
SIMULATION AND VISUALIZATION OF ANTICIPATORY
ALIFE AGENTS

Karel Kohout, Pavel Nahodil

Department of of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague
Prague, CZECH REPUBLIC

E-mail: {kohoutk,nahodil}@fel.cvut.cz

Abstract: This paper presents our approach in design, simulation and visualization in the
field of anticipation and ALife agents. Anticipation occurs in all spheres of life. Nature
evolves in a continuous anticipatory fashion targeted at survival. A conscious reaction
takes too long to process. Motivation mechanisms in learning, the arts, and all types of
research are dominated by the principle that an expected future state controls present ac-
tion. Under anticipation in ALife domain we understand more that prediction or estima-
tion of the future states. Anticipation takes the information from prediction or estimation
as an input in order to perform reasoning, learning and planning. Several anticipatory ar-
chitectures have been proposed, implemented and tested in the designed simulation envi-
ronment. A part of visualization is targeted on simulation world itself and the agents that
are living in it. Another part is concerned about analysis of parameters and properties of
simulation in time.

Keywords: ALife, Simulated environment, Anticipation, Behaviour, Animate, Agent

1. INTRODUCTION

Our research in ALife agent domain began with hybrid agent architectures and evolved lately
to anticipation architectures. Hybrid architectures are a trade off between fast but hardly
changeable and learning incapable reactive architecture (bottom-up) and the slow but adaptive
and planning capable deliberative architecture (top-down). Hybrid deliberative-behavioural
architectures have strong roots in biology. Research problem is to find the boundary between
both approaches. I will not go into detail about these architectures because they are well de-
scribed and out of scope of this paper, more about them can be found in (Kadleček, 2001).
From the working and designed hybrid architecture we moved towards anticipation. We inte-
grated the anticipatory block into the hybrid architecture. We aim to improve agent’s behav-
iour not only in terms of survival. Nowadays the mere survival is not enough. We want our
agent to complete various tasks, to have its own will and own feelings. The description how
we are achieving these goals will be described further in this paper.

2. ANTICIPATION

Before introduction of designed agent architectures and also simulation environment we will
introduce the term anticipation. We will also determine what we understand under anticipa-
tion in terms of ALife. Basic definition of anticipatory systems was published in 1985 by bio-
cyberneticist R. Rosen in his book Anticipatory systems (Rosen, 1985). He defined an antici-
patory system as follows: “A system containing a predictive model of itself and/or its envi-
ronment, which allows it to change state at an instant in accord with the model's predictions

pertaining to a latter instant”. On the turn of century this definition was revised by D. Dubois
(Dubois, 2003). His research showed, that we can observe anticipation even in the systems
where the creation of the model is not possible in principle (such as galaxies, electromagnetic
systems etc.). Therefore he defined two categories for anticipation strong and weak. Strong
anticipation systems are those, which crates the model of the object they are interacting with.
Weak anticipation systems do not creates the model, it is a part of their structure. In artificial
intelligence, anticipation is the concept of an agent making decisions based on predictions,
expectations, or beliefs about the future states. It is widely recognized that anticipation is a
vital component of complex natural cognitive systems. The opposite for anticipation behav-
iour is reactive behaviour. Anticipation seems to be suitable for key role in design and realiza-
tion of anticipatory behaviour. Our understanding of anticipation is very closely connected to
behaviour. The mere estimation or prediction of the future is not enough. We need to take this
information and integrate it into the decision making process in order to improve it. This is
our goal which is currently under an intensive research.

2. SIMULATION ENVIRONMENT

For the various simulations we use to prove correctness of designed architectures we designed
our own simulation environment. Its design started two years ago and has been continuously
worked on recently. Several agent architectures have been tested in this environment. We
named this environment World of Artificial Life (WAL). It defines, what objects can agent
meet, what changes are possible, provides the agent with information about the virtual world
and it defines the body of an agent. WAL architecture was mainly focused on environment. It
used the agent architecture from previous research, mainly (Kadleček, 2001). We modified
this agent architecture to comply with the environment. We intended to use it then to compare
behaviour with other architectures. The proposed abstract architecture consists of several
parts. Each one of them is focused to one specific area. It recommends the selected solution in
order to maintain interconnectivity and modularity. Application engine is main program part.
It synchronizes time steps for whole application, contains interfaces to all other parts (mod-
ules) of application and also contains and maintains all part of simulation like agents and en-
vironmental layers (see below). Interface between engine and its program surrounding is data
representation. Well-defined standard of XML language is supported, but has proved as
highly inefficient to transfer along network to other modules of distributed application. For
this purpose binary data representation was designed. This binary representation is conversion
of XML tree structure to byte effective format. Environmental layers are the main compo-
nents of virtual world of agents. They enable to dissemble complex world into simpler part
which are easy to implement. They can overlap each other and together they will create more
complex world. The layer is a logically detachable part of world which is capable to act indi-
vidually and which creates the virtual world along with other layers. All described above is
just an algorithm with no human interface. Visualization of the designed world can be both
attractive and useful tool. For this purpose an external visualization module or internal (de-
fault) can be used. The internal visualization is mainly meant to debug and observe simulation
by creator. The external module can be exact opposite. It I supposed to be used to present this
simulation to the wider audience than science community. The on-line or off-line tools for
analysis of the parameters flow in time are also supported. The proposed environment is com-
patible with the 3D visualization tool called VAT (Řehoř, 2003). It can be used to observe any
of agent’s parameters at any time of simulation. Running simulation can also be stopped at
any moment and even traced back to certain point of the history. It can also be used to run
again the simulation to observe if any change of behaviour will occur while starting from ex-
actly same situation. Also change of simulation parameters should be available while simula-
tion is running. Agent is any object in simulation either virtually alive (creature, predator) or

