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Abstract: An important part of controller design is the controller tuning. Tuning is done
by searching such values of controller tuning parameters in order to achieve aims on the
closed loop given by user. The fulfillment of these aims is measured by quality function.
To evaluate the quality a Monte Carlo simulation is used. To estimate how long simulation
is needed, on-line stopping rules are proposed. The Kullback-Leibler divergence is utilized
to measure stabilization of the quality.
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1. INTRODUCTION

Computational efficiency is an important factor of controller design using Monte Carlo method.
Controller tuning is a process aiming at the correct controller set-up to fulfill given constraints
and requirements. A controller depends on certain parameters, called tuning knobs, which have
to be set properly to obtain desired control loop behavior. Model-based predictive controllers
are, in some sense, optimal. However, the optimality is conditioned by the perfect model fit to
the controlled plant. And, the optimality from user’s point of view need not match the kind of
optimality acceptable for the controller. The reasons for controller tuning are:

1. The assumed controller uses a system model that does not fit to the reality due to incor-
rectly identified model parameters, or even the structure or type of model is not perfect.
The tuning knobs have to be set to suppress control error caused by the model mismatch.
In another words the controller setting influences its robustness.

2. The optimality criterion of the controller is not able to express the user’s desired kind
of optimality. The selected controller requires a different formulation of the task. The
tuning process converts the desired optimality into the form acceptable by controller.

The tuning is an optimization task searching the best tuning knob values. The controller be-
havior is evaluated from predicted closed loop performance. The prediction is calculated using
simulation of a model identified from data measured on real plant and user supplied prior in-
formation.



However, nested optimization and simulation procedures brings significant computational de-
mands. Thus it is necessary to make computation as short as possible while keeping satisfactory
precision. This problem is solved by introducing on-line stopping rules which decide how long
the simulation has to be to obtain stabilized results. The decision is made on-line, so instead of
making some global estimate, the simulation length fits to the actually simulated data.

2. TUNING AS A BAYESIAN DECISION TASK

This section describes the controller tuning as a Bayesian decision making task and applied for
the particular case of the closed loop, user-defined constraints, controller quality and tuning
parameters. The particular construction elements are described in terms of experience, action,
innovation and decision making. First of all let us present the tuned closed loop.

Fig. 1: Closed loop.

The classical interconnection between controlled system and controller, see Figure 1, generates
closed loop datad(T ) = (d1, d2, . . . , dT ) of lengthT . The datadt = (ut, yt) collect the inputut

driven by the controller and the outputyt measured on the controlled system. The closed loop
forms a stochastic system as the controlled model is considered to be influenced by a random
disturbance. Thus the model behavior is described by pdff(yt|ut, d(t − 1)). The controller
is described generally as a random one by pdff(ut|d(t − 1), q), whereq denotes the tuning
parameter. The closed loop datad(T ) are therefore also a random variable described by pdf
obtained by application of the chain rule over the horizonT

f(d(T )|q) =
T∏

t=1

f(yt|ut, d(t− 1))f(ut|d(t− 1), q). (1)

2.1 Decision Making

For the purpose of controller tuning, the user’s requirements imposed on the desired closed loop
behavior are represented by a pair of so called controller quality functionsZc andZo defined
on the closed loop datad(T ). The first functionZc represents the constraints imposed on the
data. It is a mapping

Zc : d(T )∗ 7→ Rc̊, (2)

where̊c denotes the number of independent constraints. The constraints are considered being
met if the expected value of functionZc is non-positive. The second functionZo is a mapping

Zo : d(T )∗ 7→ R. (3)



It represents a loss function which is decreasing with increasing controller performance with
respect to the output error.

The aim of the tuning as finding such a tuning parameter value that satisfies the constraints
while maximizes the performance is stated as the following optimization task

minimize E[Zo|q]
subject to E[Zc|q] ≤ 0 (4)

over the tuning parameters q.

3. CLOSED LOOP PERFORMANCE EVALUATION

In this section, requirements and constraints imposed on the ideal closed loop behavior are
defined. Their fulfillment is measured by the controller quality functionsZo and Zc. The
construction of these functions is described.

