1But, (26)

P−
t+1 = APtA

′ + H ′QH, (27)

Data updating

Kt+1 = P−
t+1C

′(CP−
t+1C

′ + F ′RF )−1, (28)

Pt+1 = (P−
t+1

−1
+ C ′(F ′RF )−1C)−1, (29)

x̂t+1 = x̂−
t+1 + Kt+1(yt − Cx̂−

t+1 −Dut). (30)

4. EXAMPLES

Three examples of the factorized state estimation are shown at this section.200 data, matrices
A, B, C andD and covariances have been simulated for the state-space model with rather small
noise, taking into account the dimension of the system. The first example is a system with
single input, single output and single state. The results – the simulated and the estimated states
(left) and prediction of the output (right) – are plotted in Figure 1. The second example uses
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Fig. 1: Factorized Kalman filter for one-dimensional system

the system with two states, single input and single output. The estimation of two-dimensional
states and predicted output can be seen at Figure 2. The last example provides the case with
x̊ = 3, ů = ẙ = 2, see Figure 3. The different initial values confirm the functioning of
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Fig. 2: Estimation of two-dimensional state and output prediction
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Fig. 3: Estimation of3-dimensional state and prediction of2-dimensional output

the filter. The results have been compared with the results, obtained from the Kalman filter.
For all the cases the state mean value calculation gives the same quantity. The covariance
matrices calculation (after multiplying theL′DL decomposition) results in very close values
(a difference is about8.0085e− 17). Results of the whiteness test (Wonnacott and Wonnacott,
1984) for the prediction error are given in Table 1. Increasing the noise, one can obtain the

Table 1: Whiteness test of the prediction error

Example p-value

1 0.1975
2 0.0009071
3 0.0003164

higher values of the probability of the elements independence. Nevertheless, the results show,
that there is no more information to be extracted from the sample.

5. CONCLUSIONS

The paper presents the factorized version of the Kalman filter. The described filtering is ex-
pected not only to contribute to higher numerical stability of the filter, but also to enable han-
dling with the mixed-type (continuous and discrete valued) data. The present work demon-
strates the specialization of the general solution of the factorized state estimation to linear



Gaussian model. The experiments with the mixed-type data will be the part of future work.
Testing on realistic simulation of traffic control problem is also planned.
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