virtually non-living (trees, food, water, rocks). Sensors and effectors of agent are his inter-
faces with virtual world therefore they are part of the environment and its layers. Besides that
agent mind and control are not part of environment. They are separated and can even run re-
motely. Here described architecture was implemented and currently is being used in few di-
ploma theses for testing agent control mechanisms. The effort of creators of this application is
to present it as standard for Artificial Life domain specific simulations. The work on this sub-
ject follows up on the former research of a MRG group on FEE, CTU. It concludes the design
of new environment for Artificial Life domain simulation. They are used in both the visuali-
zation of an environment in which agents live and the visualization of agent parameters over
time. This serves for better analysis and better behavioural pattern recognition. While design-
ing this architecture special care was applied to modularity of the whole application.

Layer 1

Agent‘s body

Senso- Effectors

Vegetative block

Agent‘s mind

Learning

Planning Action
selection

Reactive base

Layer n

…

Knowledge
base

Anticipatory behavior

Fig. 1. Block scheme of WAL abstract architecture

3. ANTICIPATORY ARCHITECTURES

The above described architecture gave us a solid ground for further research of behaviour.
Further works started with anticipation research. It is an interesting yet challenging topic.
There are several successes on the field of anticipatory behaviour. We would like to introduce
two already designed and implemented anticipatory architectures with different approaches
described and implemented.

3.1 Architecture Lemming

First architecture was named Lemming (Foltýn, 2005). This architecture fully leveraged from
the WAL environment. It uses the algorithms known from Artificial Intelligence for agent's
learning and offers an alternative to genetic programming and the artificial neural networks
commonly used in ALife domain. This model ensures agent's survival in unknown dynami-
cally changing environment. Learning abilities of architecture Lemming were proven in ex-
periments in which agents acted. Agent learned which objects are necessary for his survival.
This architecture introduced Classification Information Block (CIB) for information storage
about agents' usabilities. Usability is an attribute of agent saying what it can do with an object
and it is derived in trial-error iteration. The structure used for CIB is decision trees imple-
mented by Top-Down Induction of Decision Trees (TDIDT) algorithm. To find the most sig-
nificant attribute and recursively continue until there are no attributes or training examples
left measuring the amount of information by entropy is used. Generalization using LGG (least

general generalization) algorithm was incorporated into architecture Lemming and used for
agents. During the process of reasoning, each agent/object in the surrounding environment is
assigned some attraction based on agent's knowledge, his current needs and long-term goals.
An attraction is a basis for agent's movement using concept of the virtual potential field gen-
eration known from mobile robotic. Several experiments were presented. Lemming's long-
term ability to survive in given environment proves justification for chosen and implemented
behaviour primitives and proper tuning of used settings. In Predator-Prey Simulation, an ap-
plication of architecture Lemming on classical problem from ethology and biology is used.
The simulation also presents simple application of the knowledge transfer from parents to
descendants. Setting experiment constants leaves space for user's interaction with the simula-
tor.

Fig. 2. Block scheme of Lemming agent architecture

3.2 Anticipatory Learning Classifier System

The other architecture designed focuses on learning problem in artificial life domain. The
Anticipatory Learning Classifier System (ACS) was defined and proven as promising ap-
proach. It combines reinforcement learning, evolutionary computing and other heuristics to
produce adaptive learning system (Mach, 2005). Learning and adaptation can be in ACS di-
vided into several topics. They are knowledge structure, decision making, new rule genera-
tion, generalization and learning from environment with delayed reward. Created rules are in
the form of “IF condition THEN do action AND EXPECT next state” format. Each rule in
ACS has in addition two values, the reward for performing the action and the quality of pre-
diction (how precise the estimation of the next state is). ACS models the environment as hid-
den Markov model. The aim is to discover the states of the model which are initially un-
known.