3.1 Loss Function

The control objective expresses commonly the aim assigned to the quality of the regulation
process, which should be in a certain sense as good as possible subject to the present constraints.
The typical wish on the small output error and the control effort of inputs is expressed by the
objective functionZo

Zo =
1

T

T∑
τ=1

(dτ − dref
τ )′W (dτ − dref

τ ), (5)

where the desired signal setpoints are described by the reference trajectory{dref
τ }T

τ=1 and a
positive semi-definite matrixW of appropriate dimensions.

The matrixW is usually diagonal with only those elements being non-zero which correspond
to signals in the data recorddt with an important prescribed reference trajectory or setpoint in
dref

t . The particular values define the cost of particular signal output error.

The elements of matrixW are user’s choice, but they do not substitute the proposed tuning
algorithm of parametersq. The functionZo is of a secondary importance as the primary goal
of tuning is to satisfy the specified constraint.

3.2 Constraints

Constraints are often imposed not only on the magnitudes of input and output quantities but
also on their dynamic behavior such as limited increments. To cope with these constraints
uniformly, a vector variablect containing all constrained dynamic expressions of data quantities
is introduced.

A vectorct is extracted from datad(t) by a mappingC

C : d(t)∗ 7→ Rc̊, ∀t = 1, . . . , T. (6)

Using this mapping, the vectorct can be obtained for the whole time span that is denoted by
c(T ) = {ct}T

t=1. The constraints are defined by a setC ⊂ Rc̊ of allowed values defining the
constraint satisfaction in timet by ct ∈ C.



A common example of independent time invariant constraints is formed by the cartesian prod-
uct C =

⊗c̊
i=1 Ci of intervals, where̊c is dimension of constrained vectorct. The intervalsCi

are defined
Ci = 〈cmin

i , cmax
i 〉 (7)

In the most practical tasks, vectorct contains magnitudes and increments of data records. The
corresponding functionC is

ct = C(d(t)) = [dt, dt − dt−1].

The constraint functionZc introduced in (2) is now described using the constraint vectorsct.

Zc : c(T )∗ 7→ Rc̊, (8)

This redefinition does not change the meaning of the function because the constraint variable
c(T ) is function (6) of the datad(T ).

Two variants of functionZc for servo controlZcM
and noise compensationZcP

tasks are used
as described in the rest of this section.

3.3 Servo Control Task

The constraint functionZcM
collects information about maximal constraint violation during the

simulation run
ZcM ,i = max

t=1,...,T
dist(ci,t, Ci)− dist(ci,t, comp(Ci)), (9)

wherecomp(Ci) is a set complement ofCi, ZcM ,i is i-th element ofZcM
, anddist(x, X) denotes

a distance between pointx and setX. This definition of function is suitable mainly for transient
processes, where the constrained signals have one or just a few important peaks, such as servo
control tasks. The timeT is selected big enough to cover all the instants with significant signal
changes.

3.4 Noise Compensation Task

The second functionZcP
evaluates proportional amount of time where constraints are violated

over the total length of simulation with some allowed tolerance. In the discrete case, it is the
relative frequency of constraint satisfaction

ZcP ,i = αmin −
1

T

T∑
t=1

χCi
(ci,t), (10)

whereχCi
is characteristic function of the setCi, and numberαmin ∈ 〈0, 1〉 relaxes the require-

ment of constraint satisfaction to a specified level.

This definition is suitable for situations where the constraints can be violated any time during
the simulation. This is the case of noise compensation control, where the control loop generates
an ergodic process. Then it holds

ZcP ,i
T→∞−→ αmin −P(ci ∈ Ci) almost surely,

whereP(·) denotes probability andci has dropped the time index because of ergodicity of the
process.



4. NUMERICAL EVALUATION

In this section, a numerical approach to estimation of expected value from samples is described.
The computational complexity is reduced by introducing stopping rules shortening the simula-
tions.

4.1 Expected Value Estimation

The controller tuning, formulated as the optimization task (4), acts on the conditional expecta-
tion of the controller quality functionsZc andZo. However their pdf is not known in a closed
form, because of the complexity of the dynamic system model and adaptive controller. Thus
the expected value has to be estimated by sampling. To unify the notation in the following text,
let Z• denote all the quality functions distinguished by the content of the placeholder “•” for
“cM ”, “ cP ” or “ o”. The expectationE[Z•|q] is estimated as sample mean

ZN
• (q) =

1

N

N∑
s=1

Z•,s(q)
N→∞−→ E[Z•|q], (11)

Sequence{Z•,s(q)}N
s=1 denotesN samples ofZ• from f(Z•|q).

4.2 Number and Length of Simulations

The quantityZN
• is evaluated usingN independent simulation runs. The length of each run is

determined byT . Increasing these two numbersN andT increases precision of the expected
value approximationZN

• of the controller quality functions. On the other hand, it also increases
the computational demands of the evaluation, thus the lengths have to be limited. To solve this
tradeoff, the on-line stopping rules are employed. First, the properties of the quality functions
with respect to number and length of simulations are described.

The variance of the quantityZN
• is indirectly proportional to the number of independent simu-

lation runsN , which is clear from its evaluation (11).

The similar situation occurs for length of simulationT , which has to be long enough in order
to:

1. Contain all important reference trajectory changes.

2. Allow the uncertain parameters to vary in order to simulate the controller adaptiveness.

3. Decrease the variance of the controller quality functions.

The item 1 is straightforward. It is used for transient processes, where a kind of constraint
measureZcM

is used. Of course, all responses related to reference trajectory changes have to
be included, too.

The situation of items 2 and 3 is more complicated. Both of the items contribute to the precision
of the expected value estimate. Even more, the item 2 can be substituted by item 3, because if
the variance is low, it means that further parameters changes bring no more information on the
controller quality functions.



Increasing the simulation lengthT for the ergodic case, such as the noise compensation, has
the same effect as increasing the numberN of the simulations. Thus, one long simulation is
sufficient.

The proper values ofN and T are decided on-line during simulation using the Chebyshev
inequality and the Kullback-Leibler divergence. The on-line stopping is advantageous in com-
parison with the off-line determination of the length and number of simulations, because it
considers the contribution of the actual data and thus stopping is optimal for the current simu-
lation unlike for all possible simulation runs as in the case of a priori selectedN andT values.

4.3 On-line Stopping Rule for Number of Simulations

The independent simulation runs are connected mainly with non-stationary servo-control tasks.
It is hard to find a reasonable distribution of the quality functionsZ• for different variants of
reference trajectory. Thus, a simple non-parametric stopping rule is used. It is activated when
the following inequality is satisfied

P(|ZN
• − EZN

• | ≥ γ) ≤ β, (12)

where parametersβ andγ determine the sensitivity of the stopping.

The stopping is based on variance ofZN
• as shown below. The independency of averaged

quality functions (11) resulting toZN
• used with Chebyshev inequality yields

P(|ZN
• − EZN

• | ≥ γ) ≤ var(ZN
• )

Nγ2
. (13)

As covariancevar(ZN
• ) is unknown, its estimateZN

σ,• is used

ZN
σ,• =

N∑
s=1

(Z•,s)
2 − (ZN

• )2

N
, (14)

where variableZ•,s has the same meaning as in (11). Then the stopping is triggered after certain
minimal number of simulations is performed and when the following inequality is satisfied

ZN
σ,•

Nγ2
≤ β. (15)

4.4 On-line Stopping Rule for Simulation Length

A rule for on-line simulation stopping for the noise compensation task is described here. The
functionZ• contains a sum (5) or (10), but the summed terms are correlated, so the approach
using the Chebyshev inequality from Section 4.3 cannot be applied. Let the summed terms (20)
of Zo andχCi

(ci,t) of ZcP
forming the controller quality functions be called partial controller

quality and be denoted byvt. For the noise compensation task we assume the closed loop
signals be ergodic and thus also the partial losses are ergodic.