Fig. 3. Block scheme of ACS agent architecture

4. SIMULATIONS

Several simulation scenarios was tested to prove capabilities of each designed architecture.
All of mentioned agent architectures are capable or running in WAL. Even the works created
before WAL were modified to be able to run in this environment. Architecture Lemming was
designed in WAL directly. ACS was primarily implemented in Matlab but the interface to
communicate with WAL environment was proposed. The graphic capabilities of the designed
architectures are not sufficient in case of displaying more parameters. In WAL simulations we
used the graphical tool named VAT for detailed analysis. This tool is helpful not only in the
simulation evaluation phase but also in the phase of debugging the architecture. It can be used
to detect errors in the implementation. I will demonstrate this on use case. The simulation
scenario for a single agent was intended to move an object between two places. The agent had
enough food and water to satisfy its needs. Fig. 4 shows the visualized data from this simu-
lation. This picture shows the paralel coordinates mesh. Each variable has its own axis and
these are layed in paralel and the actual values are connected to form a curve. The third di-
mension is time. Even a very first look at the 3D mesh could advise that there is obviously
something wrong with the simulation. Almost all of parameters are zero (the mesh is flat).
The agent is not hungry or thirsty. It is neither tired nor sleepy. But we implemented and
designed all these. The reason for this could be a data export failure, a mistake in implemen-
tation of the inner agent vegetative block or bad initial configuration of an agent. Because we
run the simulation previously and exported the data and the vegetative block was working
properly, there is no problem with implementation itself. Brief check of the configuration
showed that there was enormously high value set to the time function of the chemicals. This
cause their very little change even in a long time sumulation.

Fig. 4. Use case – visual tool usage for debugging

Another experiment named Rescue Mission was performed on architecture Lemming. This
experiment shows learning abilities of architecture Lemming and applied generalization. The
experiment had two parts. Firstly the agent has to discover which tool belongs to which create
and then successfully use it to open it. In the scenarion there were four different tools each for
opening a different create. The agent is motivated by a reward locked in the last create. All
experience is gained by trial-error learning plus there is a generalization used for proper tool
usage discovery. After each successful utilization of a tool, knowledge in General Rules
Block is updated. Two successful examples of opening different kinds of crate are enough for
lgg algorithm to create general rule connecting crate's property, used tool and the final state of
the crate. This knowledge is then used for setting new long term goals to find proper tools
which agent doesn't posses and which will be needed for perceived crates opening. We have
to emphasize that Classification Information Block doesn't contain any information about
tools for which agent deduced he will need (using general rule) and these tools would be trea-
ted as collectible objects.

5. CONCLUSION

In this article we showed the recent advances in the field of artificial life specifically focused
on the anticipatory behavior in our reserach group. Anticipation as we see it is not plain pre-
diction or estimation of the future. This can be done using several statistical approaches. Anti-
cipation in ALife means more then just prediction. It is for us utilizing the obtained or derived
information about the future for the higher cognitive processes such as planning and decision
making. It has been shown that anticipation cannot be the only control mechanism. The re-
action base, and other features, ensuring learning, and evolution of an agent are necessary as
well. The information about future can be taken in account while decision about next action is
made. Anticipation is still the subject of intensive research.

REFERENCES

Rosen, R. Anticipatory Systems - Philosophical, Mathematical and Methodological Foundations, Per-
gamon Press, 1985, ISBN 0-08-031158-X.

Dubois, D. M. Mathematical Foundation of Discrete and Functional Systems with Strong and Weak
Anticipation. In Anticipatory Behavior in Adaptive Learning Systems. Lecture Notes in Com-
puter Science 2684. Heidelberg: Springer, 2003.

Kadleček, D., Nahodil, P. New Hybrid Architecture in Artificial Life Simulation. In Lecture Notes in
Artificial Intelligence No. 2159, Berlin: Springer Verlag, 2001. pp. 143-146. ISBN 3-540-
42567-5.

Řehoř, D., Kadleček, D., Slavik, P., Nahodil, P. VAT - A New Approach for Multi-Agent Visualiza-
tion. In 3rd IASTED International Conference on Visualization, Imaging and Image Processing,
8.-10. 9. 2003, Benalmadena, Spain. Spain: ACME Press, pp. 849 – 854. ISBN 0-88986-382-2.

Foltýn, L. Realization of Intelligent Agents Architecture for Artificial Life Domain. Diploma thesis.
Prague: Czech Technical University in Prague, Faculty of Electrical Engineering, Department of
Cybernetics, 2005.

Mach, M. Data mining knowledge mechanism of environment based on behavior and functionality of
it’s partial objects. Diploma thesis. Prague: Czech Technical University in Prague, Faculty of
Electrical Engineering, Department of Cybernetics, 2005.

	1. INTRODUCTION
	2. ANTICIPATION
	2. SIMULATION ENVIRONMENT
	3. ANTICIPATORY ARCHITECTURES
	The above described architecture gave us a solid ground for further research of behaviour. Further works started with anticipation research. It is an interesting yet challenging topic. There are several successes on the field of anticipatory behaviour. We would like to introduce two already designed and implemented anticipatory architectures with different approaches described and implemented.
	3.1 Architecture Lemming
	3.2 Anticipatory Learning Classifier System
	4. SIMULATIONS
	5. CONCLUSION