To find a reasonable stopping rule, a simple dynamic model ofvt

f(vt|v(t− 1), Ξ). (16)



is being estimated in Bayesian way. Let the parameters of the model be denoted byΞ. When
the estimated pdff(Ξ|v(t)) of the model parametersΞ stabilizes, the stopping takes place.
The stabilization of pdff(Ξ|v(t)) is measured by the Kullback-Leibler divergenceDKL of two
successive pdf estimates (Kárńy et al., 2005). It is defined by

DKL(f(Ξ|d(T ))‖f(Ξ|d(T − 1))) =
∫

f(Ξ|d(T )) ln
f(Ξ|d(T ))

f(Ξ|d(T − 1))
dΞ. (17)

When this divergence, labeledUT , becomes smaller than some threshold valueε

UT = DKL(f(Ξ|d(T ))‖f(Ξ|d(T − 1))) ≤ ε, (18)

the computation is stopped. At this momentT , the pdff(Ξ|d(T )) is considered to reach the
steady state. The stationarity means that more data would not bring significantly more infor-
mation for the estimate. The dynamic model of variablev (16) is used just for determination of
the stopping time while the loss function is calculated by its original defining equation (5) or
(10). This approach was mentioned in (Kárńy et al., 2005).

Yet there is a better opportunity of calculating the loss function value from the estimated dy-
namic model of the partial lossv by evaluating its stationary pdf. This approach is used in the
next paragraph with ARX model. It is shown thatf(Z|d(T )) is stabilizing asf(Ξ|d(T )) is
stabilizing. In other words the divergence

DKL(f(Z|d(T ))‖f(Z|d(T − 1))) (19)

is decreasing asDKL(f(Ξ|d(T ))‖f(Ξ|d(T − 1))) is decreasing.

The definition of the quantityvt and the construction of the particular models for the functions
Zo andZcP

is described in the following paragraphs using ARX and Markov chain models. The
stopping rule for whole simulation is triggered when the conditions for both loss and constraint
function stopping are activated.

Approximation by ARX ModelThis section describes a suitable model type (16) of the partial
quality vt used for determination of the stopping time when evaluating the loss functionZo.
The quantityvt for the functionZo as the summed term in (5) is the weighted distance between
the data variabledt and its referential valuedref

t in time t

vt = (dt − dref
t )′W (dt − dref

t ). (20)

For purpose of stopping quite a rude dynamic approximation ofvt by a simple autonomous
ARX model is used.

vt = avt−1 + k + et, et ∼ N (0, R). (21)

The parametersa, k, andR are collected into the variableΞ, where[a, k] = Ξθ, R = ΞR and
Ξ = [Ξθ, ΞR].

The Bayesian identification of the parametersΞ leads to the self reproducing Gauss-inverse-
Wishart prior/posterior pdf

f(Ξ|v(t)) = f(Ξθ, ΞR|Vt, νt) = (22)

= αt|R|−
νt
2 exp

{
−1

2
tr

(
Ξ−1

R

[
−I
Ξθ

]′
Vt

[
−I
Ξθ

])}
,



whereαt is a normalizing constant. Statisticsνt andVt and parameter elementsΞθ andΞR

written only asθ andR withoutΞ.

The stationarity measure for theZo function denoted byUo;t, by means of the Kullback-Leibler
divergence of two successive estimated pdfs ofΞ, has the form (Ḱarńy et al., 2005)

Uo;t = DKL(f(Ξ|v(t))‖f(Ξ|v(t− 1))) =
F (νt) + G(ζt) + H(νt, %t, ζt)

2
, (23)

where

F (νt) = 2 ln
(
Γ
(

νt − 1

2

))
− 2 ln

(
Γ
(

νt

2

))
+

∂ ln(Γ(νt

2
))

∂ νt

2

G(ζt) = ln(1 + ζt)−
ζt

1 + ζt

%t =
ê2

t

Dy,t−1(1 + ζt)

H(νt, %t, ζt) = (νt − 1) ln(1 + %t)−
νt%t

(1 + %t)(1 + ζt)
.

The quantitiesζt, êt, andDy,t−1 see (Ḱarńy et al., 2005).

When the divergenceUo;T is less than thresholdε in time T then it is assumed that enough
information has been collected and the loss functionZo (5) is precise enough.

Loss Evaluation from Dynamic Model It is possible to evaluate the mean value of loss
functionZo directly from the dynamic stopping model ofvt (16) instead of its original definition
(5), were the stabilization property ofEZo is implied by stabilization of the dynamic model
parameters.

This is obtained by transforming the dynamic model (16) into a static one. First, the transfor-
mation for deterministic parametersΞ is given and then the distribution of uncertain ones is
transformed.

Suppose now that the parametersa, k, R of dynamic model (16) are known and stable,|a| < 1,
then the corresponding static model is given by pdf

vt = N (p, q), (24)

where parametersp, q are given by

p =
k

1− a
(25)

q =
R

1− a2
(26)

The new parameterp is a suitable estimate ofZo, asZo = 1
T

∑T
t=1 vt. Thus

p = Evt
.
= EZo,

where the.
= sign means approximately equal as the stopping model (21) is just an approxima-

tion.



If the model (16) is unstable,|a| ≥ 1, the lossZo is infinity.

Now we drop the assumption of certain parameters. As the model (16) is estimated in Bayesian
way, its parameters are uncertain. Thus parametersp andq of the static model (24) are uncer-
tain, too. The estimate ofZo is therefore selected as expected value ofp

EZo
.
= Ep (27)

The pdf ofp is obtained by transforming quantitiesk, a andR according to (25). Unfortu-
nately, the posterior pdf of parametersΞ is Gauss-inverse-Wishart and it has infinite support
for parameterΞa = a. Situation when|a| ≥ 1 and the estimated model (21) is unstable has non-
zero probability. This conforms to the reality where a system model with uncertain parameters
connected in closed loop can be with some probability unstabilizable.

As this situation is generally unavoidable, we have to accept that the stopping model (21) is
unstable with some low probabilityP(|a| ≥ 1). However this makes the estimate ofEZo

infinite. When evaluating theZo directly from simulation by (5) and the closed loop shows
to be unstable, the estimated model is rejected by the tuning algorithm. Thus the results are
limited to the stabilizable models only. So when we approximate theEZo from stable stopping
models only|a| < 1 we obtain the same result. Therefore we may restrict the transformation
(25) to|a| < 1.

Stopping properties of transformed quantity The stopping property with respect to the
Kullback-Leibler divergence of parameter pdff(Ξ) (18) implies the same property for trans-
formed quantityp, which is used to estimateEZo (27).

DKL(f(p|d(T ))‖f(p|d(T − 1))) ≤ DKL(f(Ξ|d(T ))‖f(Ξ|d(T − 1))) ≤ ε

This can be proven by writing the transformation (25) restricted on|a| < 1, lets denote itG,
as a compositionG = S ◦ H of regular transformationH : p = k

1−a
, k = k and projectionS

selecting only elementp from result ofS.

The Kullback-Leibler divergence remains unchanged when transforming the quantity by a reg-
ular transformation. Letf(x) andg(x) be pdfs on quantityx. Transformed quantityy = H(x)
has pdff̃(y) = f(H−1(y))|JH−1(y)| and similarly for pdfg. Then it holds

DKL(f̃(y)‖g̃(y)) =
∫

f(H−1(y))|JH−1(y)| ln f(H−1(y))

g(H−1(y))
dy =

=
∫

f(x) ln
f(x)

g(x)
dx = DKL(f(x)‖g(x)).

The projection transformation decreases the value of the Kullback-Leibler divergence

DKL(f(a)‖g(a)) ≤ DKL(f(a, b)‖g(a, b)) (28)

This is proven by

DKL(f(a, b)‖g(a, b)) =

=
∫ ∫

f(a, b) ln
f(a, b)

g(a, b)
dadb =



=
∫

f(a)
∫

f(b|a) ln
f(b|a)f(a)

g(b|a)g(b)
dbda =

=
∫

f(a) ln
f(a)

g(a)
da +

∫
f(a)

∫
f(b|a) ln

f(b|a)

g(b|a)
dbda =

= DKL(f(a)‖g(a)) +
∫

f(a)DKL(f(b|a)‖g(b|a))da ≥ DKL(f(a)‖g(a))

Approximation of Transformed Expected Value Applying Taylor series expansion of trans-
formationp = G(Ξ) in pointEΞ we obtain

p = G(EΞ) + (Ξ− EΞ)∇G(EΞ) +
1

2
(Ξ− EΞ)∇2G(EΞ)(Ξ− EΞ)′ + · · · , (29)

which is in expected value

Ep = EG(Ξ) = G(EΞ) +
1

2
tr(∇2G(EΞ)covΞ) + · · · . (30)

Using just the first order approximation we obtain

Ep
.
=

Ek

1− Ea

The expected valueEa should be evaluated from the distribution with support only on|a| < 1,
as described above. Nevertheless, the probabilityP(|a| > 1) is low. So using the expected
value from original Gauss-inverse-Wishart distribution onΞ is sufficient. This approximation
gives good results comparing to calculation directly from definition ofZo (5) according to
experimental testing.

Markov Chain Estimation The calculation of the constraint functionZcP
(10) includes an

estimate of constraint satisfaction probability using characteristic function of the allowed set.
To determine precision of this estimate, the task is slightly extended.

Given thei-th element of the constraint quantityci;t from Section 3.2 and the corresponding
constraining intervalCi from (7), let{vt}T

t=1 be a sequence indicating the relative position of
ci;t to Ci

vi;t =


1 ci;t > Ci

0 ci;t ∈ Ci

−1 ci;t < Ci

, (31)

where the inequality symbol is understood as it holds for all the elements of the interval on its
right side.

The dynamic model (16) of the discrete variablevi;t is represented by Markov chain

f(vi;t|gi;t−1, Ξ) = Ξvi|gi
, whereΞvi|gi

≥ 0 and
∑
vi

Ξvi|gi
= 1. (32)

The notation of
∑

vi
denotes a sum over the whole set of possible valuesv∗i , the analogous

situation holds also for the product in the following text. As the quantityvt is now discrete, the
symbolf represents a probability function now. The quantitygi;t−1 contains the past values of
vi;t

gi;t−1 = [vi;t−1, vi;t−2, . . . , vi;t−η].



The numberη denotes the order of the Markov chain. The parameterΞv|g has3η+1 entries. The
following derivations are done for single element ofvt only and the element indexi is omitted
for the sake of simplicity.

Using the Bayes’ rule and the conjugated prior onf(Ξ) defined by the statisticV0,v|g

f(Ξ) ∝
∏
g

∏
v

Ξ
V0,v|g−1

v|g ,

we obtain the posterior pdf of the parametersΞ

f(Ξ|v(t)) =

∏
g

∏
v Ξ

Vv|g;t−1

v|g

B(Vt)
,

where

Vv|g;t = V0,v|g +
t∑

τ=1

δ(v, vt)δ(g, gt)

with δ(·, ·) being the Kronecker delta and the normalizing factor

B(Vt) =
∏
g

∏
v Γ(Vv|g;t)

Γ(
∑

v Vv|g;t)
.

The stopping rule uses the Kullback-Leibler divergence to determine if there is collected enough
information about the constraint functionZcP

. The calculation is stopped whenever the diver-
gence of two successive pdfs, denoted byUc;T , is less or equal to thresholdε

Uc;T = DKL(f(Ξ|v(T ))‖f(Ξ|v(T − 1))) ≤ ε. (33)

Derivation of this divergence for the Markov chain model is done through converting it to the
Dirichlet model, for which the divergence is analyzed in (Kárńy et al., 2005).

ParametersΞv|g are independent for different past datag. Thus

f(Ξ|v(t)) =
∏
g

f(Ξ•|g|v(t)),

where the particular factors

f(Ξ•|g|v(t)) =
Γ(
∑

v Vv|g;t)∏
v Γ(Vv|g;t)

∏
v

Ξ
Vv|g;t−1

v|g

are distributed by the Dirichlet distribution. In each time step, only one of these factors is
updated—that one with corresponding past datag = gt−1. The other factors remain unchanged.

As it holds
DKL(f1(x)f(y)‖f2(x)f(y)) = DKL(f1(x)‖f2(x)),

thus
DKL(f(Ξ|v(t))‖f(Ξ|v(t− 1))) = DKL(f(Ξ•|gt|v(t))‖f(Ξ•|gt|v(t− 1))) (34)

is a divergence of two Dirichlet distributions. Now, the divergence of the two Dirichlet dis-
tributions derived in (Ḱarńy et al., 2005) can be used in (34) and the stopping rule (33) then
yields

Uc;t = − ln
Vvt|gt;t−1∑
v Vv|gt;t−1

+
∂

∂Vvt|gt;t

ln Γ
(
Vvt|gt;t

)
− ∂

∂
∑

v Vv|gt;t

ln Γ(
∑
v

Vv|gt;t). (35)



At the stopping timeT , determined by (33), a stabilized MC model is obtained.

For the stopping purposes only first order,η = 1, Markov chain is used. Its steady state
probabilityP(vt = 0) of state number zero in (31) can be used for obtaining the value ofZcP

.
The steady statep evaluation for Markov chain with certain parametersΞ requires calculation
of vectorp such that

∑3
i=1 pi = 1 andΞp = p.

For uncertainΞ with Dirichlet distribution it is difficult to calculate the distribution of steady
statep. Also another problem arises when using smooth optimization technique for constraints
satisfaction measure evaluated from only finite number of samples. Thus the Markov chain is
evaluated only for stopping purposes.

Properties of the Stationarity Measures Illustrated on an ExampleTo show the properties of
the stationarity measuresUc;t (35) andUo;t (23) using ARX and MC stopping models, a simple
illustrative experiment is presented. The results can be seen in Figure 2. The data used for
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Fig. 2: Properties of stationarity measures. The symbolsu andy denote inputs and outputs,Uc and
Uo are the stationarity measures obtained by Markov chain and logarithm ARX model approximations.
U int

c is interpolation ofUc. Zc andZo are controller quality functions of constraint violation and output
error. Horizontal axis represents the time.

the evaluation of the loss and constraint functions were generated using the linear system with



transfer function
0.00468 + 0.00438z−1

1− 1.81z−1 + 0.8178z−2

which was driven by zero mean white noise with variance one. This model was obtained by
discretization of a simple continuous model with transfer function

1

(1 + s)2

with sampling period 0.1.

The squares of the generated output samples were used as a partial quality function for the
stopping by using ARX model stabilization, see (20) withW = 1. The stationarity measure
Uo;t for the ARX model is seen in the second part of the figure and the evolution of the mean
value estimation is in its third part.

The constraining interval[−0.3, 0.3] is used on the generated data to obtain the discrete three-
state indicator (31) for the purpose of stopping through the MC model (32). The resulting
stationarity measureUc;t and the corresponding estimation of probability of the state zero are
shown in the second and third part of the figure.

It can be seen that the measureUc;t is rather fuzzy. This complicates the decision whether to
stop simulation, because the rule to stop whenever the measure is below the threshold is quite
unsatisfactory as the several next samples immediately increase the value above this threshold.
To solve this problem, an interpolation is performed using the approximation by the following
model

U int
c,t = a0 + a1t

−1/2 + a2t
−1, (36)

were the coefficients are obtained by linear regression. The interpolated measure, denoted
by U int

c;t , is shown in the figure. The interpolation is, up to a tiny peak close to the origin,
satisfactory for the stopping purposes.

It is possible to think about stopping for the interpolating regression, too, and trigger the stop-
ping when the interpolated measure is below the threshold as well as the interpolation itself has
been stabilized.

The threshold for the measuresU int
c;t andUo;t need not be of the same value. The stopping

models are different and have a different number of identified parameters. From the particular
example presented in this section a reasonable threshold forU int

c;t is roughly 0.008 and forUo;t

it is 0.004.

5. CONCLUSIONS

This paper described the effective quality function evaluation using the stopping rules. Of
course the controller tuning contains the optimization method which uses the quality evaluated
to search for better tuning parameters. The optimization method is described elsewhere (Novák,
2005), but because it is done numerically. The quality functions are evaluated many times. Thus
the effectiveness of their calculation is necessary.
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